Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset Sources and Processing
2.3. Quantifying Ecosystem Vulnerability
2.3.1. Habitat Condition
2.3.2. Ecosystem Structure
2.3.3. Ecosystem Function
Grain Productivity Accounting
Carbon Storage Accounting
2.4. Geodetector Analysis Method
3. Results
3.1. Spatiotemporal Variation in Ecosystem Vulnerability Index in the NPSCs
3.2. Spatiotemporal Evolution of Ecosystem Vulnerability Indicators
3.3. Modes of Ecosystem Vulnerability Variation in the NPSCs
3.4. Possible Causes for Ecosystem Vulnerability Changes
4. Discussion
4.1. Policy Implications
4.2. Policy Suggestions
4.3. Limitation and Future Research Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EVI | Ecosystem Vulnerability Index |
NPSC | National Poverty-Stricken County |
HCI | Habitat Condition Index |
ESI | Ecosystem Structure Index |
LH | Landscape Heterogeneity |
LC | Landscape Connectivity |
EFI | Ecosystem Function Index |
WY | Water Yield |
GP | Grain Productivity |
CS | Carbon Storage |
SC | Soil Conservation |
QPE | Qinghai–Tibet Plateau Ecoregion |
SEE | Southeast Ecoregion |
NWE | Northwest Ecoregion |
YRSYE | Yangtze River and Sichuan–Yunnan Key Ecoregion |
NEE | Northeast Ecoregion |
YRKE | Yellow River Key Ecoregion |
AMP | Annual Mean Precipitation |
AMT | Annual Mean Temperature |
PBL | Proportion of Built-up Land |
PWL | Proportion of Wood Land |
PD | Population Density |
GDP | Gross Domestic Product |
References
- UNDP. Human Development Report 2020: The Next Frontier: Human Development and the Anthropocene; United Nations: New York, NY, USA, 2020. [Google Scholar]
- Haider, L.J.; Boonstra, W.J.; Peterson, G.D.; Schlüter, M. Traps and Sustainable Development in Rural Areas: A Review. World Dev. 2018, 101, 311–321. [Google Scholar] [CrossRef]
- Albert, J.S.; Carnaval, A.C.; Flantua, S.G.A.; Lohmann, L.G.; Ribas, C.C.; Riff, D.; Carrillo, J.D.; Fan, Y.; Figueiredo, J.J.P.; Guayasamin, J.M.; et al. Human impacts outpace natural processes in the Amazon. Science 2023, 379, eabo5003. [Google Scholar] [CrossRef]
- UN. Independent Group of Scientists Appointed by the Secretary-General, Global Sustainable Development Report 2023: Times of Crisis, Times of Change: Science for Accelerating Transformations to Sustainable Development; United Nations: New York, NY, USA, 2023. [Google Scholar]
- Lapola, D.M.; Pinho, P.; Barlow, J.; Aragão, L.E.O.C.; Berenguer, E.; Carmenta, R.; Liddy, H.M.; Seixas, H.; Silva, C.V.J.; Silva-Junior, C.H.L.; et al. The drivers and impacts of Amazon forest degradation. Science 2023, 379, eabp8622. [Google Scholar] [CrossRef] [PubMed]
- Pörtner, H.-O.; Scholes, R.J.; Arneth, A.; Barnes, D.K.A.; Burrows, M.T.; Diamond, S.E.; Duarte, C.M.; Kiessling, W.; Leadley, P.; Managi, S.; et al. Overcoming the coupled climate and biodiversity crises and their societal impacts. Science 2023, 380, eabl4881. [Google Scholar] [CrossRef]
- Li, G.; Fang, C.; Li, Y.; Wang, Z.; Sun, S.; He, S.; Qi, W.; Bao, C.; Ma, H.; Fan, Y.; et al. Global impacts of future urban expansion on terrestrial vertebrate diversity. Nat. Commun. 2022, 13, 1628. [Google Scholar] [CrossRef] [PubMed]
- Simkin, R.D.; Seto, K.C.; McDonald, R.I.; Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl. Acad. Sci. USA 2022, 119, e2117297119. [Google Scholar] [CrossRef]
- Pradhan, P.; Costa, L.; Rybski, D.; Lucht, W.; Kropp, J.P. A Systematic Study of Sustainable Development Goal (SDG) Interactions. Earth’s Future 2017, 5, 1169–1179. [Google Scholar] [CrossRef]
- Masron, T.A.; Subramaniam, Y. Does poverty cause environmental degradation? Evidence from developing countries. J. Poverty 2018, 23, 44–64. [Google Scholar] [CrossRef]
- Aluko, M. Sustainable Development, Environmental Degradation and the Entrenchment of Poverty in the Niger Delta of Nigeria. J. Hum. Ecol. 2006, 15, 63–68. [Google Scholar] [CrossRef]
- Le, W.; Leshan, J. How eco-compensation contribute to poverty reduction: A perspective from different income group of rural households in Guizhou, China. J. Clean. Prod. 2020, 275, 122962. [Google Scholar] [CrossRef]
- Althor, G.; Mahood, S.; Witt, B.; Colvin, R.M.; Watson, J.E. Large-scale environmental degradation results in inequitable impacts to already impoverished communities: A case study from the floating villages of Cambodia. AMBIO 2018, 47, 747–759. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Guo, L.; Liu, Y. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Yao, Y.; Fu, B.; Liu, Y.; Wang, Y.; Song, S. The contribution of ecosystem restoration to sustainable development goals in Asian drylands: A literature review. Land Degrad. Dev. 2021, 32, 4472–4483. [Google Scholar] [CrossRef]
- Barbier, E.B. Poverty, development, and environment. Environ. Dev. Econ. 2010, 15, 635–660. [Google Scholar] [CrossRef]
- SCIO. Poverty Alleviation: China’s Experience and Contribution; The State Council Information Office of the People’s Republic of China: Beijing, China, 2021.
- EDCYPAD. Yearbook of China’s Poverty Alleviation and Development; Unity Press: Beijing, China, 2015. [Google Scholar]
- Ran, R.; Ni, Z.; Hua, L.; Li, T. Does China’s poverty alleviation policy improve the quality of the ecological environment in poverty-stricken areas? Front. Environ. Sci. 2022, 10, 1067339. [Google Scholar] [CrossRef]
- Li, C.; Li, S.; Feldman, M.W.; Li, J.; Zheng, H.; Daily, G.C. The impact on rural livelihoods and ecosystem services of a major relocation and settlement program: A case in Shaanxi, China. AMBIO 2018, 47, 245–259. [Google Scholar] [CrossRef]
- Ferraro, P.J.; Simorangkir, R. Conditional cash transfers to alleviate poverty also reduced deforestation in Indonesia. Sci. Adv. 2020, 6, eaaz1298. [Google Scholar] [CrossRef]
- Liu, Q.; Gao, L.; Guo, Z.; Dong, Y.; Moallemi, E.A.; Eker, S.; Yang, J.; Obersteiner, M.; Bryan, B.A. Robust strategies to end global poverty and reduce environmental pressures. One Earth 2023, 6, 392–408. [Google Scholar] [CrossRef]
- Bruckner, B.; Hubacek, K.; Shan, Y.; Zhong, H.; Feng, K. Impacts of poverty alleviation on national and global carbon emissions. Nat. Sustain. 2022, 5, 311–320. [Google Scholar] [CrossRef]
- Wang, K.; Yue, Y.; Chen, H.; Zeng, F. Mechanisims and realization pathways for intergration of scientific poverty alleviation and ecosystem services enhancement. Bull. Chin. Acad. Sci. 2020, 35, 1264–1272. [Google Scholar] [CrossRef]
- Deng, X.; Yan, S.; Song, X.; Li, Z.; Mao, J. Spatial targets and payment modes of win–win payments for ecosystem services and poverty reduction. Ecol. Indic. 2022, 136, 108612. [Google Scholar] [CrossRef]
- Guo, M.; Li, C.; Wang, G.; Innes, J.L. Examining the links between livelihood sustainability and environmental protection in the anti-poverty relocation and settlement program areas: An empirical analysis of Shaanxi, China. Front. Environ. Sci. 2022, 10, 1047223. [Google Scholar] [CrossRef]
- Hu, Y.; Kuhn, L.; Zeng, W.; Glauben, T. Who benefits from payments for ecosystem services? Policy lessons from a forest carbon sink program in China. Ecol. Econ. 2023, 214, 107976. [Google Scholar] [CrossRef]
- Ge, Y.; Hu, S.; Song, Y.; Zheng, H.; Liu, Y.; Ye, X.; Ma, T.; Liu, M.; Zhou, C. Sustainable poverty reduction models for the coordinated development of the social economy and environment in China. Sci. Bull. 2023, 68, 2236–2246. [Google Scholar] [CrossRef]
- Hou, P.; Gao, J.; Chen, Y.; Zhai, J.; Xiao, R.; Zhang, W.; Sun, C.; Wang, Y.; Hou, J. Development process and characteristics of China’s ecological protection policy. Acta Ecol. Sin. 2021, 41, 1656–1667. [Google Scholar] [CrossRef]
- Ran, R.; Hua, L.; Xiao, J.; Ma, L.; Pang, M.; Ni, Z. Can poverty alleviation policy enhance ecosystem service value? Evidence from poverty-stricken regions in China. Econ. Anal. Policy 2023, 80, 1509–1525. [Google Scholar] [CrossRef]
- Zhou, L.; Guan, D.; Yuan, X.; Zhang, M.; Gao, W. Quantifying the spatiotemporal characteristics of ecosystem services and livelihoods in China’s poverty-stricken counties. Front. Earth Sci. 2021, 15, 553–579. [Google Scholar] [CrossRef]
- Guo, Z.; Xie, Y.; Guo, H.; Zhang, X.; Wang, H.; Bie, Q.; Xi, G.; Ma, C. Do the ecosystems of Gansu Province in Western China’s crucial ecological security barrier remain vulnerable? Evidence from remote sensing based on geospatial analysis. J. Clean. Prod. 2023, 402, 137818. [Google Scholar] [CrossRef]
- Díaz, S.; Purvis, A.; Cornelissen, J.H.C.; Mace, G.M.; Donoghue, M.J.; Ewers, R.M.; Jordano, P.; Pearse, W.D. Functional traits, the phylogeny of function, and ecosystem service vulnerability. Ecol. Evol. 2013, 3, 2958–2975. [Google Scholar] [CrossRef]
- Luo, M.; Jia, X.; Zhao, Y.; Zhang, P.; Zhao, M. Ecological vulnerability assessment and its driving force based on ecological zoning in the Loess Plateau, China. Ecol. Indic. 2024, 159, 11658. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Zhen, H. Ecology; Science Press: Beijing, China, 2014. [Google Scholar]
- Xue, L.; Wang, J.; Zhang, L.; Wei, G.; Zhu, B. Spatiotemporal analysis of ecological vulnerability and management in the Tarim River Basin, China. Sci. Total. Environ. 2019, 649, 876–888. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Fu, X.; Li, H.; Xu, C. Ecological vulnerability assessment based on PSSR in Yellow River Delta. J. Clean. Prod. 2017, 167, 1106–1111. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, K.; Wang, S.; Wu, T.; Li, X.; Wang, J.; Wang, D.; Zhu, H.; Tan, C.; Ji, Y. Spatiotemporal evolution of ecological vulnerability in the Yellow River Basin under ecological restoration initiatives. Ecol. Indic. 2022, 135, 108586. [Google Scholar] [CrossRef]
- Malekmohammadi, B.; Jahanishakib, F. Vulnerability assessment of wetland landscape ecosystem services using driver-pressure-state-impact-response (DPSIR) model. Ecol. Indic. 2017, 82, 293–303. [Google Scholar] [CrossRef]
- Peng, Y.; Welden, N.; Renaud, F.G. A framework for integrating ecosystem services indicators into vulnerability and risk assessments of deltaic social-ecological systems. J. Environ. Manag. 2023, 326, 116682. [Google Scholar] [CrossRef]
- Wan, J.-Z.; Wang, C.-J.; Qu, H.; Liu, R.; Zhang, Z.-X. Vulnerability of forest vegetation to anthropogenic climate change in China. Sci. Total Environ. 2018, 621, 1633–1641. [Google Scholar] [CrossRef]
- Xiang, J.; Li, X.; Xiao, R.; Wang, Y. Effects of land use transition on ecological vulnerability in poverty-stricken mountainous areas of China: A complex network approach. J. Environ. Manag. 2021, 297, 113206. [Google Scholar] [CrossRef]
- Zhang, B.; Li, L. Evaluation of ecosystem service value and vulnerability analysis of China national nature reserves: A case study of Shennongjia Forest Region. Ecol. Indic. 2023, 149, 110188. [Google Scholar] [CrossRef]
- Wu, J.; Chen, B.; Mao, J.; Feng, Z. Spatiotemporal evolution of carbon sequestration vulnerability and its relationship with urbanization in China’s coastal zone. Sci. Total Environ. 2018, 645, 692–701. [Google Scholar] [CrossRef]
- Pan, Z.; Gao, G.; Fu, B. Spatiotemporal changes and driving forces of ecosystem vulnerability in the Yangtze River Basin, China: Quantification using habitat-structure-function framework. Sci. Total Environ. 2022, 835, 155494. [Google Scholar] [CrossRef]
- Qin, B.; Yu, Y.; Ge, L.; Yang, L.; Guo, Y. Does eco-compensation alleviate rural poverty? New evidence from National Key Ecological Function Areas in China. Int. J. Environ. Res. Public Health 2022, 19, 10899. [Google Scholar] [CrossRef] [PubMed]
- Jiangyi, L.; Shiquan, D. Eco-compensation in China: Achievement, experience, and improvement. Environ. Sci. Pollut. Res. 2022, 29, 60867–60884. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Tian, X.; Zhang, P. Could ecological restoration reduce income inequality? An analysis of 290 Chinese prefecture-level cities. AMBIO 2023, 52, 802–812. [Google Scholar] [CrossRef]
- Ren, L.; Li, J.; Li, S.; Li, C.; Daily, G.C. Does China’s major Payment for Ecosystem Services program meet the “gold criteria”? Targeting strategies of different decision-makers. J. Clean. Prod. 2020, 275, 122667. [Google Scholar] [CrossRef]
- Liu, Y.; Guo, Y.; Zhou, Y. Poverty alleviation in rural China: Policy changes, future challenges and policy implications. China Agric. Econ. Rev. 2018, 10, 241–259. [Google Scholar] [CrossRef]
- Zhou, Y.; Li, Y.; Liu, Y. The nexus between regional eco-environmental degradation and rural impoverishment in China. Habitat Int. 2020, 96, 102086. [Google Scholar] [CrossRef]
- Yang, J.; Dong, J.; Xiao, X.; Dai, J.; Wu, C.; Xia, J.; Zhao, G.; Zhao, M.; Li, Z.; Zhang, Y.; et al. Divergent shifts in peak photosynthesis timing of temperate and alpine grasslands in China. Remote Sens. Environ. 2019, 233, 111395. [Google Scholar] [CrossRef]
- Li, Y.; Chen, P.; Niu, Y.; Liang, Y.; Wei, T. Dynamics and attributions of ecosystem water yields in China from 2001 to 2020. Ecol. Indic. 2022, 143, 109373. [Google Scholar] [CrossRef]
- Li, J.; He, H.; Zeng, Q.; Chen, L.; Sun, R. A Chinese soil conservation dataset preventing soil water erosion from 1992 to 2019. Sci. Data 2023, 10, 319. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30 m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
- You, Z.; Feng, Z.; Yang, Y. Relief degree of land surface dataset of China (1km). Digit. J. Glob. Chang. Data Repos. 2018. [Google Scholar] [CrossRef]
- Gao, J.; Zhang, H.; Zhang, W.; Chen, X.; Shen, W.; Xiao, T.; Zhang, Y. China Regional 250 m Fractional Vegetation Cover Data Set (2000–2023); National Tibetan Plateau Data Center: Beijing, China, 2024. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Gonzalez, P.; Dash, J.; Steyl, I. Vulnerability of ecosystems to climate change moderated by habitat intactness. Glob. Change Biol. 2015, 21, 275–286. [Google Scholar] [CrossRef]
- Schmidt, A.L.; Coll, M.; Romanuk, T.N.; Lotze, H.K. Ecosystem structure and services in eelgrass Zostera marina and rockweed Ascophyllum nodosum habitats. Mar. Ecol. Prog. Ser. 2011, 437, 51–68. [Google Scholar] [CrossRef]
- Hou, W.; Gao, J.; Peng, T.; Wu, S.; Dai, E. Review of ecosystem vulnerability studies in the karst region of Southwest China based on a structure-function-habitat framework. J. Prog. Geogr. 2016, 35, 320–330. [Google Scholar] [CrossRef]
- Yohannes, H.; Soromessa, T.; Argaw, M.; Dewan, A. Spatio-temporal changes in habitat quality and linkage with landscape characteristics in the Beressa watershed, Blue Nile basin of Ethiopian highlands. J. Environ. Manag. 2021, 281, 111885. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, M.G.; Devisscher, T. Strong relationships between urbanization, landscape structure, and ecosystem service multifunctionality in urban forest fragments. Landsc. Urban Plan. 2022, 228, 104548. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Micheli, F.; Mumby, P.J.; Brumbaugh, D.R.; Broad, K.; Dahlgren, C.P.; Harborne, A.R.; Holmes, K.E.; Kappel, C.V.; Litvin, S.Y.; Sanchirico, J.N. High vulnerability of ecosystem function and services to diversity loss in Caribbean coral reefs. Biol. Conserv. 2014, 171, 186–194. [Google Scholar] [CrossRef]
- Geng, Y.; Liu, L.; Chen, L. Rural revitalization of China: A new framework, measurement and forecast. Socio-Econ. Plan. Sci. 2023, 89, 101696. [Google Scholar] [CrossRef]
- Delgado, A.; Romero, I. Environmental conflict analysis using an integrated grey clustering and entropy-weight method: A case study of a mining project in Peru. Environ. Model. Softw. 2016, 77, 108–121. [Google Scholar] [CrossRef]
- Li, X.; Wei, X.; Huang, Q. Comprehensive entropy weight observability-controllability risk analysis and its application to water resource decision-making. Water SA 2012, 38, 573–579. [Google Scholar] [CrossRef]
- Gorgij, A.D.; Kisi, O.; Moghaddam, A.A.; Taghipour, A. Groundwater quality ranking for drinking purposes, using the entropy method and the spatial autocorrelation index. Environ. Earth Sci. 2017, 76, 269. [Google Scholar] [CrossRef]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. [Google Scholar]
- Chase, J.M.; Blowes, S.A.; Knight, T.M.; Gerstner, K.; May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 2020, 584, 238–243. [Google Scholar] [CrossRef] [PubMed]
- Gong, J.; Sun, P.; Xie, Y.; Qian, D.; Jia, Z. Spatiotemporal change and landscape fragmentation in suzhou oasis using the moving window method. Acta Ecol. Sin. 2015, 35, 6470–6480. [Google Scholar] [CrossRef]
- Zou, L.; Wang, J.; Bai, M. Assessing spatial–temporal heterogeneity of China’s landscape fragmentation in 1980–2020. Ecol. Indic. 2022, 136, 108654. [Google Scholar] [CrossRef]
- Zuo, Q.; Zhou, Y.; Li, Q.; Wang, L.; Liu, J.; He, N. Spatial and temporal variations of landscape ecological risk in the mountainous region of southwestern Hubei Province based on the optimal scale. Chin. J. Ecol. 2023, 42, 1186–1196. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Z.; Li, Y. Spatio-temporal features and driving forces of construction land change in typical poverty-stricken border counties—A case study of Longzhou county in the Guangxi Zhuang Autonomous Region. J. Nat. Resour. 2018, 33, 1291–1303. [Google Scholar] [CrossRef]
- Zhou, D.; Lin, Z.; Lim, S.H. Spatial characteristics and risk factor identification for land use spatial conflicts in a rapid urbanization region in China. Environ. Monit. Assess. 2019, 191, 677. [Google Scholar] [CrossRef]
- Zhou, D.; Xu, J.C.; Wang, L. Land use spatial conflicts and complexity: A case study of the urban agglomeration around Hangzhou Bay, China. Geogr. Res. 2015, 34, 1630–1642. [Google Scholar] [CrossRef]
- McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS v4: Spatial Pattern Analysis Program for Categorical and Continuous Maps. Computer Software Program Produced by the Authors at the University of Massachusetts, Amherst. 2013. Available online: https://fragstats.org/ (accessed on 4 July 2023).
- Reid, W.V.; Mooney, H.A.; Carpenter, S.R.; Chopra, K. Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Xie, G.; Zhang, C.; Zhen, L.; Zhang, L. Dynamic changes in the value of China’s ecosystem services. Ecosyst. Serv. 2017, 26, 146–154. [Google Scholar] [CrossRef]
- Xu, S.; Su, Y.; Yan, W.; Liu, Y.; Wang, Y.; Li, J.; Qian, K.; Yang, X.; Ma, X. Influences of Ecological Restoration Programs on Ecosystem Services in Sandy Areas, Northern China. Remote Sens. 2023, 15, 3519. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy 2021, 11, 340. [Google Scholar] [CrossRef]
- Panek, E.; Gozdowski, D. Analysis of relationship between cereal yield and NDVI for selected regions of Central Europe based on MODIS satellite data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- He, C.; Zhang, D.; Huang, Q.; Zhao, Y. Assessing the potential impacts of urban expansion on regional carbon storage by linking the LUSD-urban and InVEST models. Environ. Model. Softw. 2016, 75, 44–58. [Google Scholar] [CrossRef]
- Wang, J.; Xu, C. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar] [CrossRef]
- Wang, J.-F.; Li, X.-H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical detectors-based health risk assessment and its application in the neural tube defects study of the Heshun region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Song, Y.; Wang, J.; Ge, Y.; Xu, C. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GISci. Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Ge, W.; Deng, L.; Wang, F.; Han, J. Quantifying the contributions of human activities and climate change to vegetation net primary productivity dynamics in China from 2001 to 2016. Sci. Total Environ. 2021, 773, 145648. [Google Scholar] [CrossRef]
- Fang, L.; Wang, L.; Chen, W.; Sun, J.; Cao, Q.; Wang, S.; Wang, L. Identifying the impacts of natural and human factors on ecosystem service in the Yangtze and Yellow River Basins. J. Clean. Prod. 2021, 314, 127995. [Google Scholar] [CrossRef]
- Han, R.; Feng, C.-C.; Xu, N.; Guo, L. Spatial heterogeneous relationship between ecosystem services and human disturbances: A case study in Chuandong, China. Sci. Total Environ. 2020, 721, 137818. [Google Scholar] [CrossRef]
- Peng, Y.; Chen, W.; Pan, S.; Gu, T.; Zeng, J. Identifying the driving forces of global ecosystem services balance, 2000–2020. J. Clean. Prod. 2023, 426, 139019. [Google Scholar] [CrossRef]
- Zhang, Q.; Yuan, R.; Singh, V.P.; Xu, C.-Y.; Fan, K.; Shen, Z.; Wang, G.; Zhao, J. Dynamic vulnerability of ecological systems to climate changes across the Qinghai-Tibet Plateau, China. Ecol. Indic. 2022, 134, 108483. [Google Scholar] [CrossRef]
- Chen, C.; Xu, Y. Spatial heterogeneity of human activities and its driving factors in karst areas of Southwest China over the past 20 years. Front. Environ. Sci. 2023, 11, 1225888. [Google Scholar] [CrossRef]
- Chi, H.; Wu, Y.; Zheng, H.; Zhang, B.; Sun, Z.; Yan, J.; Ren, Y.; Guo, L. Spatial patterns of climate change and associated climate hazards in Northwest China. Sci. Rep. 2023, 13, 10418. [Google Scholar] [CrossRef]
- Cao, S.; Xia, C.; Li, W.; Xian, J. Win–win path for ecological restoration. Land Degrad. Dev. 2021, 32, 430–438. [Google Scholar] [CrossRef]
- Hua, L.; Ran, R.; Xie, M.; Li, T. China’s poverty alleviation policy promoted ecological-economic collaborative development: Evidence from poverty-stricken counties on the Qinghai-Tibet Plateau. Int. J. Sustain. Dev. World Ecol. 2023, 30, 402–419. [Google Scholar] [CrossRef]
- Xu, Y.; Wei, J.; Li, Z.; Zhao, Y.; Lei, X.; Sui, P.; Chen, Y. Linking ecosystem services and economic development for optimizing land use change in the poverty areas. Ecosyst. Health Sustain. 2021, 7, 1877571. [Google Scholar] [CrossRef]
- Yuan, B.; Fu, L.; Zou, Y.; Zhang, S.; Chen, X.; Li, F.; Deng, Z.; Xie, Y. Spatiotemporal change detection of ecological quality and the associated affecting factors in Dongting Lake Basin, based on RSEI. J. Clean. Prod. 2021, 302, 126995. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve hypothesis: A survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, M.; Cao, S. How deep is China’s environmental Kuznets curve? An analysis based on ecological restoration under the Grain for Green program. Land Use Policy 2018, 70, 647–653. [Google Scholar] [CrossRef]
- Mian, Y.; Zeyu, X.; Chusheng, Y. Beyond the Environmental Kuznets Curve: An Empirical Study Taking China’s Poverty Alleviation Campaign as a Quasi-Experiment. Soc. Sci. China 2023, 44, 98–128. [Google Scholar] [CrossRef]
- Zhang, Y.; Guan, D.; Wu, L.; Su, X.; Zhou, L.; Peng, G. How can an ecological compensation threshold be determined? A discriminant model integrating the minimum data approach and the most appropriate land use scenarios. Sci. Total Environ. 2022, 852, 158377. [Google Scholar] [CrossRef]
- Wu, X.; Wang, S.; Fu, B.; Feng, X.; Chen, Y. Socio-ecological changes on the Loess Plateau of China after Grain to Green Program. Sci. Total Environ. 2019, 678, 565–573. [Google Scholar] [CrossRef]
- Zhao, X.; Chen, H.; Zhao, H.; Xue, B. Farmer households’ livelihood resilience in ecological-function areas: Case of the Yellow River water source area of China. Environ. Dev. Sustain. 2022, 24, 9665–9686. [Google Scholar] [CrossRef]
- Deng, L.; Shangguan, Z. High quality developmental approach for soil and water conservation and ecological protection on the loess plateau. Front. Agric. Sci. Eng. 2021, 8, 501–511. [Google Scholar] [CrossRef]
- Zhao, R.; Yang, S.; Sun, H.; Zhou, L.; Li, M.; Xing, L.; Tian, R. Extremeness Comparison of Regional Drought Events in Yunnan Province, Southwest China: Based on Different Drought Characteristics and Joint Return Periods. Atmosphere 2023, 14, 1153. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhu, B.; Yang, J.; Ma, P.; Liu, X.; Lu, G.; Wang, Y.; Yu, H.; Liu, W.; Wang, D. New characteristics about the climate humidification trendin Northwest China. Chin. Sci. Bull. 2021, 66, 3757–3771. [Google Scholar] [CrossRef]
- Huang, L.; Shao, Q.; Liu, J. Forest restoration to achieve both ecological and economic progress, Poyang Lake basin, China. Ecol. Eng. 2012, 44, 53–60. [Google Scholar] [CrossRef]
- Cao, S.; Shang, D.; Yue, H.; Ma, H. A win-win strategy for ecological restoration and biodiversity conservation in Southern China. Environ. Res. Lett. 2017, 12, 044004. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, J.; Zhou, Y. Spatio-temporal patterns of rural poverty in China and targeted poverty alleviation strategies. J. Rural. Stud. 2017, 52, 66–75. [Google Scholar] [CrossRef]
- Lei, M.; Yuan, X.-Y.; Yao, X.-Y. Synthesize dual goals: A study on China’s ecological poverty alleviation system. J. Intergr. Agric. 2021, 20, 1042–1059. [Google Scholar] [CrossRef]
- Feng, Q.; Zhou, Z.; Chen, Q.; Zhu, C.; Zhu, M.; Luo, W.; Wang, J. Quantifying the extent of ecological impact from China’s poverty alleviation relocation program: A case study in Guizhou Province. J. Clean. Prod. 2024, 444, 141274. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, Y. The theoretical innovation and realization mechanism of the ecological poverty alleviation in China. J. Tsinghua Univ. (Philos. Soc. Sci.) 2021, 36, 168–206. [Google Scholar] [CrossRef]
- Feng, Q.; Xia, C.; Yuan, W.; Chen, L.; Wang, Y.; Cao, S. Targeted control measures for improving the environment in a semiarid region of China. J. Clean. Prod. 2019, 206, 477–482. [Google Scholar] [CrossRef]
- Liu, C.; Chen, L.; Vanderbeck, R.M.; Valentine, G.; Zhang, M.; Diprose, K.; McQuaid, K. A Chinese route to sustainability: Postsocialist transitions and the construction of ecological civilization. Sustain. Dev. 2018, 26, 741–748. [Google Scholar] [CrossRef]
- Martinez, C. China’s Transition to an Ecological Civilization: Strategies and Global Implications. Int. Crit. Thought 2024, 14, 176–199. [Google Scholar] [CrossRef]
- Riggirozzi, P. Social Policy, Inequalities and the Battle of Rights in Latin America. Dev. Change 2020, 51, 506–522. [Google Scholar] [CrossRef]
- Mani, S.; Osborne, C.P.; Cleaver, F. Land degradation in South Africa: Justice and climate change in tension. People Nat. 2021, 3, 978–989. [Google Scholar] [CrossRef]
- Engelbrecht, B.M.J.; Comita, L.S.; Condit, R.; Kursar, T.A.; Tyree, M.T.; Turner, B.L.; Hubbell, S.P. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 2007, 447, 80–82. [Google Scholar] [CrossRef]
- Peng, W.; Zheng, H.; Robinson, B.E.; Li, C.; Wang, F. Household Livelihood Strategy Choices, Impact Factors, and Environmental Consequences in Miyun Reservoir Watershed, China. Sustainability 2017, 9, 175. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, Y.; Yang, Y.; Yang, Q.; Kush, J.; Xu, Y.; Xu, L. Assessment of sustainable livelihoods of different farmers in hilly red soil erosion areas of southern China. Ecol. Indic. 2016, 64, 123–131. [Google Scholar] [CrossRef]
- Hou, L.; Xia, F.; Chen, Q.; Huang, J.; He, Y.; Rose, N.; Rozelle, S. Grassland ecological compensation policy in China improves grassland quality and increases herders’ income. Nat. Commun. 2021, 12, 4683. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Dong, F.; Du, C. Is China approaching the inflection point of the ecological Kuznets curve? Analysis based on ecosystem service value at the county level. J. Environ. Manag. 2023, 326, 116623. [Google Scholar] [CrossRef]
- Rosales, R.M.P. Developing Pro-Poor Markets for Environmental Services in the Philippines; International Institute for Environment and Development (IIED): London, UK, 2003. [Google Scholar]
- Bank, W. Guatemala Western Altiplano Natural RESOURCES management Project: Project Appraisal Document; World Bank: Washington, DC, USA, 2003. [Google Scholar]
- Bank, W. El Salvador Natural Resources Management Project: Project Appraisal Document; World Bank: Washington, DC, USA, 2002. [Google Scholar]
- He, Z.; Lan, Y. The sustainability of targeted poverty alleviation: A conceptual analysis framework. Adm. Trib. 2021, 28, 28–38. [Google Scholar] [CrossRef]
- Han, H.; Yu, Y. Environmental Value and Policy Sustainability of Returning Farmland to Forests: A Case Study of Wanzhou, Chongqing. Chin. Rural Econ. 2012, 11, 44–55. [Google Scholar] [CrossRef]
- Lu, H.; Zhou, L.; Chen, Y.; Huang, S.; Ma, B.; Wei, X. Sustainability of Grazing Forbidden Policy in Yanchi, Ningxia, China: A Perspective of Peasant Household. J. Desert Res. 2014, 35, 1065–1071. [Google Scholar]
- Hua, F.; Wang, X.; Zheng, X.; Fisher, B.; Wang, L.; Zhu, J.; Tang, Y.; Yu, D.W.; Wilcove, D.S. Opportunities for biodiversity gains under the world’s largest reforestation programme. Nat. Commun. 2016, 7, 12717. [Google Scholar] [CrossRef]
- Jiang, C.; Guo, H.; Wei, Y.; Yang, Z.; Wang, X.; Wen, M.; Yang, L.; Zhao, L.; Zhang, H.; Zhou, P. Ecological restoration is not sufficient for reconciling the trade-off between soil retention and water yield: A contrasting study from catchment governance perspective. Sci. Total Environ. 2021, 754, 142139. [Google Scholar] [CrossRef]
- Yin, X.; Chen, J.; Li, J. Rural innovation system: Revitalize the countryside for a sustainable development. J. Rural Stud. 2022, 93, 471–478. [Google Scholar] [CrossRef]
- Lyu, R.; Clarke, K.C.; Zhang, J.; Feng, J.; Jia, X.; Li, J. Dynamics of spatial relationships among ecosystem services and their determinants: Implications for land use system reform in Northwestern China. Land Use Policy 2021, 102, 105231. [Google Scholar] [CrossRef]
- Yurui, L.; Yi, L.; Pengcan, F.; Hualou, L. Impacts of land consolidation on rural human–environment system in typical watershed of the Loess Plateau and implications for rural development policy. Land Use Policy 2019, 86, 339–350. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.; Yan, X.; Ma, C.; Zheng, X.; Wu, J.; Wu, C. Study on trade-offs and synergies of rural ecosystem services in the Tacheng-Emin Basin, Xinjiang, China: Implications for zoning management of rural ecological functions. J. Environ. Manag. 2024, 363, 121411. [Google Scholar] [CrossRef] [PubMed]
- He, X.; Li, W.; Xu, X.; Zhao, X. Spatial-Temporal Evolution, Trade-Offs and Synergies of Ecosystem Services in the Qinba Mountains. Sustainability 2023, 15, 10352. [Google Scholar] [CrossRef]
- Zhang, S.; Zhou, Y.; Yu, Y.; Li, F.; Zhang, R.; Li, W. Using the Geodetector Method to Characterize the Spatiotemporal Dynamics of Vegetation and Its Interaction with Environmental Factors in the Qinba Mountains, China. Remote Sens. 2022, 14, 5794. [Google Scholar] [CrossRef]
- He, T.; Dai, X.; Li, W.; Zhou, J.; Zhang, J.; Li, C.; Dai, T.; Li, W.; Lu, H.; Ye, Y.; et al. Response of net primary productivity of vegetation to drought: A case study of Qinba Mountainous area, China (2001–2018). Ecol. Indic. 2023, 149, 110148. [Google Scholar] [CrossRef]
- Wang, J.; Peng, J.; Zhao, M.; Liu, Y.; Chen, Y. Significant trade-off for the impact of Grain-for-Green Programme on ecosystem services in North-western Yunnan, China. Sci. Total Environ. 2017, 574, 57–64. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, S.; Ouyang, S. The spatial prediction and optimization of production-living-ecological space based on Markov–PLUS model: A case study of Yunnan Province. Open Geosci. 2022, 14, 481–493. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; Polasky, S.; Hawthorne, P.L.; O’connor, P.; Wang, L.; Li, R.; Xiao, Y.; Wu, T.; Ouyang, Z. Ecosystem restoration on Hainan Island: Can we optimize for enhancing regulating services and poverty alleviation? Environ. Res. Lett. 2020, 15, 084039. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; Zhang, C.; Keeler, B.; Samberg, L.H.; Li, C.; Polasky, S.; Ni, Y.; Ouyang, Z. Rural Household Livelihood and Tree Plantation Dependence in the Central Mountainous Region of Hainan Island, China: Implications for Poverty Alleviation. Forests 2020, 11, 248. [Google Scholar] [CrossRef]
- Yu, L.; Liu, S.; Wang, F.; Liu, Y.; Liu, H.; Wang, Q.; Tran, L.-S.P.; Dong, Y.; Li, W. Strategies for agricultural production management based on land, water and carbon footprints on the Qinghai-Tibet Plateau. J. Clean. Prod. 2022, 362, 132563. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, D.; Fan, J. Sustainable development problems and countermeasures: A case study of the Qinghai-Tibet Plateau. Geogr. Sustain. 2020, 1, 275–283. [Google Scholar] [CrossRef]
- Wang, X.; Song, J.; Xiao, Z.; Wang, J.; Hu, F. Desertification in the Mu Us Sandy Land in China: Response to climate change and human activity from 2000 to 2020. Geogr. Sustain. 2022, 3, 177–189. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Wang, F.; Liu, Y.; Liu, Y.; Sun, J.; McConkey, K.R.; Tran, L.-S.P.; Dong, Y.; Yu, L.; et al. Identifying ecological compensation areas for ecosystem services degradation on the Qinghai-Tibet Plateau. J. Clean. Prod. 2023, 423, 138626. [Google Scholar] [CrossRef]
- Liu, H.; Liu, S.; Wang, F.; Zhao, Y.; Dong, Y. How to synergize ecological restoration to co-benefit the beneficial contributions of nature to people on the Qinghai-Tibet Plateau? J. Environ. Manag. 2023, 348, 119267. [Google Scholar] [CrossRef]
- Jiang, L.; He, X.; Deng, F. Efficiency evaluation of tourism poverty reducation in Luoxiao Mountain Area in scale of county. Econ. Geogr. 2022, 42, 234–240. [Google Scholar] [CrossRef]
- Zhang, G.; Zhang, N. The effect of China’s pilot carbon emissions trading schemes on poverty alleviation: A quasi-natural experiment approach. J. Environ. Manag. 2020, 271, 110973. [Google Scholar] [CrossRef]
- Zhang, Y.; Gentine, P.; Luo, X.; Lian, X.; Liu, Y.; Zhou, S.; Michalak, A.M.; Sun, W.; Fisher, J.B.; Piao, S.; et al. Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2. Nat. Commun. 2022, 13, 4875. [Google Scholar] [CrossRef]
- Banks-Leite, C.; Ewers, R.M.; Folkard-Tapp, H.; Fraser, A. Countering the effects of habitat loss, fragmentation, and degradation through habitat restoration. One Earth 2020, 3, 672–676. [Google Scholar] [CrossRef]
- Liu, Y.; Gao, Y.; Liu, L.; Song, C.; Ai, D. Nature-based solutions for urban expansion: Integrating ecosystem services into the delineation of growth boundaries. Habitat Int. 2022, 124, 102575. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Y.; Shen, Y.; Yu, Q. Decadal water storage decrease driven by vegetation changes in the Yellow River Basin. Sci. Bull. 2020, 65, 1859–1861. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Zhang, H.; Zhao, Y.; Song, J. An examination of the mitigation effect of vegetation restoration on regional water poverty: Based on panel data analysis of 9 provinces in the Yellow River basin of China from 1999 to 2019. Ecol. Indic. 2023, 146, 109860. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, Q.; Zhang, J.; Liu, J.; Zhu, C.; Qu, L. Vegetation dynamics alter the hydrological interconnections between upper and mid-lower reaches of the Yellow River Basin, China. Ecol. Indic. 2023, 148, 110083. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, S.; Ran, C.; Wu, L.; Du, C.; Dai, L.; Yang, X.; Li, Z.; Xue, Y.; Long, M.; et al. Ten problems and solutions for restoration of karst ecosystem in Southwest China. Bull. Chin. Acad. Sci. 2023, 38, 1903–1914. [Google Scholar] [CrossRef]
- Xu, L.; He, N.; Yu, G. A dataset of carbon density in Chinese terrestrial ecosystems (2010s). China Sci. Data 2018, 4, 90–91. [Google Scholar] [CrossRef]
- Qin, M.; Zhao, Y.; Liu, Y.; Jiang, H.; Li, H.; Zhu, Z. Multi-scenario simulation for 2060 and driving factors of the eco-spatial carbon sink in the beibu gulf urban agglomeration. China Chin. Geogr. Sci. 2023, 33, 85–101. [Google Scholar] [CrossRef]
- Li, X.; Che, L.; Hu, B. Spatio-temporal difference analysis of carbon storage in Beihai secosystem based on FLUS-InVEST models. Bull. Survey. Map. 2023, 117–123. [Google Scholar] [CrossRef]
- Ke, X.; Tang, L. Impact of cascading processes of urban expansion and cropland reclamation on the ecosystem of a carbon storage service in Hubei Province, China. Acta Ecol. Sin. 2019, 39, 672–683. [Google Scholar] [CrossRef]
- Sun, X. Evaluation of Ecosystem Services in Shangri-La Based on InVEST Model. Master’s Thesis, Yunnan Normal University, Kunming, China, 2017. [Google Scholar]
- Li, P.; Chen, J.; Li, Y.; Wu, W. Using the InVEST-PLUS model to predict and analyze the pattern of ecosystem carbon storage in Liaoning Province, China. Remote Sens. 2023, 15, 4050. [Google Scholar] [CrossRef]
- Shi, M.; Wu, H.; Jia, H. Temporal and spatial evolution and prediction of carbon stocks in Yili Valley based on MCE-CA-Markov and InVEST models. J. Agric. Resour. Environ. 2021, 38, 1010–1019. [Google Scholar] [CrossRef]
- Zhu, G.; Qiu, D.; Zhang, Z.; Sang, L.; Liu, Y.; Wang, L.; Zhao, K.; Ma, H.; Xu, Y.; Wan, Q. Land-use changes lead to a decrease in carbon storage in arid region, China. Ecol. Indic. 2021, 127, 107770. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Tang, Q. Carbon storage assessment in the upper reaches of the Fenhe river under different land use scenarios. Acta Ecol. Sin. 2021, 41, 360–373. [Google Scholar] [CrossRef]
- Liu, G.; Li, G.; Li, J.; Zhang, Y.; Lu, Q.; Du, S. Study on change in carbon storage and its spatial pattern in Mata Watershed from 1999 to 2016 based on InVEST model. Arid Zone Res. 2021, 38, 267–274. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, R.; Yin, Z.; Chen, Z.; Fang, C.; Lu, R.; Zhou, J.; Feng, Y. Impacts of land-use change on the spatio-temporal patterns of terrestrial ecosystem carbon storage in the Gansu Province, Northwest China. Remote Sens. 2022, 14, 3164. [Google Scholar] [CrossRef]
- Zhu, L.; Song, R.; Sun, S.; Li, Y.; Hu, K. Land use/land cover change and its impact on ecosystem carbon storage in coastal areas of China from 1980 to 2050. Ecol. Indic. 2022, 142, 109178. [Google Scholar] [CrossRef]
- Shi, S. Spatio-Temporal Evolution of Land Use Carbon Storage in the Huang-Huai-Hai Plain. Master’s Thesis, Hubei University, Wuhan, China, 2018. [Google Scholar]
- Zhu, W.; Zhang, J.; Cui, Y.; Zheng, H.; Zhu, L. Assessment of territorial ecosystem carbon storage based on land use change scenario: A case study in Qihe River Basin. Acta Geogr. Sin. 2019, 74, 446–459. [Google Scholar] [CrossRef]
- Li, J.; Xia, S.; Yu, X. Evaluation of carbon storage on terrestrial ecosystem in Hebei Province based on InVEST model. J. Ecol. Rural Environ. 2020, 36, 854–861. [Google Scholar] [CrossRef]
- Liu, J.; Xu, H.; Wang, Y.; Li, H.; Shen, W. Evaluation of ecological risk and carbon fixation from land use change: A case study of Huanghua City, Hebei Province. Chin. J. Eco-Agric. 2018, 26, 1217–1226. [Google Scholar] [CrossRef]
- Li, S. The Dynamics of Ecosystem Services and Their Driving Factors in the Jing-Jin-Ji Region. Ph.D. Thesis, Beijing Forestry University, Beijing, China, 2019. [Google Scholar]
Data Type | Datasets | Specific Data | Resolution | Source | Directing |
---|---|---|---|---|---|
Spatial data (2005, 2013, 2020) | Land use | Land use/cover | 30 m | [55] | ESI, EFI |
Terrain | Digital elevation model (DEM) | 30 m | ASTER GDEM V3 (https://doi.org/10.5067/ASTER/ASTGTM.003) (accessed on 3 October 2023) | HCI | |
Topographic relief amplitude | 1 km | [56] (http://www.resdc.cn) (accessed on 19 September 2023) | HCI | ||
Soil | Soil organic matter content | 1 km | Harmonized World Soil Database V1.2 (http://www.ncdc.ac.cn) (accessed on 23 July 2023) | HCI | |
Soil particle composition Soil erodibility level | 1 km 1 km | Chinese Academy of Science (http://www.resdc.cn) (accessed on 2 August 2023) | HCI | ||
Vegetation | Fractional vegetation cover | 250 m | [57] (https://data.tpdc.ac.cn/) (accessed on 22 September 2023) | HCI | |
NDVI | Normalized difference vegetation index | 30 m | [52] | EFI | |
Water yield | Ecosystem water yield | 1 km | [53] | EFI | |
Soil conservation | Soil conservation dataset | 300 m | [54] | EFI | |
Statistical data (2005, 2013, 2020) | Region | Administrative region | County level | Ministry of Civil Affairs of the People’s Republic of China (2014) (http://xzqh.mca.gov.cn/statistics/2014.html) (accessed on 2 November 2023) | EFI |
Grain yield | Total food output | County level | Statistical yearbooks of various provinces and cities in NPSCs | EFI |
Criterion Layer | Indicator Layer | Weight | Property |
---|---|---|---|
Habitat condition (0.7954) | Elevation | 0.0993 | Positive |
Slope | 0.1975 | Positive | |
Topographic relief amplitude | 0.0968 | Positive | |
Soil organic matter content | 0.0005 | Negative | |
Soil texture | 0.0263 | Positive | |
Soil erosion intensity | 0.2470 | Positive | |
Fractional vegetation cover | 0.1281 | Negative | |
Ecosystem structure (0.0456) | Landscape connectivity | 0.0100 | Negative |
Landscape heterogeneity | 0.0346 | Negative | |
Ecosystem function (0.1600) | Water yield | 0.1015 | Negative |
Grain productivity | 0.0117 | Negative | |
Soil conservation | 0.0252 | Negative | |
Carbon storage | 0.0216 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Ma, Z.; Luo, R.; Hong, Y.; Wang, S.; Ma, X.; Bao, Q. Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions. Sustainability 2025, 17, 2490. https://doi.org/10.3390/su17062490
Li W, Ma Z, Luo R, Hong Y, Wang S, Ma X, Bao Q. Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions. Sustainability. 2025; 17(6):2490. https://doi.org/10.3390/su17062490
Chicago/Turabian StyleLi, Wei, Zhenbang Ma, Ruisi Luo, Yiying Hong, Sijian Wang, Xing Ma, and Qiong Bao. 2025. "Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions" Sustainability 17, no. 6: 2490. https://doi.org/10.3390/su17062490
APA StyleLi, W., Ma, Z., Luo, R., Hong, Y., Wang, S., Ma, X., & Bao, Q. (2025). Balancing Poverty Alleviation and Ecosystem Vulnerability Reduction: Implication from China’s Targeted Interventions. Sustainability, 17(6), 2490. https://doi.org/10.3390/su17062490