NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture
Abstract
:1. Introduction
- Develop and implement an LSTM-based model for high-resolution soil moisture prediction, incorporating both temporal and spatial variability.
- Integrate ERA5 remote sensing data to enhance the accuracy and generalizability of soil moisture predictions across heterogeneous agricultural environments.
- Demonstrate the applicability of the model for precision irrigation, offering insights into optimal water allocation strategies to improve sustainable agricultural water management.
2. Materials and Methods
2.1. Materials
2.1.1. Study Area
2.1.2. Normalized Difference Moisture Index (NDMI)
2.1.3. Remote Sensing-Based Datasets
2.2. Methods
2.2.1. Methodology
2.2.2. Long Short-Term Memory (LSTM) Networks
2.2.3. LSTM-Based Modeling
2.2.4. Validation Criteria and Metrics
3. Results
3.1. LSTM Analysis Across Six Parcels
3.2. Correlation Between LSTM Model Performance and NDMI-Based VSM Assessment
4. Discussion
4.1. Predictive Performance of LSTM Model
4.2. Role of NDMI in Improving Soil Moisture Prediction
4.3. Comparing LSTM with Hybrid and Physics-Based Models
4.4. Implications for Precision Agriculture and Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
AI | Artificial Intelligence |
BN | Farm BN (study site) |
DB | Farm DB (study site) |
GOU | Farm GOU (study site) |
LAL | Farm LAL (study site) |
PB | Farm PB (study site) |
SM | soil moisture |
VSM | volumetric soil moisture |
DL | deep learning |
RS | remote sensing |
ERA5 | Fifth-Generation ECMWF Reanalysis Dataset |
ECMWF | European Centre for Medium-Range Weather Forecasts |
GLDAS | Global Land Data Assimilation System |
LSTM | Long Short-Term Memory |
MARE | mean absolute relative error |
MODIS | Moderate-Resolution Imaging Spectroradiometer |
NDMI | Normalized Difference Moisture Index |
NDVI | Normalized Difference Vegetation Index |
NIR | near-infrared |
SWIR | shortwave infrared |
NSE | Nash–Sutcliffe efficiency |
WI | Willmott index |
R | correlation coefficient |
RAE | relative absolute error |
RNN | recurrent neural network |
RMSE | root mean square error |
References
- Rasheed, M.W.; Tang, J.; Sarwar, A.; Shah, S.; Saddique, N.; Khan, M.U.; Khan, M.I.; Nawaz, S.; Shamshiri, R.R.; Aziz, M.; et al. Soil moisture measuring techniques and factors affecting the moisture dynamics: A comprehensive review. Sustainability 2022, 14, 11538. [Google Scholar] [CrossRef]
- Celik, M.F.; Isik, M.S.; Yuzugullu, O.; Fajraoui, N.; Erten, E. Soil moisture prediction from remote sensing images coupled with climate, soil texture and topography via deep learning. Remote Sens. 2022, 14, 5584. [Google Scholar] [CrossRef]
- Bwambale, E.; Abagale, F.K.; Anornu, G.K. Smart irrigation monitoring and control strategies for improving water use efficiency in precision agriculture: A review. Agric. Water Manag. 2022, 260, 107324. [Google Scholar] [CrossRef]
- Shady, A.M. Irrigation Drainage and Flood Control in Canada; Canadian International Development Agency: Ottawa, ON, Canada, 1989. [Google Scholar]
- Tichoux, H. Model Comparison of Three Irrgation Systems for Potato Production in Quebec. Master’s Thesis, McGill University, Montréal, QC, Canada, 1999. [Google Scholar]
- Nand, V.; Qi, Z. Potential of implementing irrigation in rainfed agriculture in Quebec: A review of climate change-induced challenges and adaptation strategies. Irrig. Drain. 2023, 72, 1165–1187. [Google Scholar] [CrossRef]
- Gallichand, J.; Broughton, R.S.; Boisvert, J.; Rochette, P. Simulation of irrigation requirements for major crops in South Western Quebec. Can. Agric. Eng. 1991, 33, 1–9. [Google Scholar]
- Han, J.; Hong, J.; Chen, X.; Wang, J.; Zhu, J.; Li, X.; Yan, Y.; Li, Q. Integrating Convolutional Attention and Encoder–Decoder Long Short-Term Memory for Enhanced Soil Moisture Prediction. Water 2024, 16, 3481. [Google Scholar] [CrossRef]
- Orth, R. Global soil moisture data derived through machine learning trained with in-situ measurements. Sci. Data 2021, 8, 170. [Google Scholar]
- Cai, Y.; Zheng, W.; Zhang, X.; Zhangzhong, L.; Xue, X. Research on soil moisture prediction model based on deep learning. PLoS ONE 2019, 14, e0214508. [Google Scholar] [CrossRef]
- Wu, Z.; Cui, N.; Zhang, W.; Liu, C.; Jin, X.; Gong, D.; Xing, L.; Zhao, L.; Wen, S.; Yang, Y. Estimating soil moisture content in citrus orchards using multi-temporal sentinel-1A data-based LSTM and PSO-LSTM models. J. Hydrol. 2024, 637, 131336. [Google Scholar] [CrossRef]
- Tursun, A.; Xie, X.; Wang, Y.; Liu, Y.; Peng, D.; Rusuli, Y.; Zheng, B. Reconstruction of missing streamflow series in human-regulated catchments using a data integration LSTM model. J. Hydrol. Reg. Stud. 2024, 52, 101744. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Zhang, Y.; Shangguan, W.; Li, Q.; Li, L.; Jiang, S. Interpreting Conv-LSTM for spatio-temporal soil moisture prediction in China. Agriculture 2023, 13, 971. [Google Scholar] [CrossRef]
- Pan, Z.; Xu, L.; Chen, N. Combining graph neural network and convolutional LSTM network for multistep soil moisture spatiotemporal prediction. J. Hydrol. 2025, 651, 132572. [Google Scholar] [CrossRef]
- Ling, X.; Huang, Y.; Guo, W.; Wang, Y.; Chen, C.; Qiu, B.; Ge, J.; Qin, K.; Xue, Y.; Peng, J. Comprehensive evaluation of satellite-based and reanalysis soil moisture products using in situ observations over China. Hydrol. Earth Syst. Sci. 2021, 25, 4209–4229. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Moisture effects on soil reflectance. Soil Sci. Soc. Am. J. 2002, 66, 722–727. [Google Scholar] [CrossRef]
- Hegazi, E.H.; Samak, A.A.; Yang, L.; Huang, R.; Huang, J. Prediction of soil moisture content from sentinel-2 images using convolutional neural network (CNN). Agronomy 2023, 13, 656. [Google Scholar] [CrossRef]
- Lykhovyd, P.V.; Sharii, V.O. Normalised difference moisture index in water stress assessment of maize crops. Agrology 2024, 7, 21–26. [Google Scholar] [CrossRef]
- Hosseini Chamani, F.; AFirouzi, F.; Amerykhah, H. Pedotransfer Function (PTF) for Estimation Soil moisture using NDVI, land surface temperature (LST) and normalized moisture (NDMI) indices. J. Water Soil Conserv. 2019, 26, 239–254. [Google Scholar]
- Safi, A.R.; Karimi, P.; Mul, M.; Chukalla, A.; de Fraiture, C. Translating open-source remote sensing data to crop water productivity improvement actions. Agric. Water Manag. 2022, 261, 107373. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Taloor, A.K.; Manhas, D.S.; Kothyari, G.C. Retrieval of land surface temperature, normalized difference moisture index, normalized difference water index of the Ravi basin using Landsat data. Appl. Comput. Geosci. 2021, 9, 100051. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Munoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Alaminie, A.A.; Annys, S.; Nyssen, J.; Jury, M.R.; Amarnath, G.; Mekonnen, M.A.; Tilahun, S.A. A comprehensive evaluation of satellite-based and reanalysis soil moisture products over the upper Blue Nile Basin, Ethiopia. Sci. Remote Sens. 2024, 10, 100173. [Google Scholar] [CrossRef]
- Mihalevich, B.A.; Neilson, B.T.; Buahin, C.A. Evaluation of the ERA5-land reanalysis data set for process-based river temperature modeling over data sparse and topographically complex regions. Water Resour. Res. 2022, 58, e2021WR031294. [Google Scholar] [CrossRef]
- Schönauer, M.; Ågren, A.M.; Katzensteiner, K.; Hartsch, F.; Arp, P.; Drollinger, S.; Jaeger, D. Soil moisture modeling with ERA5-Land retrievals, topographic indices, and in situ measurements and its use for predicting ruts. Hydrol. Earth Syst. Sci. 2024, 28, 2617–2633. [Google Scholar] [CrossRef]
- Wilber, A.L.; Czarnecki, J.M.; McCurdy, J.D. An ArcGIS Pro workflow to extract vegetation indices from aerial imagery of small-plot turfgrass research. Crop Sci. 2022, 62, 503–511. [Google Scholar] [CrossRef]
- Bisong, E. Building Machine Learning and Deep Learning Models on Google Cloud Platform: A Comprehensive Guide for Beginners; Apress: Berkeley, CA, USA, 2019; pp. 59–64. [Google Scholar]
- Yao, J.; Wu, J.; Xiao, C.; Zhang, Z.; Li, J. The classification method study of crops remote sensing with deep learning, machine learning, and Google Earth engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Saldanha, R.; Akbarinia, R.; Pedroso, M.; Ribeiro, V.; Cardoso, C.; Pena, E.H.M.; Valduriez, P.; Porto, F. Zonal statistics datasets of climate indicators for Brazilian municipalities. Environ. Data Sci. 2024, 3, e2. [Google Scholar] [CrossRef]
- Huang, F.; Xia, X.; Huang, Y.; Lv, S.; Chen, Q.; Pan, Y.; Zhu, X. Comparison of Winter Wheat Extraction Methods Based on Different Time Series of Vegetation Indices in the Northeastern Margin of the Qinghai–Tibet Plateau: A Case Study of Minhe, China. Remote Sens. 2022, 14, 343. [Google Scholar] [CrossRef]
- Hochreiter, S. Long Short-Term Memory; Neural Computation MIT-Press: La Jolla, CA, USA, 1997. [Google Scholar]
- Gopnarayan, A.; Deshpande, S. Survey of prediction using recurrent neural network with long short-term memory. Int. J. Sci. Res. 2019, 8, 9–11. [Google Scholar]
- Fei, H.; Tan, F. Bidirectional grid long short-term memory (bigridlstm): A method to address context-sensitivity and vanishing gradient. Algorithms 2018, 11, 172. [Google Scholar] [CrossRef]
- Yifan, Z.; Fengchen, Q.; Fei, X. GS-RNN: A novel RNN optimization method based on vanishing gradient mitigation for HRRP sequence estimation and recognition. In Proceedings of the 2020 IEEE 3rd International Conference on Electronics Technology (ICET), Chengdu, China, 8–12 May 2020. [Google Scholar]
- Ebtehaj, I.; Bonakdari, H. CNN vs. LSTM: A Comparative Study of Hourly Precipitation Intensity Prediction as a Key Factor in Flood Forecasting Frameworks. Atmosphere 2024, 15, 1082. [Google Scholar] [CrossRef]
- Yu, Y.; Si, X.; Hu, C.; Zhang, J. A review of recurrent neural networks: LSTM cells and network architectures. Neural Comput. 2019, 31, 1235–1270. [Google Scholar] [CrossRef] [PubMed]
- Okut, H. Deep learning for subtyping and prediction of diseases: Long-short term memory. In Deep Learning Applications; IntechOpen: London, UK, 2021. [Google Scholar]
- Chen, Z.; Ho, P.-H. Global-connected network with generalized ReLU activation. Pattern Recognit. 2019, 96, 106961. [Google Scholar] [CrossRef]
- Gonzalez, J.; Yu, W. Non-linear system modeling using LSTM neural networks. IFAC-PapersOnLine 2018, 51, 485–489. [Google Scholar] [CrossRef]
- Brownlee, J. Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python; Machine Learning Mastery: San Juan, Puerto Rico, 2018. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Ogundokun, R.O.; Maskeliunas, R.; Misra, S.; Damaševičius, R. Improved CNN based on batch normalization and adam optimizer. In International Conference on Computational Science and Its Applications; Springer: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Şen, S.Y.; Özkurt, N. Convolutional neural network hyperparameter tuning with adam optimizer for ECG classification. In Proceedings of the 2020 Innovations in Intelligent Systems and Applications Conference (ASYU), Istanbul, Turkey, 15–17 October 2020. [Google Scholar]
- Krause, P.; Boyle, D.P.; Bäse, F. Comparison of different efficiency criteria for hydrological model assessment. Adv. Geosci. 2005, 5, 89–97. [Google Scholar] [CrossRef]
- Catherine, D. A Practical Guide to Research Methods, A User-Friendly Manual for Mastering Research Techniques and Projects; How to Books: Oxford, UK, 2007. [Google Scholar]
- Chai, T.; Draxler, R.R. Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 2014, 7, 1247–1250. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; Ebtehaj, I.; Bonakdari, H.; Deo, R.C.; Mehr, A.D.; Mohtar, W.H.M.W.; Diop, L.; El-Shafie, A.; Singh, V.P. Novel approach for streamflow forecasting using a hybrid ANFIS-FFA model. J. Hydrol. 2017, 554, 263–276. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Willmott, C.J.; Robeson, S.M.; Matsuura, K. A refined index of model performance. Int. J. Climatol. 2012, 32, 2088–2094. [Google Scholar] [CrossRef]
- Willmott, C.J. On the validation of models. Phys. Geogr. 1981, 2, 184–194. [Google Scholar] [CrossRef]
- Willmott, C.J. On the evaluation of model performance in physical geography. In Spatial Statistics and Models; Springer: Dordrecht, The Netherlands, 1984; pp. 443–460. [Google Scholar]
- Qi, J.; Zhang, X.; Mccarty, G.W.; Sadeghi, A.M.; Cosh, M.H.; Zeng, X.; Gao, F.; Daughtry, C.S.; Huang, C.; Lang, M.W.; et al. Assessing the performance of a physically-based soil moisture module integrated within the Soil and Water Assessment Tool. Environ. Model. Softw. 2018, 109, 329–341. [Google Scholar] [CrossRef]
- Ojha, N.; Mahmoodi, A.; Mialon, A.; Richaume, P.; Ferrant, S.; Kerr, Y. Assessment of SMOS Root Zone Soil Moisture: A comparative study using SMAP, ERA5, and GLDAS. IEEE Access 2024, 12, 76121–76132. [Google Scholar] [CrossRef]
- Park, S.-H.; Lee, B.-Y.; Kim, M.-J.; Sang, W.; Seo, M.C.; Baek, J.-K.; E Yang, J.; Mo, C. Development of a soil moisture prediction model based on recurrent neural network long short-term memory (RNN-LSTM) in soybean cultivation. Sensors 2023, 23, 1976. [Google Scholar] [CrossRef]
- Li, Q.; Zhu, Y.; Shangguan, W.; Wang, X.; Li, L.; Yu, F. An attention-aware LSTM model for soil moisture and soil temperature prediction. Geoderma 2022, 409, 115651. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koohikeradeh, E.; Jose Gumiere, S.; Bonakdari, H. NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture. Sustainability 2025, 17, 2399. https://doi.org/10.3390/su17062399
Koohikeradeh E, Jose Gumiere S, Bonakdari H. NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture. Sustainability. 2025; 17(6):2399. https://doi.org/10.3390/su17062399
Chicago/Turabian StyleKoohikeradeh, Elham, Silvio Jose Gumiere, and Hossein Bonakdari. 2025. "NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture" Sustainability 17, no. 6: 2399. https://doi.org/10.3390/su17062399
APA StyleKoohikeradeh, E., Jose Gumiere, S., & Bonakdari, H. (2025). NDMI-Derived Field-Scale Soil Moisture Prediction Using ERA5 and LSTM for Precision Agriculture. Sustainability, 17(6), 2399. https://doi.org/10.3390/su17062399