Paludiculture Potential on Fen Peatland: A Soil-Based Case Study from Central Poland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sample Collection
2.3. Laboratory Analysis
2.4. Data Processing
3. Results
3.1. Soil Morphology and Classification
3.2. Physical Properties
3.3. Chemical Properties
4. Discussion
4.1. Current Conditions of the Soil Cover
4.2. Possibility of Paludiculture Application
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parish, F.; Sirin, A.; Charman, D.; Joosten, H.; Minayeva, T.; Silvius, M.; Stringer, L. (Eds.) Assessment on Peatlands, Biodiversity and Climate Change: Main Report; Global Environment Centre: Kuala Lumpur, Malaysia; Wetlands International: Wageningen, The Netherlands, 2008; p. 208. [Google Scholar]
- Xu, J.; Morris, P.J.; Liu, J.; Holden, J. Hotspots of Peatland-Derived Potable Water Use Identified by Global Analysis. Nat. Sustain. 2018, 1, 246–253. [Google Scholar] [CrossRef]
- Joosten, H.; Tapio-Biström, M.L.; Tol, S. Peatlands: Guidance for Climate Change Mitigation Through Conservation, Rehabilitation and Sustainable Use; Food and Agriculture Organization of the United Nations: Rome, Italy, 2012; p. 114. [Google Scholar]
- Tanneberger, F.; Schröder, C.; Hohlbein, M.; Lenschow, U.; Permien, T.; Wichmann, S.; Wichtmann, W. Climate change mitigation through land use on rewetted peatlands–cross-sectoral spatial planning for paludiculture in northeast Germany. Wetlands 2020, 40, 2309–2320. [Google Scholar] [CrossRef]
- Łachacz, A.; Bogacz, A.; Glina, B.; Kalisz, B.; Mendyk, Ł.; Orzechowski, M.; Smólczyński, S.; Sowiński, P. Origin, transformation and classification of organic soils in Poland. Soil Sci. Ann. 2024, 75, 195241. [Google Scholar] [CrossRef]
- McCarter, C.P.R.; Price, J.S. The Hydrology of the Bois-de-Bel Bog Peatland Restoration: 10 Years Post Restoration. Ecol. Eng. 2013, 55, 73–81. [Google Scholar] [CrossRef]
- Lal, R. Soil Carbon Sequestration Impacts on Global Climate Change and Food Security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef]
- Joosten, H.; Gaudig, G.; Tanneberger, F.; Wichmann, S.; Wichtmann, W. Paludiculture: Sustainable Productive Use of Wet and Rewetted Peatlands; Cambridge University Press: Cambridge, UK, 2016; p. 272. [Google Scholar]
- Tanneberger, F.; Tegetmeyer, C.; Busse, S.; Barthelmes, A.; Shumka, S.; Mariné, A.M.; Jenderedjian, K.; Steiner, G.M.; Essl, F.; Etzold, J.; et al. The peatland map of Europe. Mires Peat 2017, 19, 22. [Google Scholar] [CrossRef]
- Ziegler, R. Paludiculture as a critical sustainability innovation mission. Res. Policy 2020, 49, 103979. [Google Scholar] [CrossRef]
- Martens, H.R.; Laage, K.; Eickmanns, M.; Drexler, A.; Heinsohn, V.; Wegner, N.; Muster, C.; Diekmann, M.; Seeber, E.; Kreyling, J.; et al. Paludiculture can support biodiversity conservation in rewetted fen peatlands. Sci. Rep. 2023, 13, 18091. [Google Scholar] [CrossRef]
- Grzybowski, M.; Glińska-Lewczuk, K. The principal threats to the peatlands habitats, in the continental bioregion of Central Europe–A case study of peatland conservation in Poland. J. Nat. Cons. 2020, 53, 125778. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022; p. 236. [Google Scholar]
- Von Post, L. Sveriges geologiska undersöknings torvinventering och några av dess hittills vunna resultat. Svenska Mosskulturföreningens Tidskrift 1922, 37, 1–27. [Google Scholar]
- Kabała, C.; Charzyński, P.; Chodorowski, J.; Drewnik, M.; Glina, B.; Greinert, A.; Waroszewski, J. Polish Soil Classification, 6th edition–principles, classification scheme and correlations. Soil Sci. Ann. 2019, 70, 71–97. [Google Scholar] [CrossRef]
- Gawlik, J. Division of differently silted peat formations into classes according to their state of secondary transformations. Acta Agrophysica 2000, 26, 17–24. [Google Scholar]
- Heiri, O.; Lotter, A.; Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Van Reeuwijk, L.P. Procedures for Soil Analysis, 6th ed.; ISRIC: Wageningen, The Netherlands, 2002. [Google Scholar]
- Doerr, S.H. On standardizing the ‘Water Drop Penetration Time’ and the ‘Molarity of an Ethanol Droplet’ techniques to classify soil hydrophobicity: A case study using medium textured soils. Earth Surf. Proc, Land. 1998, 23, 663–668. [Google Scholar] [CrossRef]
- Sokolowska, Z.; Szajdak, L.; Matyka-Sarzyńska, D. Impact of the degree of secondary transformation on acid-base properties of organic compounds in mucks. Geoderma 2005, 127, 80–90. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Benscoter, B.; Page, S.; Rein, G.; Van Der Werf, G.R.; Watts, A. Global vulnerability of peatlands to fire and carbon loss. Nat. Geosci. 2015, 8, 11–14. [Google Scholar] [CrossRef]
- Kalisz, B.; Łachacz, A.; Głażewski, R. Effects of peat drainage on labile organic carbon and water repellency in NE Poland. Turk. J. Agric. For. 2015, 39, 20–27. [Google Scholar] [CrossRef]
- Reddy, K.R.; aDeLaune, R.D. Biogeochemistry of Wetlands: Science and Applications; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar] [CrossRef]
- Łachacz, A.; Nitkiewicz, M.; Kalisz, B. Water repellency of post-boggy soils with a various content of organic matter. Biologia 2009, 64, 634–638. [Google Scholar] [CrossRef]
- Orzechowski, M.; Smółczyński, S.; Sowiński, P.; Rybińska, B. Water repellency of soils with various content of organic matter in north-eastern Poland. Soil Sci. Annu. 2013, 64, 30–33. [Google Scholar] [CrossRef]
- Kalisz, B.; Łachacz, A. Hydrophobicity of Dissolved Organic Carbon in Fen Peatlands. In Proceedings of the 15th International Peat Congress, Kuching, Malaysia, 15–19 August 2016; pp. 73–76. [Google Scholar]
- Fu, Z.; Hu, W.; Beare, M.H.; Müller, K.; Wallace, D.; Chau, H.W. Contributions of soil organic carbon to soil water repellency persistence: Characterization and modelling. Geoderma 2021, 401, 115312. [Google Scholar] [CrossRef]
- Popović, Z.; Cerdà, A. Soil water repellency and plant cover: A state-of-knowledge review. Catena 2023, 229, 107213. [Google Scholar] [CrossRef]
- Joosten, H.; Clarke, D. Wise Use of Mires and Peatlands: Background and Principles Including a Framework for Decision-Making; International Mire Conservation Group and International Peat Society: Jyväskylä, Finland, 2002. [Google Scholar]
- Łachacz, A.; Kalisz, B.; Sowiński, P.; Smreczak, B.; Niedźwiecki, J. Transformation of organic soils due to artificial drainage and agricultural use in Poland. Agriculture 2023, 13, 634. [Google Scholar] [CrossRef]
- Bieniek, B.; Karwowska, J.; Bieniek, A. Chemical properties of extensively utilized muck soils in the Siodmak peatland. Soil Sci. Annu. 2007, 58, 12–23, (In Polish with English Abstract). [Google Scholar]
- Vanino, S.; Pirelli, T.; Di Bene, C.; Bøe, F.; Castanheira, N.; Chenu, C.; Farina, R. Barriers and opportunities of soil knowledge to address soil challenges: Stakeholders’ perspectives across Europe. J. Environ. Manag. 2023, 325, 116581. [Google Scholar] [CrossRef] [PubMed]
- Tanneberger, F.; Moen, A.; Barthelmes, A.; Lewis, E.; Miles, L.; Sirin, A.; Joosten, H. Mires in Europe-regional diversity, condition and protection. Diversity 2021, 13, 381. [Google Scholar] [CrossRef]
- Ketcheson, S.J.; Price, J.S. The impact of peatland restoration on the site hydrology of an abandoned block-cut bog. Wetlands 2011, 31, 1263–1274. [Google Scholar] [CrossRef]
- Harpenslager, S.F.; van Dijk, G.; Boonman, J.; Weideveld, S.T.; van de Riet, B.P.; Hefting, M.M.; Smolders, A.J. Rewetting drained peatlands through subsoil infiltration stabilises redox-dependent soil carbon and nutrient dynamics. Geoderma 2024, 442, 116787. [Google Scholar] [CrossRef]
- Temmink, R.J.; Vroom, R.J.; van Dijk, G.; Käärmelahti, S.A.; Koks, A.H.; Joosten, H.; Fritz, C. Restoring organic matter, carbon and nutrient accumulation in degraded peatlands: 10 years Sphagnum paludiculture. Biogeochemistry 2024, 167, 347–361. [Google Scholar] [CrossRef]
- Van de Riet, B.P.; Hefting, M.M.; Verhoeven, J.T.A. Rewetting drained peat meadows: Risks and benefits in terms of nutrient release and greenhouse gas exchange. Water Air Soil Pollut. 2013, 224, 1440. [Google Scholar] [CrossRef]
- Wichtmann, W.; Schröder, C.; Joosten, H. Paludiculture: Productive Use of Wet Peatlands; Schweizerbart Science Publishers: Stuttgart, Germany, 2016; 272p. [Google Scholar]
- Glina, B.; Piernik, A.; Mocek-Płóciniak, A.; Maier, A.; Glatzel, S. Drivers controlling spatial and temporal variation of microbial properties and dissolved organic forms (DOC and DON) in fen soils with persistently low water tables. Glob. Ecol. Conserv. 2021, 27, e01605. [Google Scholar] [CrossRef]
- Glina, B.; Yetunde, F.M.; Mendyk, Ł.; Piernik, A. Soil water repellency and its importance for the climate-smart sustainable management of fen peatland soils in Central Poland. Geoderma Reg. 2024, 39, e00867. [Google Scholar] [CrossRef]
Profile 1: Hypereutric Rheic Drainic Hemic Histosol (Mulmic, Hyperorganic) [13] Hemic murshic peat soil [15] | ||||||
Soil Horizon | Depth | Color | Structure | Soil Moisture | CaCO3 | Horizon |
(cm) | (Moist) | Boundary | ||||
Ah | 0–25 | 10YR 3/2 | GR/SB | Slightly moist | + | C, W |
He1 | 25–45 | 10YR 3/1 | A/F | Moist | - | G |
He2 | 45–90 | 10YR 3/2 | A/F | Wet | - | G |
Hi | 90–155 | 7.5YR 4/6 | F | Wet | - | - |
Profile 2: Hypereutric Rheic Drainic Hemic Histosol (Mulmic, Hyperorganic) [13] Hemic murshic peat soil [15] | ||||||
Ah1 | 0–10 | 10YR 3/1 | GR/SB | Slightly moist | + | C, W |
Ah2 | 10–25 | 2.5YR 5/2 | SB | Moist | - | C |
He1 | 25–55 | 10YR 3/1 | A/F | Wet | - | G |
He2 | 55–110 | 10YR 3/2 | A/F | Wet | - | - |
Profile 3: Hypereutric Rheic Drainic Sapric Histosol (Mulmic, Hyperorganic) [13] Sapric murshic soil [15] | ||||||
Ah1 | 0–18 | 10YR 3/1 | GR/SB | Dry | + | G |
Ah2 | 18–40 | 10YR 3/2 | GR/SB | Slightly Moist | + | C, W |
Ha/ƛ | 40–75 | 10YR 2/1 | A | Moist | - | C |
He | 75–130 | 10YR 3/1 | A | Wet | - | - |
Profile 4: Hypereutric Gleysol (Drainic, Limnic, Mulmic) [13] Thin sapric murshic soil [15] | ||||||
Ah1 | 0–20 | 10YR 3/1 | GR/SB | Dry | + | G |
Ah2 | 20–32 | 10YR 3/2 | GR/SB | Dry | + | C, W |
Ha | 32–40 | 10YR 2/1 | A/F | Moist | + | C, W |
ƛ1 | 40–90 | 2.5YR 8/1 | AB | Moist | + | - |
ƛ2 | 90–130 | 2.5YR 8/1 | M/AB | Wet | + | - |
Profile | Soil Horizon | Depth (cm) | Ash Content (%) | W1 Index | State of Secondary Transformation | MED | MED Class |
---|---|---|---|---|---|---|---|
1 | Ah | 0–25 | 62.4 ± 0.11 | 0.67 ± 0.07 | Medium | 8.5 | moderately hydrophobic |
He1 | 25–45 | 12.7 ± 0.12 | - | - | 24 | very strongly hydrophobic | |
He2 | 45–90 | 7.73 ± 0.12 | - | - | 36 | extremely hydrophobic | |
Hi | 90–155 | 10.6 ± 0.12 | - | - | 24 | very strongly hydrophobic | |
2 | Ah1 | 0–10 | 69.1 ± 0.81 | 0.71 ± 0.01 | Medium | 5 | Slightly hydrophobic |
Ah2 | 10–25 | 71.2 ± 0.06 | 0.71 ± 0.03 | - | 3 | hydrophilic | |
He1 | 25–55 | 9.56 ± 0.12 | - | - | 24 | very strongly hydrophobic | |
He2 | 55–110 | 24.1 ± 0.1 | - | - | 24 | very strongly hydrophobic | |
3 | Ah1 | 0–18 | 68.1 ± 0.00 | 0.84 ± 0.00 | Strongly | 8.5 | moderately hydrophobic |
Ah2 | 18–40 | 75.3 ± 0.23 | 0.76 ± 0.03 | Medium | 0 | very hydrophilic | |
Ha/ƛ | 40–75 | 19.5 ± 0.1 | - | - | 24 | very strongly hydrophobic | |
He | 75–130 | 14.2 ± 0.1 | - | - | 13 | strongly hydrophobic | |
4 | Ah1 | 0–20 | 70.5 ± 0.1 | 0.92 ± 0.01 | Strongly | 8.5 | moderately hydrophobic |
Ah2 | 20–32 | 69.1 ± 0.15 | 0.80 ± 0.01 | Strongly | 0 | very hydrophilic | |
Ha | 32–40 | 60.8 ± 0.06 | - | - | 5 | slightly hydrophobic | |
ƛ1 | 40–90 | 93.6 ± 0.1 | - | - | 0 | very hydrophilic | |
ƛ2 | 90–130 | 94.3 ± 0.15 | - | - | 8.5 | moderately hydrophobic |
Profile | Soil Horizon | Depth (cm) | pH | TOC (%) | TN (%) | CaCO3 | TOC/TN |
---|---|---|---|---|---|---|---|
1 | Ah | 0–25 | 7.41 | 17.8 ± 0.1 | 1.79 ± 0.01 | 7.85 ± 0.02 | 9.73 ± 0.55 |
He1 | 25–45 | 7.03 | 42.8 ± 0.15 | 2.28 ± 0.02 | - | 18.8 ± 0.21 | |
He2 | 45–90 | 7.05 | 48.4 ± 0.15 | 2.66 ± 0.03 | - | 18.1 ± 0.15 | |
Hi | 90–155 | 6.65 | 45.5 ± 0.25 | 2.47 ± 0.05 | - | 18.4 ± 0.2 | |
2 | Ah1 | 0–10 | 7.56 | 16.2 ± 0.25 | 1.56 ± 0.02 | 33.8 ± 0.31 | 10.4 ± 0.12 |
Ah2 | 10–25 | 7.69 | 14.7 ± 0.1 | 1.25 ± 0.006 | 48.3 ± 0.12 | 11.8 ± 0.1 | |
He1 | 25–55 | 7.30 | 36.5 ± 0.1 | 2.69 ± 0.01 | - | 13.6 ± 0.1 | |
He2 | 55–110 | 7.39 | 37.1 ± 0.1 | 2.27 ± 0.57 | 9.2 ± 0.00 | 16.6 ± 0.1 | |
3 | Ah1 | 0–18 | 7.71 | 16.9 ± 0.15 | 1.52 ± 0.03 | 34.2 ± 0.2 | 11.2 ± 0.1 |
Ah2 | 18–40 | 7.72 | 12.8 ± 0.1 | 1.1 ± 0.02 | 40.1 ± 0.15 | 11.6 ± 0.1 | |
Ha/ƛ | 40–75 | 7.08 | 44.2 ± 0.25 | 2.41 ± 0.04 | - | 18.4 ± 0.2 | |
He | 75–130 | 7.04 | 42.9 ± 0.2 | 2.31 ± 0.04 | - | 18.6 ± 0.1 | |
4 | Ah1 | 0–20 | 7.60 | 13.7 ± 0.1 | 1.38 ± 0.02 | 26.2 ± 0.1 | 9.9 ± 0.1 |
Ah2 | 20–32 | 7.72 | 15.1 ± 0.1 | 1.45 ± 0.01 | 39 ± 0.2 | 10.4 ± 0.1 | |
Ha | 32–40 | 7.63 | 23.6 ± 0.1 | 2.05 ± 0.02 | 22 ± 0.1 | 11.5 ± 0.1 | |
ƛ1 | 40–90 | 8.06 | 3.3 ± 0.1 | 0.14 ± 0.01 | 84.1 ± 0.2 | 23.6 ± 0.1 | |
ƛ2 | 90–130 | 8.15 | 2.68 ± 0.18 | 0.14 ± 0.02 | 89.3 ± 0.2 | 19.3 ± 0.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joel, M.F.; Glina, B. Paludiculture Potential on Fen Peatland: A Soil-Based Case Study from Central Poland. Sustainability 2025, 17, 2431. https://doi.org/10.3390/su17062431
Joel MF, Glina B. Paludiculture Potential on Fen Peatland: A Soil-Based Case Study from Central Poland. Sustainability. 2025; 17(6):2431. https://doi.org/10.3390/su17062431
Chicago/Turabian StyleJoel, Michael Foredapwa, and Bartłomiej Glina. 2025. "Paludiculture Potential on Fen Peatland: A Soil-Based Case Study from Central Poland" Sustainability 17, no. 6: 2431. https://doi.org/10.3390/su17062431
APA StyleJoel, M. F., & Glina, B. (2025). Paludiculture Potential on Fen Peatland: A Soil-Based Case Study from Central Poland. Sustainability, 17(6), 2431. https://doi.org/10.3390/su17062431