Bridging Big Data Analytics Capability with Sustainability Business Performance: A Literature Review
Abstract
:1. Introduction
- RQ1. What are the key success factors for BDAC development in an organisation?
- RQ2. How do BDAC elements relate to the dual financial and sustainability conceptualisation of business performance?
2. Literature Review
2.1. Literature Review Related to BDAC
2.2. Literature Review Related to Key Elements of BDAC
- Big data analytics technology capability (BDA technology capability);
- Big data analytics management (or organisational) capability (BDA management capability);
- Big data analytics infrastructure capability (BDA infrastructure capability);
- Big data analytics human capability (BDA human capability).
2.2.1. BDA Technology Capability
2.2.2. BDA Management Capability
2.2.3. BDA Human Capability
2.2.4. BDA Infrastructure Capability
3. The Results
3.1. The Impact of BDAC on Financial Business Performance
3.2. The Impact of BDAC on Sustainability Business Performance
- Digital transformation and sustainable development (red cluster);
- Big data analytics and sustainability performance (green cluster);
- Big data analytics—artificial intelligence and decision-making (yellow cluster);
- Sustainable supply chain performance and entrepreneurial orientation (pink cluster).
- (1)
- Circular supply chain performance and the environmental or green economy (dark blue cluster), as well as sustainability and decision-making (purple cluster);
- (2)
- Big data analytics capability, financial performance, and technology management (light blue cluster);
- (3)
- Competitive factors and sustainable entrepreneurship (orange cluster);
- (4)
- Coal mining contractor and sustainability practises (brown cluster).
4. Discussions
5. Conclusions
6. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Bajic, B.; Suzic, N.; Moraca, S.; Stefanović, M.; Jovicic, M.; Rikalovic, A. Edge Computing Data Optimization for Smart Quality Management: Industry 5.0 Perspective. Sustainability 2023, 15, 6032. [Google Scholar] [CrossRef]
- Carayannis, E.G.; Morawska-Jancelewicz, J. The Futures of Europe: Society 5.0 and Industry 5.0 as Driving Forces of Future Universities. J. Knowl. Econ. 2022, 13, 3445–3471. [Google Scholar] [CrossRef]
- Directive (EU) 2022/2464 of the European Parliament and of the Council of 14 December 2022 Amending Regulation (EU) No 537/2014, Directive 2004/109/EC, Directive 2006/43/EC and Directive 2013/34/EU, as Regards Corporate Sustainability Reporting, Official Journal of European Union. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32022L2464 (accessed on 19 July 2024).
- International Sustainability Standards Board. IFRS S1: General Requirements for Disclosure of Sustainability-Related Financial Information. 2023. Available online: https://www.ifrs.org/content/dam/ifrs/publications/pdf-standards-issb/english/2023/issued/part-a/issb-2023-a-ifrs-s1-general-requirements-for-disclosure-of-sustainability-related-financial-information.pdf?bypass=on (accessed on 10 July 2024).
- IFRS Foundation. Progress Towards Adoption of ISSB Standards as Jurisdictions Consult. Available online: https://www.ifrs.org/news-and-events/news/2024/04/progress-towards-adoption-of-issb-standards-as-jurisdictions-consult/ (accessed on 22 August 2024).
- García-Sánchez, I.; Hussain, N.; Khan, S.A.; Martínez-Ferrero, J. Managerial entrenchment, corporate social responsibility, and earnings management. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 1818–1833. [Google Scholar] [CrossRef]
- Paridhi; Ritika. Sustainability reporting for boosting national commitment and overcoming challenges: A hierarchical model. Bus. Strategy Dev. 2024, 7, e334. [Google Scholar] [CrossRef]
- Meyer, A.K.; Dutzi, A. What Earnings Management Has to Do with Corporate Social Responsibility. Sustainability 2024, 16, 2836. [Google Scholar] [CrossRef]
- Mastrandrea, R.; Ter Burg, R.; Shan, Y.; Hubacek, K.; Ruzzenenti, F. Assessments of the environmental performance of global companies need to account for company size. Commun. Earth Environ. 2024, 5, 42. [Google Scholar] [CrossRef]
- Troshani, I.; Rowbottom, N. Corporate sustainability reporting and information infrastructure. Account. Audit. Account. J. 2024, 37, 1209–1237. [Google Scholar] [CrossRef]
- European Commission Research and Innovation. Industry 5.0. 2024. Available online: https://research-and-innovation.ec.europa.eu/research-area/industrial-research-and-innovation/industry-50_en (accessed on 27 June 2024).
- Knudsen, E.S.; Lien, L.B.; Timmermans, B.; Belik, I.; Pandey, S. Stability in turbulent times? The effect of digitalization on the sustainability of competitive advantage. J. Bus. Res. 2021, 128, 360–369. [Google Scholar] [CrossRef]
- Muraro, V.; Salles-Filho, S. Big data, machine learning and uncertainty in foresight studies. Foresight 2024, 26, 436–452. [Google Scholar] [CrossRef]
- Akter, S.; Wamba, S.F.; Gunasekaran, A.; Dubey, R.; Childe, S.J. How to improve firm performance using big data analytics capability and business strategy alignment? Int. J. Prod. Econ. 2016, 182, 113–131. [Google Scholar] [CrossRef]
- Wamba, S.F.; Gunasekaran, A.; Akter, S.; Ren, S.J.; Dubey, R.; Childe, S.J. Big data analytics and firm performance: Effects of dynamic capabilities. J. Bus. Res. 2017, 70, 356–365. [Google Scholar] [CrossRef]
- Minbaeva, D.B. Building credible human capital analytics for organizational competitive advantage. Hum. Resour. Manag. 2018, 57, 701–713. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Papadopoulos, T.; Luo, Z.; Wamba, S.F.; Roubaud, D. Can big data and predictive analytics improve social and environmental sustainability? Technol. Forecast. Soc. Change 2019, 144, 534–545. [Google Scholar] [CrossRef]
- McAfee, A.; Brynjolfsson, E. Big Data: The management revolution. Harv. Bus. Rev. 2012, 90, 60–66. [Google Scholar]
- Jabbour, C.J.C.; Jabbour, A.B.L.D.S.; Sarkis, J.; Filho, M.G. Unlocking the circular economy through new business models based on large-scale data: An integrative framework and research agenda. Technol. Forecast. Soc. Change 2019, 144, 546–552. [Google Scholar] [CrossRef]
- Ramanathan, S.; Isaksson, R. Sustainability reporting as a 21st century problem statement: Using a quality lens to understand and analyse the challenges. TQM J. 2023, 35, 1310–1328. [Google Scholar] [CrossRef]
- Seddon, J.J.J.M.; Currie, W.L. A model for unpacking big data analytics in high-frequency trading. J. Bus. Res. 2017, 70, 300–307. [Google Scholar] [CrossRef]
- Tosi, D.; Kokaj, R.; Roccetti, M. 15 years of Big Data: A systematic literature review. J. Big Data 2024, 11, 73. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. Big data analytics and firm performance: Findings from a mixed-method approach. J. Bus. Res. 2019, 98, 261–276. [Google Scholar] [CrossRef]
- Delen, D.; Demirkan, H. Data, information and analytics as services. Decis. Support Syst. 2013, 55, 359–363. [Google Scholar] [CrossRef]
- Popovič, A.; Hackney, R.; Tassabehji, R.; Castelli, M. The impact of big data analytics on firms’ high value business performance. Inform. Syst. Front. 2018, 20, 209–222. [Google Scholar] [CrossRef]
- Gupta, M.; George, J.F. Toward the development of a big data analytics capability. Inf. Manag. 2016, 53, 1049–1064. [Google Scholar] [CrossRef]
- Mikalef, P.; Pappas, I.O.; Krogstie, J.; Giannakos, M. Big data analytics capabilities: A systematic literature review and research agenda. Inf. Syst. E-Bus. Manag. 2018, 16, 547–578. [Google Scholar] [CrossRef]
- Huynh, M.-T.; Nippa, M.; Aichner, T. Big data analytics capabilities: Patchwork or progress? A systematic review of the status quo and implications for future research. Technol. Forecast. Soc. Change 2023, 197, 122884. [Google Scholar] [CrossRef]
- Davenport, T.H. Competing on Analytics. Harv. Bus. Rev. 2007, 84, 10. [Google Scholar]
- Srinivasan, R.; Swink, M. An Investigation of Visibility and Flexibility as Complements to Supply Chain Analytics: An Organizational Information Processing Theory Perspective. Prod. Oper. Manag. 2018, 27, 1849–1867. [Google Scholar] [CrossRef]
- Zhao, G.; Xie, X.; Wang, Y.; Liu, S.; Jones, P.; Lopez, C. Barrier analysis to improve big data analytics capability of the maritime industry: A mixed-method approach. Technol. Forecast. Soc. Change 2024, 203, 123345. [Google Scholar] [CrossRef]
- Wang, Y.; Hajli, N. Exploring the path to big data analytics success in healthcare. J. Bus. Res. 2017, 70, 287–299. [Google Scholar] [CrossRef]
- Wang, Y.; Kung, L.; Byrd, T.A. Big data analytics: Understanding its capabilities and potential benefits for healthcare organizations. Technol. Forecast. Soc. Change 2018, 126, 3–13. [Google Scholar] [CrossRef]
- Choi, H.-Y.; Park, J. Do data-driven CSR initiatives improve CSR performance? The importance of big data analytics capability. Technol. Forecast. Soc. Change 2022, 182, 121802. [Google Scholar] [CrossRef]
- Mikalef, P.; Boura, M.; Lekakos, G.; Krogstie, J. The role of information governance in big data analytics driven innovation. Inf. Manag. 2020, 57, 103361. [Google Scholar] [CrossRef]
- Kristoffersen, E.; Mikalef, P.; Blomsma, F.; Li, J. The effects of business analytics capability on circular economy implementation, resource orchestration capability, and firm performance. Int. J. Prod. Econ. 2021, 239, 108205. [Google Scholar] [CrossRef]
- Gartner. Big Data—Information Technology Glossary. Garter Glossary. 2023. Available online: https://www.gartner.com/en/information-technology/glossary/big-data (accessed on 5 July 2024).
- Duan, W.; Khurshid, A.; Khan, K.; Calin, A.C. Transforming industry: Investigating 4.0 technologies for sustainable product evolution in china through a novel fuzzy three-way decision-making process. Technol. Forecast. Soc. Change 2024, 200, 123125. [Google Scholar] [CrossRef]
- Denicolai, S.; Zucchella, A.; Magnani, G. Internationalization, digitalization, and sustainability: Are SMEs ready? A survey on synergies and substituting effects among growth paths. Technol. Forecast. Soc. Change 2021, 166, 120650. [Google Scholar] [CrossRef]
- Calic, G.; Ghasemaghaei, M. Big data for social benefits: Innovation as a mediator of the relationship between big data and corporate social performance. J. Bus. Res. 2021, 131, 391–401. [Google Scholar] [CrossRef]
- Dubey, R.; Gunasekaran, A.; Childe, S.J.; Fosso Wamba, S.; Roubaud, D.; Foropon, C. Empirical investigation of data analytics capability and organizational flexibility as complements to supply chain resilience. Int. J. Prod. Res. 2021, 59, 110–128. [Google Scholar] [CrossRef]
- Yu, W.; Wong, C.Y.; Chavez, R.; Jacobs, M.A. Integrating big data analytics into supply chain finance: The roles of information processing and data-driven culture. Int. J. Prod. Econ. 2021, 236, 108135. [Google Scholar] [CrossRef]
- ACCA. Big Data 1: What Is Big Data? 2024. Available online: https://www.accaglobal.com/ubcs/en/student/exam-support-resources/fundamentals-exams-study-resources/f5/technical-articles/what-is-big-data.html (accessed on 26 June 2024).
- Verhoef, P.C.; Broekhuizen, T.; Bart, Y.; Bhattacharya, A.; Qi Dong, J.; Fabian, N.; Haenlein, M. Digital transformation: A multidisciplinary reflection and research agenda. J. Bus. Res. 2021, 122, 889–901. [Google Scholar] [CrossRef]
- Santhanam, R.; Hartono, E. Hartono Issues in Linking Information Technology Capability to Firm Performance. MIS Q. 2003, 27, 125. [Google Scholar] [CrossRef]
- Lu, Y.; Ramamurthy, K. Understanding the Link Between Information Technology Capability and Organizational Agility: An Empirical Examination. MIS Q. 2011, 35, 931. [Google Scholar] [CrossRef]
- Mikalef, P.; Krogstie, J.; Pappas, I.O.; Pavlou, P. Exploring the relationship between big data analytics capability and competitive performance: The mediating roles of dynamic and operational capabilities. Inf. Manag. 2020, 57, 103169. [Google Scholar] [CrossRef]
- Bharadwaj, A.S. A Resource-Based Perspective on Information Technology Capability and Firm Performance: An Empirical Investigation. MIS Q. 2000, 24, 169. [Google Scholar] [CrossRef]
- Barton, D.; Court, D. Making Advanced Analytics Work for You. Harv. Bus. Rev. 2012, 90, 78–83. [Google Scholar]
- Mucci, T.; Stryker, C. What Is Big Data Analytics? IBM—Big Data Analytics. 2024. Available online: https://www.ibm.com/topics/big-data-analytics (accessed on 1 July 2024).
- Taddy, M. The Technological Elements of Artificial Intelligence; National Bureau of Economic Research: Cambridge, MA, USA, 2018; p. w24301. [Google Scholar]
- Davenport, H.T.; Barth, P.; Bean, R. How ‘Big Data’ Is Different. MIT Sloan Manag. Rev. 2012, 54, 43–46. [Google Scholar]
- Wang, C.L.; Ahmed, P.K. Dynamic capabilities: A review and research agenda. Int. J. Manag. Rev. 2007, 9, 31–51. [Google Scholar] [CrossRef]
- Shamim, S.; Zeng, J.; Shafi Choksy, U.; Shariq, S.M. Connecting big data management capabilities with employee ambidexterity in Chinese multinational enterprises through the mediation of big data value creation at the employee level. Int. Bus. Rev. 2020, 29, 101604. [Google Scholar] [CrossRef]
- Shamim, S.; Yang, Y.; Zia, N.U.; Shah, M.H. Big data management capabilities in the hospitality sector: Service innovation and customer generated online quality ratings. Comput. Hum. Behav. 2021, 121, 106777. [Google Scholar] [CrossRef]
- Teece, D.J.; Pisano, G.; Shuen, A. Dynamic capabilities and strategic management. Strat. Mgmt. J. 1997, 18, 509–533. [Google Scholar] [CrossRef]
- Wang, N.; Wan, J.; Ma, Z.; Zhou, Y.; Chen, J. How digital platform capabilities improve sustainable innovation performance of firms: The mediating role of open innovation. J. Bus. Res. 2023, 167, 114080. [Google Scholar] [CrossRef]
- Cameron Cockrell, R.; Stone, D.N. Industry culture influences pseudo-knowledge sharing: A multiple mediation analysis. J. Knowl. Manag. 2010, 14, 841–857. [Google Scholar] [CrossRef]
- Khan, Z.; Vorley, T. Big data text analytics: An enabler of knowledge management. J. Knowl. Manag. 2017, 21, 18–34. [Google Scholar] [CrossRef]
- Korherr, P.; Kanbach, D. Human-related capabilities in big data analytics: A taxonomy of human factors with impact on firm performance. Rev. Manag. Sci. 2023, 17, 1943–1970. [Google Scholar] [CrossRef]
- Ransbotham, S.; Kiron, D.; Kirk Prentice, P. Minding the Analytics Gap. MIT Sloan Manag. Rev. 2015, 56, 63. [Google Scholar]
- Rotman, D. How Technology Is Destroying Jobs. MIT Technol. Rev. 2013, 16, 28–35. [Google Scholar]
- Munir, S.; Abdul Rasid, S.Z.; Aamir, M.; Jamil, F.; Ahmed, I. Big data analytics capabilities and innovation effect of dynamic capabilities, organizational culture and role of management accountants. Foresight 2023, 25, 41–66. [Google Scholar] [CrossRef]
- Kim, G.; Shin, B.; Kwon, O. Investigating the Value of Sociomaterialism in Conceptualizing IT Capability of a Firm. J. Manag. Inf. Syst. 2012, 29, 327–362. [Google Scholar] [CrossRef]
- Cascio, W.F.; Boudreau, J.W. Investing in People: Financial Impact of Human Resource Initiatives, 2nd ed.; FT Press: Upper Saddle River, NJ, USA, 2011; ISBN 978-0-13-707092-3. [Google Scholar]
- Leonardi, P.M. When Flexible Routines Meet Flexible Technologies: Affordance, Constraint, and the Imbrication of Human and Material Agencies. MIS Q. 2011, 35, 147. [Google Scholar] [CrossRef]
- Waller, M.A.; Fawcett, S.E. Data Science, Predictive Analytics, and Big Data: A Revolution That Will Transform Supply Chain Design and Management. J. Bus. Logist. 2013, 34, 77–84. [Google Scholar] [CrossRef]
- Janssen, M.; Van Der Voort, H.; Wahyudi, A. Factors influencing big data decision-making quality. J. Bus. Res. 2017, 70, 338–345. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Y.; Sanders, K.; Marler, J.H.; Zou, Y. Determinants of effective HR analytics Implementation: An In-Depth review and a dynamic framework for future research. J. Bus. Res. 2024, 170, 114312. [Google Scholar] [CrossRef]
- Van Den Berg, H.A. Three shapes of organisational knowledge. J. Knowl. Manag. 2013, 17, 159–174. [Google Scholar] [CrossRef]
- Jha, A.K.; Agi, M.A.N.; Ngai, E.W.T. A note on big data analytics capability development in supply chain. Decis. Support Syst. 2020, 138, 113382. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Gupta, S.; Sivarajah, U.; Bag, S. Assessing the impact of big data analytics on decision-making processes, forecasting, and performance of a firm. Technol. Forecast. Soc. Change 2023, 196, 122824. [Google Scholar] [CrossRef]
- Lnenicka, M.; Komarkova, J. Big and open linked data analytics ecosystem: Theoretical background and essential elements. Gov. Inf. Q. 2019, 36, 129–144. [Google Scholar] [CrossRef]
- Aydiner, A.S.; Tatoglu, E.; Bayraktar, E.; Zaim, S. Information system capabilities and firm performance: Opening the black box through decision-making performance and business-process performance. Int. J. Inf. Manag. 2019, 47, 168–182. [Google Scholar] [CrossRef]
- AlNuaimi, B.K.; Khan, M.; Ajmal, M.M. The role of big data analytics capabilities in greening e-procurement: A higher order PLS-SEM analysis. Technol. Forecast. Soc. Change 2021, 169, 120808. [Google Scholar] [CrossRef]
- Ghobakhloo, M.; Iranmanesh, M.; Grybauskas, A.; Vilkas, M.; Petraitė, M. Industry 4.0, innovation, and sustainable development: A systematic review and a roadmap to sustainable innovation. Bus. Strategy Environ. 2021, 30, 4237–4257. [Google Scholar] [CrossRef]
- De Leeuw, A.C.J.; Volberda, H.W. On the concept of flexibility: A dual control perspective. Omega 1996, 24, 121–139. [Google Scholar] [CrossRef]
- Bruno, R.; Matusiak, M.; Osaulenko, K.; Radosevic, S. “Digitalisation” and “Greening” as Components of Technology Upgrading and Sustainable Economic Performance. Sustainability 2023, 15, 1838. [Google Scholar] [CrossRef]
- Pickering, A. The Mangle of Practice: Agency and Emergence in the Sociology of Science. Am. J. Sociol. 1993, 99, 559–589. [Google Scholar] [CrossRef]
- Orlikowski, W.J. Sociomaterial Practices: Exploring Technology at Work. Organ. Stud. 2007, 28, 1435–1448. [Google Scholar] [CrossRef]
- Latour, B. Reassembling the Social: An Introduction to Actor-Network-Theory; Clarendon Lectures in Management Studies; Oxford University Press: Oxford, UK, 2007; ISBN 978-0-19-925605-1. [Google Scholar]
- Faulkner, P.; Runde, J. Theorizing the digital object. MIS Q. 2019, 43, 1279–1302. [Google Scholar] [CrossRef]
- Feldman, M.S.; Pentland, B.T. Reconceptualizing Organizational Routines as a Source of Flexibility and Change. Adm. Sci. Q. 2003, 48, 94–118. [Google Scholar] [CrossRef]
- Ghasemaghaei, M. Understanding the impact of big data on firm performance: The necessity of conceptually differentiating among big data characteristics. Int. J. Inf. Manag. 2021, 57, 102055. [Google Scholar] [CrossRef]
- Barney, J. Firm Resources and Sustained Competitive Advantage. J. Manag. 1991, 17, 99–120. [Google Scholar] [CrossRef]
- Huber, R.; Oberländer, A.M.; Faisst, U.; Röglinger, M. Disentangling Capabilities for Industry 4.0—An Information Systems Capability Perspective. Inform. Syst. Front. 2022, 26, 1667–1695. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, J.J.; Lopes, J.M.; Gomes, S.; Rammal, H.G. Industry 4.0 implementation: Environmental and social sustainability in manufacturing multinational enterprises. J. Clean. Prod. 2023, 404, 136841. [Google Scholar] [CrossRef]
- Braganza, A.; Brooks, L.; Nepelski, D.; Ali, M.; Moro, R. Resource management in big data initiatives: Processes and dynamic capabilities. J. Bus. Res. 2017, 70, 328–337. [Google Scholar] [CrossRef]
- Mikalef, P.; Framnes, V.A.; Danielsen, F.; Krogstie, J.; Olsen, G.H. Big Data Analytics Capability: Antecedents and Business Value. In Proceedings of the PACIS 2017, Langkawi, Malaysia, 16–20 July 2017; Volume 136, pp. 1–14. [Google Scholar]
- Kale, P.; Dyer, J.H.; Singh, H. Alliance capability, stock market response, and long-term alliance success: The role of the alliance function. Strateg. Manag. J. 2002, 23, 747–767. [Google Scholar] [CrossRef]
- Grant, R.M. Toward a knowledge-based theory of the firm. Strateg. Manag. J. 1996, 17, 109–122. [Google Scholar] [CrossRef]
- Curado, C.; Bontis, N. The knowledge-based view of the firm and its theoretical precursor. Int. J. Learn. Intellect. Cap. 2006, 3, 367. [Google Scholar] [CrossRef]
- Kale, P.; Singh, H. Building firm capabilities through learning: The role of the alliance learning process in alliance capability and firm-level alliance success. Strateg. Manag. J. 2007, 28, 981–1000. [Google Scholar] [CrossRef]
- Teece, D.J. Business Models, Business Strategy and Innovation. Long Range Plan. 2010, 43, 172–194. [Google Scholar] [CrossRef]
- Powell, T.C. Total quality management as competitive advantage: A review and empirical study. Strateg. Manag. J. 1995, 16, 15–37. [Google Scholar] [CrossRef]
- Powell, T.C.; Dent-Micallef, A. Information technology as competitive advantage: The role of human, business, and technology resources. Strateg. Manag. J. 1997, 18, 375–405. [Google Scholar] [CrossRef]
- Gunday, G.; Ulusoy, G.; Kilic, K.; Alpkan, L. Effects of innovation types on firm performance. Int. J. Prod. Econ. 2011, 133, 662–676. [Google Scholar] [CrossRef]
- Rai, A.; Patnayakuni, R.; Seth, N. Seth Firm Performance Impacts of Digitally Enabled Supply Chain Integration Capabilities. MIS Q. 2006, 30, 225. [Google Scholar] [CrossRef]
- Khan, O.; Daddi, T.; Iraldo, F. The role of dynamic capabilities in circular economy implementation and performance of companies. Corp. Soc. Responsib. Environ. Manag. 2020, 27, 3018–3033. [Google Scholar] [CrossRef]
- Sullivan, J.; Overby, S. Digital Transformation: A Force Multiplier for Sustainability. SAP Insights. 2024. Available online: https://www.sap.com/poland/insights/viewpoints/digital-transformations-force-multiplier-sustainability.html (accessed on 27 June 2024).
- Ertz, M.; Latrous, I.; Dakhlaoui, A.; Sun, S. The impact of Big Data Analytics on firm sustainable performance. Corp. Soc. Responsib. Environ. Manag. 2025, 32, 1261–1278. [Google Scholar] [CrossRef]
- Elkington, J. The Triple Bottom Line, 1st ed.; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Székely, F.; Knirsch, M. Responsible Leadership and Corporate Social Responsibility: Metrics for Sustainable Performance. Eur. Manag. J. 2005, 23, 628–647. [Google Scholar] [CrossRef]
- Vrbsky, S.V.; Galloway, M.; Carr, R.; Nori, R.; Grubic, D. Decreasing power consumption with energy efficient data aware strategies. Future Gener. Comput. Syst. 2013, 29, 1152–1163. [Google Scholar] [CrossRef]
- Lichtenthaler, U. Digitainability: The Combined Effects of the Megatrends Digitalization and Sustainability. J. Innov. Manag. 2021, 9, 64–80. [Google Scholar] [CrossRef]
- Ranta, V.; Aarikka-Stenroos, L.; Väisänen, J.-M. Digital technologies catalyzing business model innovation for circular economy—Multiple case study. Resour. Conserv. Recycl. 2021, 164, 105155. [Google Scholar] [CrossRef]
- Ashaari, M.A.; Singh, K.S.D.; Abbasi, G.A.; Amran, A.; Liebana-Cabanillas, F.J. Big data analytics capability for improved performance of higher education institutions in the Era of IR 4.0: A multi-analytical SEM & ANN perspective. Technol. Forecast. Soc. Change 2021, 173, 121119. [Google Scholar] [CrossRef]
- Behl, A.; Gaur, J.; Pereira, V.; Yadav, R.; Laker, B. Role of big data analytics capabilities to improve sustainable competitive advantage of MSME service firms during COVID-19—A multi-theoretical approach. J. Bus. Res. 2022, 148, 378–389. [Google Scholar] [CrossRef]
- Lu, H.T.; Li, X.; Yuen, K.F. Digital transformation as an enabler of sustainability innovation and performance—Information processing and innovation ambidexterity perspectives. Technol. Forecast. Soc. Change 2023, 196, 122860. [Google Scholar] [CrossRef]
- Halbusi, H.A.; Soto-Acosta, P.; Popa, S.; Hassani, A. The Role of Green Digital Learning Orientation and Big Data Analytics in the Green Innovation–Sustainable Performance Relationship. IEEE Trans. Eng. Manag. 2024, 71, 12886–12896. [Google Scholar] [CrossRef]
- Azzam, M.E.A.Y.; Alsayed, M.S.H.; Alsultan, A.; Hassanein, A. How big data features drive financial accounting and firm sustainability in the energy industry. J. Financ. Report. Account. 2024, 22, 29–51. [Google Scholar] [CrossRef]
- Xu, Y.; Sarfraz, M.; Sun, J.; Ivascu, L.; Ozturk, I. Advancing corporate sustainability via big data analytics, blockchain innovation, and organizational dynamics—A cross-validated predictive approach. Bus. Strategy Environ. 2025, 34, 1399–1418. [Google Scholar] [CrossRef]
- Chatterjee, S.; Chaudhuri, R.; Vrontis, D.; Thrassou, A. Impacts of big data analytics adoption on firm sustainability performance. Qual. Res. Financ. Mark. 2023, 15, 589–607. [Google Scholar] [CrossRef]
Authors | BDAC Definitions |
---|---|
Gupta and George (2016, p. 1049) [26] | BDAC is defined as “a firm’s ability to assemble, integrate, and deploy its big data-specific resources”. |
Akter et al. (2016) [14]; Mikalef et al. (2018) [27]; Huynh et al. (2023) [28] | BDAC contains three dimensions (management, technology, and human) that illuminate the importance of their complementarities for higher-order operational efficiency and effectiveness, enhanced business performance, and sustained competitive advantage. |
Wamba et al. (2017, p. 358) [15] | BDAC is regarded as “…the competence to provide business insights using data management, infrastructure (technology) and talent (personnel) capability to transform business into a competitive force”. |
Davenport (2007) [29]; Srinivasan and Swink (2018) [30]; Zhao et al. (2024) [31] | BDAC represents the capacity of an organisation to process, organise, visualise, and analyse data using specific tools and techniques that provide data-driven insights for evidence-based decision-making. |
Wang and Hajli (2017, p. 290) [32]; Wang et al. (2018) [33] | BDAC is defined as “the ability to acquire, store, process, and analyze a large amount of health data in various forms and deliver meaningful information to users, which allows them to discover business values and insights in a timely fashion”. |
Choi and Park (2022, p. 2) [34] | “BDAC is a firm’s ability to transform big data into valuable insights”. |
Mikalef et al. (2020, p. 273) [35] | “BDAC has been defined as the ability of a firm to capture and analyse data toward the generation of insights by effectively orchestrating and deploying its data, technology, and talent” |
BDAC Element | Key Factors of the BDAC Elements |
---|---|
BDA technology capability | Unity of IT system |
BDA management capability | Dynamic capability for knowledge management |
BDA human capability | Human analytical competencies |
BDA infrastructure capability | Flexibility |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novicka, J.; Volkova, T. Bridging Big Data Analytics Capability with Sustainability Business Performance: A Literature Review. Sustainability 2025, 17, 2362. https://doi.org/10.3390/su17062362
Novicka J, Volkova T. Bridging Big Data Analytics Capability with Sustainability Business Performance: A Literature Review. Sustainability. 2025; 17(6):2362. https://doi.org/10.3390/su17062362
Chicago/Turabian StyleNovicka, Jekaterina, and Tatjana Volkova. 2025. "Bridging Big Data Analytics Capability with Sustainability Business Performance: A Literature Review" Sustainability 17, no. 6: 2362. https://doi.org/10.3390/su17062362
APA StyleNovicka, J., & Volkova, T. (2025). Bridging Big Data Analytics Capability with Sustainability Business Performance: A Literature Review. Sustainability, 17(6), 2362. https://doi.org/10.3390/su17062362