How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review
Abstract
:1. Introduction
2. Literature Review
3. Data Collection and Methodology
3.1. Data Collection and Screening
3.2. Research Methodology
4. Results Analysis
4.1. Annual Change in Publication
4.2. Country Analysis
4.3. Institute Analysis
4.4. Journal Analysis
4.5. Author Analysis
4.6. Literature Analysis
4.6.1. Crucial Research
4.6.2. Literature Co-Citation
4.7. Research Trend Analysis
4.7.1. Summary of Hotspot
4.7.2. Hotspot Co-Occurrence
4.7.3. Emerging Hotspot
5. Discussion and Knowledge Mapping
5.1. The Latest Development in TSLC Research Since the PA
5.1.1. Renewable Energy and Technology Applications
5.1.2. Evolution of Intelligent Transport Systems
5.1.3. Developments of TSLC Policies
5.1.4. Public Reaction and Participation
5.2. Potential Impacts of TSLC Policies and Practices
5.2.1. The Impact on the Circulation of Transport Commodities
5.2.2. The Impact on the Energy System
5.2.3. The Impact on the Transportation System
5.2.4. The Impact on Socio-Economic Development
5.3. Knowledge Mapping of the Low-Carbon Pathways in Transportation
6. Conclusions
6.1. Main Results
6.2. Recommendations on Future TSLC Policies
6.3. Limitations and Future Research
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Sun, R.-S.; Gao, X.; Deng, L.-C.; Wang, C. Is the Paris Rulebook Sufficient for Effective Implementation of Paris Agreement? Adv. Clim. Change Res. 2022, 13, 600–611. [Google Scholar] [CrossRef]
- Mitchell, D.; Allen, M.R.; Hall, J.W.; Muller, B.; Rajamani, L.; Le Quéré, C. The Myriad Challenges of the Paris Agreement. Philos. Trans. R. Soc. Math. Phys. Eng. Sci. 2018, 376, 20180066. [Google Scholar] [CrossRef] [PubMed]
- Christoff, P. The Promissory Note: COP 21 and the Paris Climate Agreement. Environ. Politics 2016, 25, 765–787. [Google Scholar] [CrossRef]
- Campbell, D. What Does the Paris Agreement Actually Do? Energy Environ. 2016, 27, 883–895. [Google Scholar] [CrossRef]
- Gota, S.; Huizenga, C.; Peet, K.; Medimorec, N.; Bakker, S. Decarbonising Transport to Achieve Paris Agreement Targets. Energy Effic. 2019, 12, 363–386. [Google Scholar] [CrossRef]
- Breyer, C.; Khalili, S.; Rantanen, E.; Bogdanov, D. Solar Photovoltaic Capacity Demand for a Fully Sustainable Transport Sector–How to Fulfil the Paris Agreement by 2050. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, HI, USA, 10–15 June 2018; pp. 1632–1637. [Google Scholar]
- Singh, R.; Sharma, C.; Agrawal, M. Emission Inventory of Trace Gases from Road Transport in India. Transp. Res. Part Transp. Environ. 2017, 52, 64–72. [Google Scholar] [CrossRef]
- Long, Y.; Yoshida, Y.; Li, Y.; Gasparatos, A. Spatial-Temporal Variation of CO2 Emissions from Private Vehicle Use in Japan. Environ. Res. Lett. 2022, 17, 014042. [Google Scholar] [CrossRef]
- Abbas, S.; Yousaf, H.; Khan, S.; Rehman, M.Z.; Blueschke, D. Analysis and Projection of Transport Sector Demand for Energy and Carbon Emission: An Application of the Grey Model in Pakistan. Mathematics 2023, 11, 1443. [Google Scholar] [CrossRef]
- Salvucci, R.; Petrović, S.; Karlsson, K.; Wråke, M.; Uteng, T.P.; Balyk, O. Energy Scenario Analysis for the Nordic Transport Sector: A Critical Review. Energies 2019, 12, 2232. [Google Scholar] [CrossRef]
- Nouni, M.R.; Jha, P.; Sarkhel, R.; Banerjee, C.; Tripathi, A.K.; Manna, J. Alternative Fuels for Decarbonisation of Road Transport Sector in India: Options, Present Status, Opportunities, and Challenges. Fuel 2021, 305, 121583. [Google Scholar] [CrossRef]
- Akujor, C.E.; Uzowuru, E.E.; Abubakar, S.S.; Amakom, C.M. Decarbonisation of the Transport Sector in Nigeria. Environ. Health Insights 2022, 16, 11786302221125039. [Google Scholar] [CrossRef] [PubMed]
- Hickman, R.; Ashiru, O.; Banister, D. Briefing: Low-Carbon Transport in London. Proc. Inst. Civ. Eng. Urban Des. Plan. 2009, 162, 151–153. [Google Scholar] [CrossRef]
- Reddy, V.J.; Hariram, N.P.; Maity, R.; Ghazali, M.F.; Kumarasamy, S. Sustainable Vehicles for Decarbonizing the Transport Sector: A Comparison of Biofuel, Electric, Fuel Cell and Solar-Powered Vehicles. World Electr. Veh. J. 2024, 15, 93. [Google Scholar] [CrossRef]
- Lah, O. Factors of Change: The Influence of Policy Environment Factors on Climate Change Mitigation Strategies in the Transport Sector. Transp. Res. Procedia 2017, 25, 3495–3510. [Google Scholar] [CrossRef]
- Arioli, M.; Fulton, L.; Lah, O. Transportation Strategies for a 1.5 °C World: A Comparison of Four Countries. Transp. Res. Part Transp. Environ. 2020, 87, 102526. [Google Scholar] [CrossRef]
- Bhowmik, R.; Rahut, D.B.; Syed, Q.R. Investigating the Impact of Climate Change Mitigation Technology on the Transport Sector CO2 Emissions: Evidence from Panel Quantile Regression. Front. Environ. Sci. 2022, 10, 916356. [Google Scholar] [CrossRef]
- Park, C.; Lim, S.; Shin, J.; Lee, C.-Y. How Much Hydrogen Should Be Supplied in the Transportation Market? Focusing on Hydrogen Fuel Cell Vehicle Demand in South Korea. Technol. Forecast. Soc. Change 2022, 181, 121750. [Google Scholar] [CrossRef]
- Liu, Z.; Qiu, Z. A Systematic Review of Transportation Carbon Emissions Based on CiteSpace. Environ. Sci. Pollut. Res. 2023, 30, 54362–54384. [Google Scholar] [CrossRef]
- Tian, G.; Lu, W.; Zhang, X.; Zhan, M.; Dulebenets, M.A.; Aleksandrov, A.; Fathollahi-Fard, A.M.; Ivanov, M. A Survey of Multi-Criteria Decision-Making Techniques for Green Logistics and Low-Carbon Transportation Systems. Environ. Sci. Pollut. Res. 2023, 30, 57279–57301. [Google Scholar] [CrossRef]
- Mao, Y.; Li, X. A Review of Research on the Impact Mechanisms of Green Development in the Transportation Industry. Sustainability 2023, 15, 16531. [Google Scholar] [CrossRef]
- Lee, C.T.; Hashim, H.; Ho, C.S.; Fan, Y.V.; Klemeš, J.J. Sustaining the Low-Carbon Emission Development in Asia and beyond: Sustainable Energy, Water, Transportation and Low-Carbon Emission Technology. J. Clean. Prod. 2017, 146, 1–13. [Google Scholar] [CrossRef]
- Cao, Y.; Li, S.; Lv, C.; Wang, D.; Sun, H.; Jiang, J.; Meng, F.; Xu, L.; Cheng, X. Towards Cyber Security for Low-Carbon Transportation: Overview, Challenges and Future Directions. Renew. Sustain. Energy Rev. 2023, 183, 113401. [Google Scholar] [CrossRef]
- Teng, J.; Li, L.; Jiang, Y.; Shi, R. A Review of Clean Energy Exploitation for Railway Transportation Systems and Its Enlightenment to China. Sustainability 2022, 14, 10740. [Google Scholar] [CrossRef]
- Otto, M.; Chagoya, K.L.; Blair, R.G.; Hick, S.M.; Kapat, J.S. Optimal Hydrogen Carrier: Holistic Evaluation of Hydrogen Storage and Transportation Concepts for Power Generation, Aviation, and Transportation. J. Energy Storage 2022, 55, 105714. [Google Scholar] [CrossRef]
- Yeh, S.; Witcover, J.; Lade, G.E.; Sperling, D. A Review of Low Carbon Fuel Policies: Principles, Program Status and Future Directions. Energy Policy 2016, 97, 220–234. [Google Scholar] [CrossRef]
- Lim, S.; Lee, K.T. Implementation of Biofuels in Malaysian Transportation Sector towards Sustainable Development: A Case Study of International Cooperation between Malaysia and Japan. Renew. Sustain. Energy Rev. 2012, 16, 1790–1800. [Google Scholar] [CrossRef]
- Mohideen, M.M.; Liu, Y.; Ramakrishna, S. Recent Progress of Carbon Dots and Carbon Nanotubes Applied in Oxygen Reduction Reaction of Fuel Cell for Transportation. Appl. Energy 2020, 257, 114027. [Google Scholar] [CrossRef]
- Benajes, J.; García, A.; Monsalve-Serrano, J.; Guzmán-Mendoza, M. A Review on Low Carbon Fuels for Road Vehicles: The Good, the Bad and the Energy Potential for the Transport Sector. Fuel 2024, 361, 130647. [Google Scholar] [CrossRef]
- Yan, X.; Crookes, R.J. Energy Demand and Emissions from Road Transportation Vehicles in China. Prog. Energy Combust. Sci. 2010, 36, 651–676. [Google Scholar] [CrossRef]
- Xia, X.; Li, P.; Xia, Z.; Wu, R.; Cheng, Y. Life Cycle Carbon Footprint of Electric Vehicles in Different Countries: A Review. Sep. Purif. Technol. 2022, 301, 122063. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Z.; Liu, Y.; Xu, Z.; Qu, X. A Review of Machine Learning Approaches for Electric Vehicle Energy Consumption Modelling in Urban Transportation. Renew. Energy 2024, 234, 121243. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Z.; Dong, S.; Sun, J.; Zhang, Y. Visualization and Bibliometric Analysis of E-Bike Studies: A Systematic Literature Review (1976–2023). Transp. Res. Part Transp. Environ. 2023, 122, 103891. [Google Scholar] [CrossRef]
- Bi, L.; Zhou, S.; Ke, J.; Song, X. Knowledge-Mapping Analysis of Urban Sustainable Transportation Using CiteSpace. Sustainability 2023, 15, 958. [Google Scholar] [CrossRef]
- Mavlutova, I.; Atstaja, D.; Grasis, J.; Kuzmina, J.; Uvarova, I.; Roga, D. Urban Transportation Concept and Sustainable Urban Mobility in Smart Cities: A Review. Energies 2023, 16, 3585. [Google Scholar] [CrossRef]
- Carrese, F.; Sportiello, S.; Zhaksylykov, T.; Colombaroni, C.; Carrese, S.; Papaveri, M.; Patella, S.M. The Integration of Shared Autonomous Vehicles in Public Transportation Services: A Systematic Review. Sustainability 2023, 15, 13023. [Google Scholar] [CrossRef]
- Lah, O. Decarbonizing the Transportation Sector: Policy Options, Synergies, and Institutions to Deliver on a Low-carbon Stabilization Pathway. WIREs Energy Environ. 2017, 6, e257. [Google Scholar] [CrossRef]
- Emberger, G. Low Carbon Transport Strategy in Europe: A Critical Review. Int. J. Sustain. Transp. 2017, 11, 31–35. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kumar, P.; Szulejko, J.E.; Adelodun, A.A.; Junaid, M.F.; Uchimiya, M.; Chambers, S. Toward a Better Understanding of the Impact of Mass Transit Air Pollutants on Human Health. Chemosphere 2017, 174, 268–279. [Google Scholar] [CrossRef] [PubMed]
- Allen, H.; Nolmark, H. Active Transportation, the Ultimate Low Carbon Way to Travel—A Review of International Research and Education. Front. Sustain. Cities 2022, 4, 824909. [Google Scholar] [CrossRef]
- Fan, J.; Meng, X.; Tian, J.; Xing, C.; Wang, C.; Wood, J. A Review of Transportation Carbon Emissions Research Using Bibliometric Analyses. J. Traffic Transp. Eng. Engl. Ed. 2023, 10, 878–899. [Google Scholar] [CrossRef]
- Gössling, S.; Higham, J. The Low-Carbon Imperative: Destination Management under Urgent Climate Change. J. Travel Res. 2021, 60, 1167–1179. [Google Scholar] [CrossRef]
- Cui, Y.; Mou, J.; Liu, Y. Knowledge Mapping of Social Commerce Research: A Visual Analysis Using CiteSpace. Electron. Commer. Res. 2018, 18, 837–868. [Google Scholar] [CrossRef]
- Chen, J.; Ongono Emilienne Charlotte, Z.; Yuan, Y. Organizational Unlearning: A Bibliometric Study and Visualization Analysis via CiteSpace. Sage Open 2024, 14, 21582440241251648. [Google Scholar] [CrossRef]
- Guo, Y.; Xu, Z.-Y.-R.; Cai, M.-T.; Gong, W.-X.; Shen, C.-H. Epilepsy with Suicide: A Bibliometrics Study and Visualization Analysis via CiteSpace. Front. Neurol. 2022, 12, 823474. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, V.; McCalley, J.D. The Role of Bio-Renewables in National Energy and Transportation Systems Portfolio Planning for Low Carbon Economy. Renew. Energy 2016, 91, 207–223. [Google Scholar] [CrossRef]
- Mansour, C.J.; Haddad, M.G. Well-to-Wheel Assessment for Informing Transition Strategies to Low-Carbon Fuel-Vehicles in Developing Countries Dependent on Fuel Imports: A Case-Study of Road Transport in Lebanon. Energy Policy 2017, 107, 167–181. [Google Scholar] [CrossRef]
- Hao, X.; Wang, H.; Zheng, Y.; Lin, Y.; Han, S.; Zhong, R.; Li, J. Toward Carbon Neutral Road Transport: Development Strategies and New R&D Organizational Paradigms. Automot. Innov. 2024, 7, 209–224. [Google Scholar] [CrossRef]
- Yu, B.; Tan, J.-X.; Zhang, S. Uncertainties in the Technological Pathway towards Low-Carbon Freight Transport under Carbon Neutral Target in China. Appl. Energy 2024, 365, 123272. [Google Scholar] [CrossRef]
- Teng, W.; Shi, C.; Yu, Y.; Li, Q.; Yang, J. Uncovering the Spatiotemporal Patterns of Traffic-Related CO2 Emission and Carbon Neutrality Based on Car-Hailing Trajectory Data. J. Clean. Prod. 2024, 467, 142925. [Google Scholar] [CrossRef]
- Ye, Y.; Wang, C.; Zhang, Y.; Wu, K.; Wu, Q.; Su, Y. Low-Carbon Transportation Oriented Urban Spatial Structure: Theory, Model and Case Study. Sustainability 2017, 10, 19. [Google Scholar] [CrossRef]
- Dong, J.; Deng, C.; Li, R.; Huang, J. Moving Low-Carbon Transportation in Xinjiang: Evidence from STIRPAT and Rigid Regression Models. Sustainability 2016, 9, 24. [Google Scholar] [CrossRef]
- Mustapa, S.I.; Bekhet, H.A. Analysis of CO2 Emissions Reduction in the Malaysian Transportation Sector: An Optimisation Approach. Energy Policy 2016, 89, 171–183. [Google Scholar] [CrossRef]
- Thiel, C.; Nijs, W.; Simoes, S.; Schmidt, J.; Van Zyl, A.; Schmid, E. The Impact of the EU Car CO2 Regulation on the Energy System and the Role of Electro-Mobility to Achieve Transport Decarbonisation. Energy Policy 2016, 96, 153–166. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, C.; Liu, W.; Zhou, P. Microsimulation of Low Carbon Urban Transport Policies in Beijing. Energy Policy 2017, 107, 561–572. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Y.; Bi, Q.; Cao, Z.; Wang, B. Research on the Low-Carbon Development Path and Policy Options of China’s Transportation Under the Background of Dual Carbon Goals. Front. Environ. Sci. 2022, 10, 905037. [Google Scholar] [CrossRef]
- Guo, J.; Fu, Y. Assessing the Nexus between Green Investment and Low-Carbon Development of the Transportation Industry: Does Industrial Structure and Renewable Energy Matter? Environ. Sci. Pollut. Res. 2023, 30, 117785–117803. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Wang, L. Carbon Peak Forecast and Low Carbon Policy Choice of Transportation Industry in China: Scenario Prediction Based on STIRPAT Model. Environ. Sci. Pollut. Res. 2023, 30, 63250–63271. [Google Scholar] [CrossRef]
- D’Amore, F.; Bezzo, F. Economic Optimisation of European Supply Chains for CO2 Capture, Transport and Sequestration. Int. J. Greenh. Gas Control 2017, 65, 99–116. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, J. Long-Term Pathways to Deep Decarbonization of the Transport Sector in the Post-COVID World. Transp. Policy 2021, 110, 28–36. [Google Scholar] [CrossRef]
- Li, W.; Bao, L.; Li, Y.; Si, H.; Li, Y. Assessing the Transition to Low-Carbon Urban Transport: A Global Comparison. Resour. Conserv. Recycl. 2022, 180, 106179. [Google Scholar] [CrossRef]
- Li, P.; Wang, L.; Guo, P.; Yu, S.; Mehmood, K.; Wang, S.; Liu, W.; Seinfeld, J.H.; Zhang, Y.; Wong, D.C.; et al. High Reduction of Ozone and Particulate Matter during the 2016 G-20 Summit in Hangzhou by Forced Emission Controls of Industry and Traffic. Environ. Chem. Lett. 2017, 15, 709–715. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Yuan, Z.; Chen, J.; Guo, M. Assessment of Osculating Value Method Based on Entropy Weight to Transportation Energy Conservation and Emission Reduction. Environ. Eng. Manag. J. 2017, 16, 2413–2423. [Google Scholar] [CrossRef]
- Zhang, Q.; Gu, B.; Zhang, H.; Ji, Q. Emission Reduction Mode of China’s Provincial Transportation Sector: Based on “Energy+” Carbon Efficiency Evaluation. Energy Policy 2023, 177, 113556. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, K.; Zhang, X.; Wang, Y.; Xiao, C.; Chen, L.; Tian, X. Hollow Microsphere-Infused Porous Poly(Vinylidene Fluoride)/Multiwall Carbon Nanotube Composites with Excellent Electromagnetic Shielding and Low Thermal Transport. J. Mater. Sci. 2018, 53, 6042–6052. [Google Scholar] [CrossRef]
- Edelenbosch, O.Y.; McCollum, D.L.; Van Vuuren, D.P.; Bertram, C.; Carrara, S.; Daly, H.; Fujimori, S.; Kitous, A.; Kyle, P.; Broin, E.Ó.; et al. Decomposing Passenger Transport Futures: Comparing Results of Global Integrated Assessment Models. Transp. Res. Part Transp. Environ. 2017, 55, 281–293. [Google Scholar] [CrossRef]
- Milovanoff, A.; Posen, I.D.; MacLean, H.L. Electrification of Light-Duty Vehicle Fleet Alone Will Not Meet Mitigation Targets. Nat. Clim. Change 2020, 10, 1102–1107. [Google Scholar] [CrossRef]
- Creutzig, F.; Roy, J.; Lamb, W.F.; Azevedo, I.M.L.; Bruine De Bruin, W.; Dalkmann, H.; Edelenbosch, O.Y.; Geels, F.W.; Grubler, A.; Hepburn, C.; et al. Towards Demand-Side Solutions for Mitigating Climate Change. Nat. Clim. Change 2018, 8, 260–263. [Google Scholar] [CrossRef]
- Peng, T.; Ou, X.; Yuan, Z.; Yan, X.; Zhang, X. Development and Application of China Provincial Road Transport Energy Demand and GHG Emissions Analysis Model. Appl. Energy 2018, 222, 313–328. [Google Scholar] [CrossRef]
- Liu, J.; Li, S.; Ji, Q. Regional Differences and Driving Factors Analysis of Carbon Emission Intensity from Transport Sector in China. Energy 2021, 224, 120178. [Google Scholar] [CrossRef]
- Axsen, J.; Plötz, P.; Wolinetz, M. Crafting Strong, Integrated Policy Mixes for Deep CO2 Mitigation in Road Transport. Nat. Clim. Change 2020, 10, 809–818. [Google Scholar] [CrossRef]
- Isik, M.; Dodder, R.; Kaplan, P.O. Transportation Emissions Scenarios for New York City under Different Carbon Intensities of Electricity and Electric Vehicle Adoption Rates. Nat. Energy 2021, 6, 92–104. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Yu, B. Peaking CO2 Emissions for China’s Urban Passenger Transport Sector. Energy Policy 2019, 133, 110913. [Google Scholar] [CrossRef]
- Gupta, A.; Gupta, S.; Bisht, M.; Hooda, P.; Salik, M. Document Co-Citation Analysis Using Concept Lattice. Eng. Technol. Appl. Sci. Res. 2023, 13, 11837–11842. [Google Scholar] [CrossRef]
- Pan, X.; Wang, H.; Wang, L.; Chen, W. Decarbonization of China’s Transportation Sector: In Light of National Mitigation toward the Paris Agreement Goals. Energy 2018, 155, 853–864. [Google Scholar] [CrossRef]
- Dönmezçelik, O.; Koçak, E.; Örkcü, H.H. Towards Net Zero Emissions Target: Energy Modelling of the Transport Sector in Türkiye. Energy 2023, 279, 128064. [Google Scholar] [CrossRef]
- Yang, Y.; Dong, R.; Ren, X.; Fu, M. Exploring Sustainable Planning Strategies for Carbon Emission Reduction in Beijing’s Transportation Sector: A Multi-Scenario Carbon Peak Analysis Using the Extended STIRPAT Model. Sustainability 2024, 16, 4670. [Google Scholar] [CrossRef]
- Huang, Y.; Zhu, H.; Zhang, Z. The Heterogeneous Effect of Driving Factors on Carbon Emission Intensity in the Chinese Transport Sector: Evidence from Dynamic Panel Quantile Regression. Sci. Total Environ. 2020, 727, 138578. [Google Scholar] [CrossRef]
- Wu, X.; Lin, J.; Yang, Y.; Guo, J. A Digital Decision Approach for Scheduling Process Planning of Shared Bikes under Internet of Things Environment. Appl. Soft Comput. 2023, 133, 109934. [Google Scholar] [CrossRef]
- Xu, H.; Li, Y.; Zheng, Y.; Xu, X. Analysis of Spatial Associations in the Energy–Carbon Emission Efficiency of the Transportation Industry and Its Influencing Factors: Evidence from China. Environ. Impact Assess. Rev. 2022, 97, 106905. [Google Scholar] [CrossRef]
- Batur, İ.; Bayram, I.S.; Koc, M. Impact Assessment of Supply-Side and Demand-Side Policies on Energy Consumption and CO2 Emissions from Urban Passenger Transportation: The Case of Istanbul. J. Clean. Prod. 2019, 219, 391–410. [Google Scholar] [CrossRef]
- Georgatzi, V.V.; Stamboulis, Y.; Vetsikas, A. Examining the Determinants of CO2 Emissions Caused by the Transport Sector: Empirical Evidence from 12 European Countries. Econ. Anal. Policy 2020, 65, 11–20. [Google Scholar] [CrossRef]
- Bastida-Molina, P.; Hurtado-Pérez, E.; Peñalvo-López, E.; Cristina Moros-Gómez, M. Assessing Transport Emissions Reduction While Increasing Electric Vehicles and Renewable Generation Levels. Transp. Res. Part Transp. Environ. 2020, 88, 102560. [Google Scholar] [CrossRef]
- Pasaoglu, G.; Honselaar, M.; Thiel, C. Potential Vehicle Fleet CO2 Reductions and Cost Implications for Various Vehicle Technology Deployment Scenarios in Europe. Energy Policy 2012, 40, 404–421. [Google Scholar] [CrossRef]
- Bi, H.; Shang, W.-L.; Chen, Y.; Wang, K.; Yu, Q.; Sui, Y. GIS Aided Sustainable Urban Road Management with a Unifying Queueing and Neural Network Model. Appl. Energy 2021, 291, 116818. [Google Scholar] [CrossRef]
- Ribeiro, P.J.G.; Mendes, J.F.G. Public Transport Decarbonization via Urban Bus Fleet Replacement in Portugal. Energies 2022, 15, 4286. [Google Scholar] [CrossRef]
- Qiu, D.; Wang, Y.; Sun, M.; Strbac, G. Multi-Service Provision for Electric Vehicles in Power-Transportation Networks towards a Low-Carbon Transition: A Hierarchical and Hybrid Multi-Agent Reinforcement Learning Approach. Appl. Energy 2022, 313, 118790. [Google Scholar] [CrossRef]
- Creutzig, F. Evolving Narratives of Low-Carbon Futures in Transportation. Transp. Rev. 2016, 36, 341–360. [Google Scholar] [CrossRef]
- Huang, Y.; Hu, X.; Zhang, D.; Fang, X.; Li, X. Supporting and Evaluation Systems of Low Carbon Transport: Study on Theory and Practice. Adv. Mech. Eng. 2016, 8, 1687814015624831. [Google Scholar] [CrossRef]
- García, A.; Monsalve-Serrano, J.; Guzmán-Mendoza, M.G.; Iñiguez, E. Technical Evaluation of Low-Carbon Fuels as a Decarbonization Pathway of the Light-Duty Transport Sector. Fuel 2024, 369, 131772. [Google Scholar] [CrossRef]
- Korberg, A.D.; Mathiesen, B.V.; Clausen, L.R.; Skov, I.R. The Role of Biomass Gasification in Low-Carbon Energy and Transport Systems. Smart Energy 2021, 1, 100006. [Google Scholar] [CrossRef]
- Postiglione, M.; Carini, C.; Falini, A. ESG and Firm Value: A Hybrid Literature Review on Cost of Capital Implications from Scopus Database. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 6457–6480. [Google Scholar] [CrossRef]
- Li, S.; Wang, B.; Zhou, H. Decarbonizing Passenger Transportation in Developing Countries: Lessons and Perspectives1. Reg. Sci. Urban Econ. 2024, 107, 103977. [Google Scholar] [CrossRef]
- Li, X.; Zhan, J.; Pan, F.; Lv, T.; Wang, S. A Multi-Objective Optimization Model of Urban Passenger Transportation Structure under Low-Carbon Orientation Considering Participating Subjects. Environ. Sci. Pollut. Res. 2023, 30, 115839–115854. [Google Scholar] [CrossRef]
- Hou, X.; Lv, T.; Xu, J.; Deng, X.; Liu, F.; Lam, J.S.L. Electrification Transition and Carbon Emission Reduction of Urban Passenger Transportation Systems—A Case Study of Shenzhen, China. Sustain. Cities Soc. 2023, 93, 104511. [Google Scholar] [CrossRef]
- Zhang, G.; Chang, F.; Huang, H.; Zhou, Z. Dual-Objective Reinforcement Learning-Based Adaptive Traffic Signal Control for Decarbonization and Efficiency Optimization. Mathematics 2024, 12, 2056. [Google Scholar] [CrossRef]
- Misnan, M.F.; Thamrin, N.M.; Amin MS, M.; Bakar, Z.A. Conceptual Design of Smart Network Adaptive Traffic Light in Creating Low-Carbon City. Int. J. Integr. Eng. 2023, 15, 98–106. [Google Scholar] [CrossRef]
- Dong, J.; Li, Y.; Li, W.; Liu, S. CO2 Emission Reduction Potential of Road Transport to Achieve Carbon Neutrality in China. Sustainability 2022, 14, 5454. [Google Scholar] [CrossRef]
- Bai, C.; Chen, Z.; Wang, D. Transportation Carbon Emission Reduction Potential and Mitigation Strategy in China. Sci. Total Environ. 2023, 873, 162074. [Google Scholar] [CrossRef]
- Yang, S.; Ji, Y.; Zhang, D.; Fu, J. Equilibrium between Road Traffic Congestion and Low-Carbon Economy: A Case Study from Beijing, China. Sustainability 2019, 11, 219. [Google Scholar] [CrossRef]
- Zhang, S.; Zhao, J. Low-Carbon Futures for Shenzhen’s Urban Passenger Transport: A Human-Based Approach. Transp. Res. Part Transp. Environ. 2018, 62, 236–255. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, G.; Song, Z.; Shi, X.; Ye, M.; Chen, X.; Xiang, Y.; Zheng, W.; Zhang, P. Calculation of Carbon Emissions and Study of the Emission Reduction Path of Conventional Public Transportation in Harbin City. Sustainability 2023, 15, 16025. [Google Scholar] [CrossRef]
- Trofimenko, Y.; Komkov, V.; Donchenko, V. Problems and Prospects of Sustainable Low Carbon Development of Transport in Russia. IOP Conf. Ser. Earth Environ. Sci. 2018, 177, 012014. [Google Scholar] [CrossRef]
- Chen, Q.; Wang, Q.; Zhou, D.; Wang, H. Drivers and Evolution of Low-Carbon Development in China’s Transportation Industry: An Integrated Analytical Approach. Energy 2023, 262, 125614. [Google Scholar] [CrossRef]
- Thaveewatanaseth, K.; Limjirakan, S. Key Factors of Low Carbon Development Strategy for Sustainable Transport. IOP Conf. Ser. Earth Environ. Sci. 2018, 117, 012003. [Google Scholar] [CrossRef]
- Yamashita, Y.; Takigawa, M.; Goto, D.; Yashiro, H.; Satoh, M.; Kanaya, Y.; Taketani, F.; Miyakawa, T. Effect of Model Resolution on Black Carbon Transport from Siberia to the Arctic Associated with the Well-Developed Low-Pressure Systems in September. J. Meteorol. Soc. Japan Ser. II 2021, 99, 287–308. [Google Scholar] [CrossRef]
- Czermański, E.; Pawłowska, B.; Oniszczuk-Jastrząbek, A.; Cirella, G.T. Decarbonization of Maritime Transport: Analysis of External Costs. Front. Energy Res. 2020, 8, 28. [Google Scholar] [CrossRef]
- Kim, W.; Khan, G.; Wood, J.; Mahmood, M. Employee Engagement for Sustainable Organizations: Keyword Analysis Using Social Network Analysis and Burst Detection Approach. Sustainability 2016, 8, 631. [Google Scholar] [CrossRef]
- Chen, C.; Dubin, R.; Kim, M.C. Emerging Trends and New Developments in Regenerative Medicine: A Scientometric Update (2000–2014). Expert Opin. Biol. Ther. 2014, 14, 1295–1317. [Google Scholar] [CrossRef]
- Yuan, Q.; Ye, Y.; Tang, Y.; Liu, X.; Tian, Q. Low Carbon Electric Vehicle Charging Coordination in Coupled Transportation and Power Networks. IEEE Trans. Ind. Appl. 2023, 59, 2162–2172. [Google Scholar] [CrossRef]
- Zhu, L.; Zhou, R.; Li, X.; Zhang, L. An Evolutionary Game Analysis of Shared Private Charging Pile Behavior in Low-Carbon Urban Traffic. Sustainability 2023, 15, 10149. [Google Scholar] [CrossRef]
- Sintov, N.D.; Abou-Ghalioum, V.; White, L.V. The Partisan Politics of Low-Carbon Transport: Why Democrats Are More Likely to Adopt Electric Vehicles than Republicans in the United States. Energy Res. Soc. Sci. 2020, 68, 101576. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, F. An Inquiry into the Characteristics of Carbon Emissions in Inter-Provincial Transportation in China: Aiming to Typological Strategies for Carbon Reduction in Regional Transportation. Land 2023, 13, 15. [Google Scholar] [CrossRef]
- Ji, S.; Zhang, Z.; Meng, F.; Luo, H.; Yang, M.; Wang, D.; Tan, Q.; Deng, Y.; Gong, Z. Scenario Simulation and Synergistic Effect Analysis of CO2 and Atmospheric Pollutant Emission Reduction in Urban Transport Sector: A Case Study of Chengdu, China. J. Clean. Prod. 2024, 438, 140841. [Google Scholar] [CrossRef]
- Berberian, A.G.; Perera, F.; Arunachalam, S.; Levy, J.I.; Buckley, L.; Arter, C.; Coomes, K.E.; Buonocore, J.J. Children’s Health Impacts from a Proposed Decarbonization Policy in the Transportation Sector in the Eastern United States. Environ. Res. Lett. 2024, 19, 044001. [Google Scholar] [CrossRef]
- Goldstein, H. The Greening of Transportation: We’ll Need New Inventions and Novel Adaptations to Decarbonize the Sector. IEEE Spectr. 2024, 61, 2. [Google Scholar] [CrossRef]
- Deng, C.; Qian, Y.; Song, X.; Xie, M.; Duan, H.; Shen, P.; Qiao, Q. Are Electric Vehicles Really the Optimal Option for the Transportation Sector in China to Approach Pollution Reduction and Carbon Neutrality Goals? J. Environ. Manag. 2024, 356, 120648. [Google Scholar] [CrossRef]
- Asiegbu, A.D.; Kahn, M.T.E.; Almaktoof, A.M. Green Hydrogen: A Clean Energy Solution for Germany’s Transportation Sector. SAIEE Afr. Res. J. 2024, 115, 16–23. [Google Scholar] [CrossRef]
- Zheng, Y.; Liao, H.; Yang, X. Stochastic Pricing and Order Model with Transportation Mode Selection for Low-Carbon Retailers. Sustainability 2016, 8, 48. [Google Scholar] [CrossRef]
- Yu, Y.; Luo, C.; Min, H.; Cao, Q.; Jiang, J.; Wu, H. Role of Proton Exchange Membrane Fuel Cell in Efficiency Improvement of Ammonia–Hydrogen Fusion Zero-Carbon Powertrains for Long-Haul, Heavy-Duty Transportation. Energy Convers. Manag. 2024, 309, 118425. [Google Scholar] [CrossRef]
- Fernández-Dacosta, C.; Shen, L.; Schakel, W.; Ramirez, A.; Kramer, G.J. Potential and Challenges of Low-Carbon Energy Options: Comparative Assessment of Alternative Fuels for the Transport Sector. Appl. Energy 2019, 236, 590–606. [Google Scholar] [CrossRef]
- Grahn, M.; Brynolf, S.; Hansson, J.; Taljegård, M. The Cost-Effectiveness of Electrofuels in Comparison to Other Alternative Fuels for Transport in a Low Carbon Future. In Proceedings of the European Biomass Conference and Exhibition, Amsterdam, The Netherlands, 6–9 June 2016. [Google Scholar]
- Blomgren, G.E. The Development and Future of Lithium Ion Batteries. J. Electrochem. Soc. 2017, 164, A5019–A5025. [Google Scholar] [CrossRef]
- Zhang, J.; Jia, R.; Yang, H.; Dong, K. Does Electric Vehicle Promotion in the Public Sector Contribute to Urban Transport Carbon Emissions Reduction? Transp. Policy 2022, 125, 151–163. [Google Scholar] [CrossRef]
- Leonhardt, B.E.; Tyson, R.J.; Taw, E.; Went, M.S.; Sanchez, D.L. Policy Analysis of CO2 Capture and Sequestration with Anaerobic Digestion for Transportation Fuel Production. Environ. Sci. Technol. 2023, 57, 11401–11409. [Google Scholar] [CrossRef]
- Jia, Z.; Yin, J.; Cao, Z.; Wei, N.; Jiang, Z.; Zhang, Y.; Wu, L.; Zhang, Q.; Mao, H. Large-Scale Deployment of Intelligent Transportation to Help Achieve Low-Carbon and Clean Sustainable Transportation. Sci. Total Environ. 2024, 949, 174724. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Peng, J.; Wu, L.; Ma, C.; Zou, C.; Wei, N.; Zhang, Y.; Liu, Y.; Andre, M.; Li, D.; et al. Speed-Guided Intelligent Transportation System Helps Achieve Low-Carbon and Green Traffic: Evidence from Real-World Measurements. J. Clean. Prod. 2020, 268, 122230. [Google Scholar] [CrossRef]
- Peng, T.; Yang, X.; Xu, Z.; Liang, Y. Constructing an Environmental Friendly Low-Carbon-Emission Intelligent Transportation System Based on Big Data and Machine Learning Methods. Sustainability 2020, 12, 8118. [Google Scholar] [CrossRef]
- Ye, Z.; Yu, N.; Wei, R.; Liu, X.C. Decarbonizing Regional Multi-Model Transportation System with Shared Electric Charging Hubs. Transp. Res. Part C Emerg. Technol. 2022, 144, 103881. [Google Scholar] [CrossRef]
- Ahmad, R.; Liu, G.; Rehman, S.A.U.; Fazal, R.; Gao, Y.; Xu, D.; Agostinho, F.; Almeida, C.M.V.B.; Giannetti, B.F. Pakistan Road towards Paris Agreement: Potential Decarbonization Pathways and Future Emissions Reduction by A Developing Country. Energy 2025, 314, 134075. [Google Scholar] [CrossRef]
- Aleluia Reis, L.; Tavoni, M. Glasgow to Paris—The Impact of the Glasgow Commitments for the Paris Climate Agreement. iScience 2023, 26, 105933. [Google Scholar] [CrossRef]
- Chivhenge, E.; Mabaso, A.; Museva, T.; Zingi, G.K.; Manatsa, P. Zimbabwe’s Roadmap for Decarbonisation and Resilience: An Evaluation of Policy (in)Consistency. Glob. Environ. Change 2023, 82, 102708. [Google Scholar] [CrossRef]
- Das, D.; Kalbar, P.P.; Velaga, N.R. Dynamic Stock Model Based Assessment of Carpooling in Passenger Transportation Carbon Emissions: Will Avoided Trips and Material Credits Help? Sustain. Prod. Consum. 2022, 33, 372–388. [Google Scholar] [CrossRef]
- Bakker, S.; Dematera Contreras, K.; Kappiantari, M.; Tuan, N.; Guillen, M.; Gunthawong, G.; Zuidgeest, M.; Liefferink, D.; Van Maarseveen, M. Low-Carbon Transport Policy in Four ASEAN Countries: Developments in Indonesia, the Philippines, Thailand and Vietnam. Sustainability 2017, 9, 1217. [Google Scholar] [CrossRef]
- Pahle, M. Pricing Carbon for a Fair and Effective Low-Carbon Road Transport Transition in the EU. One Earth 2023, 6, 7–10. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Axsen, J.; Kempton, W. The Future Promise of Vehicle-to-Grid (V2G) Integration: A Sociotechnical Review and Research Agenda. Annu. Rev. Environ. Resour. 2017, 42, 377–406. [Google Scholar] [CrossRef]
- Li, Q.; Dai, M.; Zhang, Y.; Wu, R. The Effect of Public Traffic Accessibility on the Low-Carbon Awareness of Residents in Guangzhou: The Perspective of Travel Behavior. Land 2023, 12, 1910. [Google Scholar] [CrossRef]
- Shao, M.; Chen, C.; Lu, Q.; Zuo, X.; Liu, X.; Gu, X. The Impacts of Low-Carbon Incentives and Carbon-Reduction Awareness on Airport Ground Access Mode Choice under Travel Time Uncertainty: A Hybrid CPT-MNL Model. Sustainability 2023, 15, 12610. [Google Scholar] [CrossRef]
- Wamsler, C.; Mundaca, L.; Osberg, G. Rethinking Political Agency: The Role of Individuals’ Engagement, Perceptions and Trust in Transitioning to a Low-Carbon Transport System. J. Clean. Prod. 2022, 360, 132197. [Google Scholar] [CrossRef]
- AlSabbagh, M.; Siu, Y.L.; Guehnemann, A.; Barrett, J. Integrated Approach to the Assessment of CO2e-Mitigation Measures for the Road Passenger Transport Sector in Bahrain. Renew. Sustain. Energy Rev. 2017, 71, 203–215. [Google Scholar] [CrossRef]
- Zhang, L.; Tao, L.; Yang, F.; Bao, Y.; Li, C. Promoting Green Transportation through Changing Behaviors with Low-Carbon-Travel Function of Digital Maps. Humanit. Soc. Sci. Commun. 2024, 11, 298. [Google Scholar] [CrossRef]
- Xu, Z.; Li, Y.; Li, F. Electric Vehicle Supply Chain under Dual-Credit and Subsidy Policies: Technology Innovation, Infrastructure Construction and Coordination. Energy Policy 2024, 195, 114339. [Google Scholar] [CrossRef]
- Burra, L.T.; Sommer, S.; Vance, C. Policy Complementarities in the Promotion of Electric Vehicles. Energy Policy 2024, 192, 114262. [Google Scholar] [CrossRef]
Perspective | Methodology | Main Content | References |
---|---|---|---|
Transportation carbon emissions | Bibliometric | This review employs CiteSpace to perform a bibliometric analysis of traffic carbon emission papers published between 1991 and 2022, focusing on measurement methods, mechanism analysis, and low-carbon pathway strategies. | [19] |
Transportation supply chain | Bibliometric | Based on the carbon-neutral goals in the transportation sector, this review conducts a bibliometric analysis and highlights the increasing importance of hydrogen and biomass energy. | [20] |
Transportation green development | Systematic | This review systematically summarizes research progress in the green development of the transportation sector, covering three key areas: performance evaluation, impact mechanism analysis, and the exploration of development pathways. | [21] |
Regional research | Systematic | Focusing on carbon emissions in the Asian region, this review surveys research in four key areas: sustainable energy, water resources, transportation, and low-carbon emission technologies. | [22] |
Cybersecurity technology | Systematic | This review provides an overview of cybersecurity technologies in low-carbon transportation, discussing current challenges and future development directions from a holistic perspective. | [23] |
Railway transportation | Systematic | This review evaluates the development and transportation of clean energy in China’s railway sector, emphasizing the vast potential of China’s energy resources. | [24] |
Hydrogen storage and transportation | Systematic | This review explores low-carbon technologies in the transportation sector from a hydrogen storage perspective, discussing various carrier methods in terms of availability, energy efficiency, water demand, and their applicability to power generation, shipping, truck transportation, and aviation, with a comprehensive safety review. | [25] |
Transportation low-carbon fuel policies | Systematic | This review compares carbon policies for transportation fuels, considering economic efficiency, fuel price impacts, greenhouse gas emission reductions, and innovation incentives. | [26] |
Rank | Country | Publications | Percentage |
---|---|---|---|
1 | China | 261 | 34.99% |
2 | United States | 107 | 14.34% |
3 | United Kingdom | 69 | 9.25% |
4 | Germany | 50 | 6.70% |
5 | Italy | 39 | 5.23% |
6 | India | 32 | 4.29% |
7 | Japan | 31 | 4.16% |
8 | Sweden | 28 | 3.75% |
9 | Spain | 27 | 3.62% |
9 | Canada | 27 | 3.62% |
Rank | Institute | Country | Publications | Percentage |
---|---|---|---|---|
1 | Tsinghua University | China | 23 | 3.08% |
2 | Chinese Academy of Sciences | China | 22 | 2.95% |
3 | University of California System | United States | 19 | 2.55% |
4 | United States Department of Energy (DOE) | United States | 12 | 1.61% |
4 | University of London | United Kingdom | 12 | 1.61% |
6 | Swiss Federal Institutes of Technology Domain | Switzerland | 11 | 1.47% |
6 | ETH Zurich | Switzerland | 11 | 1.47% |
8 | Imperial College London | United Kingdom | 10 | 1.34% |
9 | Indian Institute of Technology System (IIT System) | India | 9 | 1.21% |
9 | University of Leeds | United Kingdom | 9 | 1.21% |
9 | Central South University | China | 9 | 1.21% |
Rank | Journal | Publications | Percentage | Co-Citation | IF 2023 |
---|---|---|---|---|---|
1 | Sustainability | 51 | 6.84% | 192 | 3.3 |
2 | Journal of Cleaner Production | 42 | 5.63% | 332 | 9.7 |
3 | Transportation Research Part D-Transport and Environment | 34 | 4.56% | 304 | 7.3 |
4 | Energies | 32 | 4.29% | 157 | 3 |
5 | Applied Energy | 30 | 4.02% | 333 | 10.1 |
6 | Energy | 21 | 2.82% | 285 | 9 |
7 | Energy Policy | 21 | 2.82% | 4 | 9.3 |
8 | International Journal of Greenhouse Gas Control | 17 | 2.28% | 75 | 4.6 |
9 | Environmental Science and Pollution Research | 12 | 1.61% | 89 | 0.99 |
10 | Transport Policy | 11 | 1.47% | 7 | 6.3 |
Rank | Author | Publications | Total Citations in TSLC Research | Most Cited Studies in WoS |
---|---|---|---|---|
1 | D’amore F. | 6 | 156 | Economic optimisation of European supply chains for CO2 capture, transport and sequestration [59] |
2 | Bezzo F. | 5 | 150 | Economic optimisation of European supply chains for CO2 capture, transport and sequestration [59] |
2 | Li W. X. | 5 | 97 | Assessing the transition to low-carbon urban transport: A global comparison [61] |
2 | Wang S. | 5 | 50 | High reduction of ozone and particulate matter during the 2016 G-20 summit in Hangzhou by forced emission controls of industry and traffic [62] |
2 | Yang Y. | 5 | 107 | Assessment of Osculating Value Method Based on Entropy Weight to Transportation Energy Conservation and Emission Reduction [63] |
2 | Zhang H. Y. | 5 | 51 | Emission reduction mode of China’s provincial transportation sector: Based on “Energy+” carbon efficiency evaluation [64] |
2 | Zhang R. S. | 5 | 161 | Long-term pathways to deep decarbonization of the transport sector in the post-COVID world [60] |
2 | Zhang X. | 5 | 72 | Hollow microsphere-infused porous poly (vinylidene fluoride)/multiwall carbon nanotube composites with excellent electromagnetic shielding and low thermal transport [65] |
Rank | Co-Citation | Citation in WoS | Reference | Title | Source (IF 2023) |
---|---|---|---|---|---|
1 | 13 | 89 | [66] | Decomposing passenger transport futures: Comparing results of global integrated assessment models | Transportation Research Part D-Transport and Environment (IF = 7.3) |
1 | 13 | 127 | [67] | Electrification of light-duty vehicle fleet alone will not meet mitigation targets | Nature Climate Change (IF = 29.6) |
3 | 12 | — | — | Transport | Climate Change 2014: Mitigation of Climate Change |
4 | 11 | 465 | [68] | Towards demand-side solutions for mitigating climate change | Nature Climate Change (IF = 29.6) |
4 | 11 | 130 | [69] | Development and application of China provincial road transport energy demand and GHG emissions analysis model | Applied Energy (IF = 10.1) |
4 | 11 | 152 | [70] | Regional differences and driving factors analysis of carbon emission intensity from transport sector in China | Energy (IF = 9) |
7 | 9 | 136 | [71] | Crafting strong, integrated policy mixes for deep CO2 mitigation in road transport | Nature Climate Change (IF = 29.6) |
7 | 9 | 63 | [72] | Transportation emissions scenarios for New York City under different carbon intensities of electricity and electric vehicle adoption rates | Nature Energy (IF = 49.7) |
7 | 9 | 77 | [73] | Peaking CO2 emissions for China’s urban passenger transport sector | Energy Policy (IF = 9.3) |
Rank | Keywords | Frequency | Centrality |
---|---|---|---|
1 | CO2 emissions | 93 | 0.06 |
2 | emissions | 90 | 0.05 |
3 | energy | 59 | 0.04 |
3 | impact | 59 | 0.08 |
5 | electric vehicles | 56 | 0.05 |
6 | greenhouse gas emissions | 54 | 0.05 |
6 | energy consumption | 54 | 0.04 |
8 | model | 47 | 0.06 |
9 | performance | 42 | 0.13 |
10 | technology | 39 | 0.12 |
Rank | Keywords | Strength | Begin | End | 2016–2024 |
---|---|---|---|---|---|
1 | behavior | 3.12 | 2016 | 2019 | |
2 | reduction | 2.36 | 2016 | 2018 | |
3 | cost | 3.29 | 2017 | 2020 | |
4 | climate change | 3.09 | 2017 | 2020 | |
5 | hybrid | 2.77 | 2017 | 2018 | |
6 | travel | 2.69 | 2017 | 2021 | |
7 | dioxide | 2.49 | 2017 | 2018 | |
8 | design | 2.48 | 2017 | 2018 | |
9 | scenarios | 2.64 | 2018 | 2021 | |
10 | greenhouse gas emissions | 2.49 | 2019 | 2020 | |
11 | sustainable development | 2.65 | 2020 | 2021 | |
12 | particulate matter | 2.42 | 2020 | 2022 | |
13 | simulation | 3.2 | 2021 | 2022 | |
14 | PM 2.5 | 2.39 | 2021 | 2022 | |
15 | electric vehicle | 3.28 | 2022 | 2024 |
Keywords | Frequency | Degree | Keywords | Frequency | Degree |
---|---|---|---|---|---|
transportation sector | 3 | 13 | acceptability | 1 | 5 |
logistics | 2 | 12 | deep reinforcement learning | 2 | 5 |
energy storage | 2 | 11 | products | 2 | 5 |
green hydrogen | 2 | 11 | net -zero | 2 | 5 |
generation | 2 | 10 | co benefits | 2 | 5 |
supply chain | 3 | 10 | perspective | 2 | 4 |
prospects | 2 | 10 | perovskite solar cells | 2 | 3 |
net zero | 2 | 9 | formulation | 2 | 3 |
emission | 2 | 8 | drivers | 2 | 3 |
stirpat model | 2 | 8 | carbon electrodes | 2 | 3 |
adaptive signal control system | 1 | 8 | fabrication | 2 | 3 |
waste | 2 | 7 | sustainable transportation | 2 | 3 |
socioeconomic factors | 2 | 6 | CGE | 2 | 2 |
carbon peak | 2 | 6 | ab initio | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Han, J. How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review. Sustainability 2025, 17, 2261. https://doi.org/10.3390/su17052261
Zhao X, Han J. How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review. Sustainability. 2025; 17(5):2261. https://doi.org/10.3390/su17052261
Chicago/Turabian StyleZhao, Xuanwei, and Jinsong Han. 2025. "How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review" Sustainability 17, no. 5: 2261. https://doi.org/10.3390/su17052261
APA StyleZhao, X., & Han, J. (2025). How Is Transportation Sector Low-Carbon (TSLC) Research Developing After the Paris Agreement (PA)? A Decade Review. Sustainability, 17(5), 2261. https://doi.org/10.3390/su17052261