Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives
Abstract
:Highlights
- India is one of the largest livestock systems based GHG contributors, due to large livestock population.
- Numerous GHG emission quantifying and mitigating methodologies were highlighted.
- The scaling up of GHG emission mitigations options can help mitigate the GHG footprint of Indian Livestock Systems.
- Artificial Intelligence backed mathematical modelling for devising favourable government policies, can help Indian Livestock systems achieve their 2070 GHG emission benchmarks.
Abstract
1. Introduction
2. Search Strategy
3. Sustainable Livestock Systems: The Need of the Hour for Environmental Resilience and Climate Mitigation
4. An Assessment of India’s Evolving Carbon Landscape
5. Assessing the Greenhouse Gas Emissions from Indian Livestock and Their Contribution to Global Warming
6. The Role of the Carbon Footprint in Agro-Environmental Sustainability and Livestock Management
7. Strategic Estimation and Management of the Carbon Footprint in Livestock Production for Sustainability
- (a)
- Upstream sources: emissions from feed production, including land use, fertilizer and energy consumption.
- (b)
- Midstream sources, which include emissions from livestock transportation and processing of livestock products.
- (c)
- Downstream sources: emissions from the use of livestock products, including food processing and waste [47].
8. An Overview of the Different Methods Available for Assessing Livestock CH4 Emissions
- Sulfur Hexafluoride (SF6) Tracer Technique: This method involves placing a small permeation tube of SF6 in the animal’s rumen. The emitted SF6 serves as a tracer to estimate CH4 emissions. It is less invasive than respiration chambers but requires careful calibration and handling (Table 1, Figure 3).
Method | Description | Key Features | Advantages | Limitations | References |
---|---|---|---|---|---|
Respiration chamber | Collects exhaled breath and analyzes CH4 concentration using open- or closed-circuit indirect calorimetry. | Measures CH4 by analyzing airflow difference at inlet and outlet. Chambers may have insulation and controlled temperature/humidity. | Considered the “gold standard” for accuracy. | Artificial environment may alter dry matter intake (DMI) and affect emissions. | [50] |
SF6 tracer technique | Uses SF6, an inert gas, as a tracer to estimate CH4 emissions. SF6 is released from a surgically implanted cannula in the rumen. | Uses an internal tracer release system with a gas collection tube affixed to the animal’s neck. Gas chromatography measures CH4/SF6 ratio. | Allows for CH4 measurement in free-ranging animals. No need for a controlled environment. | Requires surgical insertion of SF6 capsule. Regular sample collection needed. | [51,52] |
In vitro gas production technique (IVGPT) | Simulates rumen fermentation outside the animal’s body using rumen fluid and various substrates. | Incubation at ~39 °C in sealed bottles to mimic the rumen. Gas production is monitored to estimate CH4 emissions. | Enables controlled feedstuff testing. Useful for evaluating dietary strategies to reduce CH4. | May not fully replicate in vivo conditions. Dependent on donor animal rumen fluid. | [53,54,55,56] |
CO2 technique | Uses CO2 as a natural tracer to estimate CH4 emissions. | CH4/CO2 ratio is measured, and CH4 emissions are estimated. | Avoids external tracer gases. More natural than SF6 method. | Requires accurate feed intake and heat production data for precise CH4 estimation. | [55,57] |
Laser technique | Uses a laser CH4 detector (LMD) to measure methane concentrations in exhaled air. | Employs infrared absorption spectroscopy. Portable equipment allows non-invasive measurement. | Enables real-time CH4 monitoring in natural settings. Non-invasive. | Accuracy depends on correct positioning and distance of the device. | [58,59,60] |
Proxy methods | Uses biological samples (e.g., milk or feces) to estimate CH4 emissions based on fatty acid composition. | Links specific milk or fecal components (fatty acids or lipids) to methanogenic activity and diet composition. | Simple and non-invasive. Can be integrated into routine milk or fecal analysis. | Indirect method; requires further validation for precise CH4 estimation. | [61,62] |
Mathematical models | Estimates CH4 emissions based on variables like species, age, weight, and diet using statistical and dynamic mechanistic models. | Uses observed animal data or biochemical simulations of rumen fermentation. Models include MANNER (Methane and Nitrous Oxide Emissions from National cattle), CNCPS (Cornell Net Carbohydrate and Protein System), Ruminant, Ruminant Nutrition System, IPCC Tiers 1 and 2, AD-GENIE, DEEPMODEL, RumiGas, GRAZPLAN, and CoolFarmTool. | Allows for CH4 prediction based on various parameters. Useful for policy-making and farm-level emissions tracking. Can simulate dietary changes. | Requires detailed input data. Some models are complex and computationally demanding. | [63,64,65,66,67,68,69,70,71] |
Green feed system | Uses an automated feeder with sensors to measure CH4 and CO2 emissions from non-confined cattle and sheep. | Animals are attracted using a pelleted concentrate. Sensors detect CH4 released during short feeding periods. | Cost-effective compared to SF6 and respiration chamber techniques. Works indoors and in pastures. | Requires repeated visits from the animal to collect sufficient data. | [50,58,72,73,74,75] |
Blood methane detection | Measures CH4 absorbed into the bloodstream via a jugular blood sample. | Uses SF6 injection (intra ruminal bolus) into the rumen to track methane absorption and exhalation. | Provides a continuous measure rather than a one-time sample. | Invasive and requires blood sampling. | [50] |
Infrared (IR) thermography | Detects CH4 emissions by measuring temperature differences between an animal’s flanks. | Uses thermal imaging to assess fermentation heat in the rumen, which correlates with CH4 production. | Non-invasive and simple to implement. | Accuracy depends on timing (most effective postprandial). External temperature variations may affect readings. | [76] |
Eddy covariance (EC) technique | A micrometeorological approach that tracks gas exchange between ecosystems and the atmosphere. | Evaluates the link between computed flux and emission rate of point sources. | Effective for large-scale CH4 tracking in grazing systems. | Complex setup and modeling required. | [77,78] |
9. Life Cycle Assessment of Greenhouse Gas Emissions
9.1. Define the Goal and Scope
9.2. Inventory Data Collection
9.3. Emission Calculations
9.4. Impact Assessment
9.5. Interpreting and Reporting Results
10. Models for Livestock Greenhouse Gas Estimation
10.1. Source-Based Models
10.2. Whole-Farm Models
11. Comparative Assessment of Carbon Footprints
12. Strategies to Mitigate Livestock GHG Emissions
12.1. Reducing Enteric Emissions in Livestock
12.1.1. Use of Anti-Methanogenic Agents
Chemical Inhibitors
Nitrates
Antibiotic Ionophores
Lipid Supplementation
12.1.2. Commercial Feed Solutions for Methane Mitigation
Rumin8
Bovaer
Tamarind Seed Husk
HaritDhara
12.1.3. Genetic Selection
12.1.4. Microalgae Cultivation
12.1.5. Grassland Management
12.1.6. Precision Livestock Farming (PLF)
12.1.7. AI for Monitoring and Scouting Natural Resources
12.2. Steps to Cut Down Manure-Related Emissions
13. Strategies Implemented by India for Methane Reduction
13.1. India Greenhouse Gas Program (Launched in 2012)
13.2. The National Livestock Mission (NLM) (Since 2014)
13.3. The Galvanizing Organic Bio-Agro Resources (Gobar-Dhan) Scheme
13.4. Seaweed-Based Animal Feed
13.5. Anti-Methanogenic Feed Supplement “HaritDhara”
14. Global Research Initiatives and Future Perspectives for Sustainable Livestock Management
- The California Dairy Research Foundation’s USD 85 million project promoting climate-smart dairy markets through methane-reducing manure management techniques [170];
- South Dakota State University’s USD 80 million “The Grass is Greener on the Other Side” project, which fosters climate-smart beef and bison commodity markets through data-driven grazing and land management practices;
- Texas A&M AgriLife Research’s USD 65 million five-year initiative to promote climate-smart agriculture and forestry practices through improved pasture management and economic tools for farmers.
15. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
GHG | Greenhouse gas |
GHGE | Greenhouse gas emissions |
BMT | Billion metric tons |
MMT | Million metric tons |
CO2e | Carbon dioxide equivalent |
CF | Carbon footprint |
kg | kilograms |
Mg | megagrams |
GWP | Global Warming Potential |
AR | Assessment reports |
SF6 | Sulfur hexafluoride |
IVGPT | Invitro-gas production technique |
LMD | Laser methane detector |
MANNER | Methane and Nitrous Oxide Emissions from National cattle |
CNCPS | Cornell Net Carbohydrate and Protein System |
RNS | Ruminant Nutrition System |
LCA | Life cycle assessment |
GLEAM | Global Livestock Environmental Assessment Model |
PLF | Precision livestock farming |
NLM | National Livestock Mission |
WF | Water footprint |
References
- Alders, R.G.; Campbell, A.; Costa, R.; Guèye, E.F.; Ahasanul Hoque, M.; Perezgrovas-Garza, R.; Rota, A.; Wingett, K. Livestock across the world: Diverse animal species with complex roles in human societies and ecosystem services. Anim. Front. 2021, 11, 20–29. [Google Scholar] [CrossRef]
- Chisoro, P.; Jaja, I.F.; Assan, N. Incorporation of local novel feed resources in livestock feed for sustainable food security and circular economy in Africa. Front. Sustain. 2023, 4, 1251179. [Google Scholar] [CrossRef]
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.T.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Zubir, M.A.; Bong, C.P.; Ishak, S.A.; Ho, W.S.; Hashim, H. The trends and projections of greenhouse gas emission by the livestock sector in Malaysia. Clean Technol. Environ. Policy 2022, 24, 1–15. [Google Scholar] [CrossRef]
- Jose, V.S.; Sejian, V.; Bagath, M.; Ratnakaran, A.P.; Lees, A.M.; Al-Hosni, Y.A.; Sullivan, M.; Bhatta, R.; Gaughan, J.B. Modeling of greenhouse gas emission from livestock. Front. Environ. Sci. 2016, 4, 27. [Google Scholar] [CrossRef]
- Menghistu, H.T.; Zenebe Abraha, A.; Mawcha, G.T.; Tesfay, G.; Mersha, T.T.; Redda, Y.T. Greenhouse gas emission and mitigation potential from livestock production in the drylands of Northern Ethiopia. Carbon Manag. 2021, 12, 289–306. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). Climate-Smart Livestock Production. Available online: https://www.fao.org/climate-smart-agriculture-sourcebook/production-resources/module-b2-livestock/chapter-b2-3/en/ (accessed on 19 February 2025).
- Alliance of Bioversity International and CIAT. Sustainable Livestock Farming Practices for Resilience. Alliance Bioversity CIAT. 2024. Available online: https://alliancebioversityciat.org/stories/sustainable-livestock-farming-practices-resilience (accessed on 13 January 2025).
- Dağlıoğlu, S.T.; Taşkın, R.; Özteke, N.İ.; Kandemir, Ç.; Taşkın, T. Reducing Strategies for Carbon Footprint of Livestock in Izmir/Turkiye. Water Air Soil Pollut. 2024, 235, 243. [Google Scholar] [CrossRef]
- Havlikova, M.; Kroeze, C.; Huijbregts, M.A.J. Environmental and health impact by dairy cattle livestock and manure management in the Czech Republic. Sci. Total Environ. 2008, 396, 121–131. [Google Scholar] [CrossRef]
- Carlsson-Kanyama, A.; González, A.D. Potential contributions of food consumption patterns to climate change. Am. J. Clin. Nutr. 2009, 89, 1704S–1709S. [Google Scholar] [CrossRef]
- Sirohi, S.; Michaelowa, A. Sufferer and cause: Indian livestock and climate change. Clim. Chang. 2007, 85, 285–298. [Google Scholar] [CrossRef]
- Patra, A.K. Trends and projected estimates of GHG emissions from Indian livestock in comparisons with GHG emissions from world and developing countries. Asian Australas. J. Anim. Sci. 2014, 27, 592. [Google Scholar] [CrossRef]
- 20th Livestock Census, Department of Animal Husbandry, Dairying and Fisheries, Ministry of Fisheries, Animal Husbandry and Dairying, India. Available online: https://www.data.gov.in/catalog/20th-livestock-census (accessed on 18 January 2024).
- Kipling, R.P.; Bannink, A.; Bellocchi, G.; Dalgaard, T.; Fox, N.J.; Hutchings, N.J.; Kjeldsen, C.; Lacetera, N.; Sinabell, F.; Topp, C.F.; et al. Modeling European ruminant production systems: Facing the challenges of climate change. Agric. Syst. 2016, 147, 24–37. [Google Scholar] [CrossRef]
- UNFCCC. Sustainable Livestock Management. 2024. Available online: https://unfccc.int/technology/sustainable-livestock-management (accessed on 14 January 2025).
- Wiedmann, T.; Minx, J. A Definition of ‘Carbon Footprint’. In Ecological Economics Research Trends; Pertsova, C.C., Ed.; Nova Science Publishers: Hauppauge NY, USA, 2008; Volume 1, pp. 1–11. [Google Scholar]
- Leinonen, I. Achieving environmentally sustainable livestock production. Sustainability 2019, 11, 246. [Google Scholar] [CrossRef]
- Bhatta, R.B.; Malik, P.K.; Prasad, C.S. Enteric Methane Emission: Status, Mitigation and Future Challenges-an Indian Perspective. In Livestock Production and Climate Change; CABI: Wallingford, UK, 2015; pp. 229–244. [Google Scholar]
- Food and Agriculture Organization (FAO). World Food and Agriculture Statistical Yearbook; FAO-Food & Agriculture Organization of the United Nations: Rome, Italy, 2022. [Google Scholar]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2013. [Google Scholar]
- Phand, S.; Pankaj, P.K. Climate-Resilient Livestock Farming to Ensure Food and Nutritional Security. In Climate Change and Resilient Food Systems: Issues, Challenges, and Way Forward; Springer: Berlin/Heidelberg, Germany, 2021; pp. 381–398. ISBN 978-981-33-4537-9. [Google Scholar]
- Press Information Bureau, Prime Minister’s Office. National Statement by Prime Minister Shri Narendra Modi at COP26 Summit in Glasgow [Press Release]. Available online: https://pib.gov.in/PressReleseDetail.aspx?PRID=1768712 (accessed on 1 November 2021).
- Jones, M.W.; Peters, G.P.; Gasser, T.; Andrew, R.M.; Schwingshackl, C.; Gütschow, J.; Houghton, R.A.; Friedlingstein, P.; Pongratz, J.; Le Quéré, C. National contributions to climate change due to historical emissions of carbon dioxide, methane, and nitrous oxide since 1850. Sci. Data 2023, 10, 155. [Google Scholar] [CrossRef] [PubMed]
- Emissions in India, Statista. Available online: https://www.statista.com/topics/8881/emissions-in-india/#topicOverview (accessed on 5 January 2024).
- Ritchie, H.; The Carbon Footprint of Foods: Are Differences Explained by the Impacts of Methane. Our World in Data. 2020. Available online: https://ourworldindata.org/carbon-footprint-food-methane (accessed on 9 January 2024).
- Ritchie, H.; Rosado, P.; Roser, M. Emissions by Sector: Where do Greenhouse Gases Come From? Our World in Data. 2024. Available online: https://ourworldindata.org/emissions-by-sector?tlaAppCB (accessed on 9 January 2024).
- Chhabra, A.; Manjunath, K.R.; Panigrahy, S.; Parihar, J.S. Greenhouse gas emissions from Indian livestock. Clim. Chang. 2013, 117, 329–344. [Google Scholar] [CrossRef]
- Moss, A.R.; Jouany, J.P.; Newbold, J.; May. Methane production by ruminants: Its contribution to global warming. Ann. Zootech. 2000, 49, 231–253. [Google Scholar] [CrossRef]
- Sharma, U.C. Methane and nitrous oxide emissions from livestock in India: Impact of land use change. J. Agric. Aquac. 2020, 2, 1–9. [Google Scholar]
- Sejian, V.; Bhatta, R.; Malik, P.K.; Madiajagan, B.; Al-Hosni, Y.A.S.; Sullivan, M.; Gaughan, J.B. Livestock as sources of greenhouse gases and its significance to climate change. In Greenhouse Gases; IntechOpen: London, UK, 2016; pp. 243–259. [Google Scholar] [CrossRef]
- Ponsioen, T. Updated Carbon Footprint Calculation Factors. 2014. Available online: https://pre-sustainability.com/articles/updated-carbon-footprint-calculation-factors/ (accessed on 17 January 2024).
- IPCC. 2014: Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. ISBN 978-92-9169-143-2. [Google Scholar]
- IPCC. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., Eds.; 2021: Climate Change 2021: The Physical Science Basis. In Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; p. 2. [Google Scholar] [CrossRef]
- Kumari, S.; Hiloidhari, M.; Naik, S.N.; Dahiya, R.P. Methane Emission Assessment from Indian Livestock and its Role in Climate Change Using Climate Metrics. In Climate Change and Agriculture; Hussain, S., Ed.; IntechOpen: London, UK, 2019; pp. 153–168. ISBN 978-1-78985-668-2. [Google Scholar]
- GHG Platform India. Major Emitting Sources from the Livestock Sub-Sector: Trends in India and Mitigation Opportunities. Available online: https://www.ghgplatform-india.org/wp-content/uploads/2022/09/GHGPI-PhaseIV-Briefing-Paper-on-Major-Emitting-Sources-from-the-Livestock-Sub-sector-Vasudha-Foundation-Sep22.pdf (accessed on 18 January 2024).
- Gonzalez-Ronquillo, M.; Toro-Mujica, P. Feeding and nutritional strategies to reduce livestock greenhouse gas emissions: Volume II. Front. Vet. Sci. 2023, 9, 1101468. [Google Scholar] [CrossRef]
- Lan, W.; Yang, C. Ruminal methane production: Associated microorganisms and the potential of applying hydrogen-utilizing bacteria for mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [Google Scholar] [CrossRef]
- Mijena, D.; Getiso, A. Feeding and Nutritional Strategies to Reduce Methane Emission from Large Ruminants: Review. J. Aquac. Livest. Prod. 2021, p. SRC/JALP-112. Available online: https://www.onlinescientificresearch.com/articles/feeding-and-nutritional-strategies-to-reduce-methane-emission-from-large-ruminants-review.pdf (accessed on 18 January 2024).
- Kumar, B.M.; Aravindakshan, S. Carbon footprints of the Indian AFOLU (Agriculture, Forestry, and Other Land Use) sector: A review. Carbon Footpr. 2023, 2, 1. [Google Scholar] [CrossRef]
- Ozlu, E.; Arriaga, F.J.; Bilen, S.; Gozukara, G.; Babur, E. Carbon footprint management by agricultural practices. Biology 2022, 11, 1453. [Google Scholar] [CrossRef] [PubMed]
- Shi, R.; Irfan, M.; Liu, G.; Yang, X.; Su, X. Analysis of the impact of livestock structure on carbon emissions of animal husbandry: A sustainable way to improving public health and green environment. Front. Public Health 2022, 10, 835210. [Google Scholar] [CrossRef] [PubMed]
- Gaitán, L.; Läderach, P.; Graefe, S.; Rao, I.; Van der Hoek, R. Climate-smart livestock systems: An assessment of carbon stocks and GHG emissions in Nicaragua. PLoS ONE 2016, 11, e0167949. [Google Scholar] [CrossRef]
- Kaasschieter, G.A.; De Jong, R.; Schiere, J.B.; Zwart, D. Towards a sustainable livestock production in developing countries and the importance of animal health strategy therein. Vet. Q. 1992, 14, 66–75. [Google Scholar] [CrossRef]
- Grossi, G.; Goglio, P.; Vitali, A.; Williams, A.G. Livestock and climate change: Impact of livestock on climate and mitigation strategies. Anim. Front. 2019, 9, 69–76. [Google Scholar] [CrossRef]
- Hermansen, J.E.; Kristensen, T. Management options to reduce the carbon footprint of livestock products. Anim. Front. 2011, 1, 33–39. [Google Scholar] [CrossRef]
- GHG Protocol Corporate Standard. GHG Protocol Agricultural Guidance: Interpreting the Corporate Accounting and Reporting Standard for the Agricultural Sector. Available online: https://ghgprotocol.org (accessed on 31 January 2014).
- Iwasa, M.; Moki, Y.; Takahashi, J. Effects of the activity of coprophagous insects on greenhouse gas emissions from cattle dung pats and changes in amounts of nitrogen, carbon, and energy. Environ. Entomol. 2015, 44, 106–113. [Google Scholar] [CrossRef]
- Johnson, K.A.; Johnson, D.E. Methane emissions from cattle. J. Anim. Sci. 1995, 73, 2483–2492. [Google Scholar] [CrossRef]
- Goopy, J.P.; Chang, C.; Tomkins, N. A Comparison of Methodologies for Measuring Methane Emissions from Ruminants. In Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture; Todd, S.R., Mariana, C.R., Klaus, B., Eva, W., Meryl, R., Eds.; Springer International Publishing AG: Cham, Switzerland, 2016; pp. 97–117. ISBN 978-3-319-29792-7. [Google Scholar]
- Deighton, M.H.; Williams, S.R.O.; Hannah, M.C.; Eckard, R.J.; Boland, T.M.; Wales, W.J.; Moate, P.J. A modified sulphur hexafluoride tracer technique enables accurate determination of enteric methane emissions from ruminants. Anim. Feed Sci. Technol. 2014, 197, 47–63. [Google Scholar] [CrossRef]
- Williams, S.R.O.; Moate, P.J.; Hannah, M.C.; Ribaux, B.E.; Wales, W.J.; Eckard, R.J. Background matters with the SF6 tracer method for estimating enteric methane emissions from dairy cows: A critical evaluation of the SF6 procedure. Anim. Feed Sci. Technol. 2011, 170, 265–276. [Google Scholar] [CrossRef]
- Tedeschi, L.O.; Schofield, P.; Pell, A.N. Determining Feed Quality for Ruminants Using in Vitro Gas Production Technique. 2. Evaluating different models to assess gas production measurements. In Proceedings of the 4th Workshop on Modeling in Ruminant Nutrition: Application of the Gas Production Technique, Juiz de Fora, Brazil, 22–25 July 2008; p. 15. [Google Scholar]
- D’Souza, G.M.; Norris, A.B.; Tedeschi, L.O. Evaluation of sampling methods for methane concentration from in vitro fermentation. J. Anim. Sci. 2022, 100, skac259. [Google Scholar] [CrossRef] [PubMed]
- Storm, I.M.; Hellwing, A.L.F.; Nielsen, N.I.; Madsen, J. Methods for measuring and estimating methane emission from ruminants. Animal 2012, 2, 160–183. [Google Scholar] [CrossRef]
- Bhatta, R.; Enishi, O.; Kurihara, M. Measurement of methane production from ruminants. Asian Australas. J. Anim. Sci. 2007, 20, 1305–1318. [Google Scholar] [CrossRef]
- Cornou, C.; Storm, I.M.D.; Hindrichsen, I.K.; Worgan, H.; Bakewell, E.; Ruiz, D.R.Y.; Abecia, L.; Tagliapietra, F.; Cattani, M.; Ritz, C.; et al. A ring test of a wireless in vitro gas production system. Anim. Prod. Sci. 2013, 53, 585–592. [Google Scholar] [CrossRef]
- Hristov, A.N.; Kebreab, E.; Niu, M.; Oh, J.; Bannink, A.; Bayat, A.R.; Boland, T.M.; Brito, A.F.; Casper, D.P.; Crompton, L.A.; et al. Symposium review: Uncertainties in enteric methane inventories, measurement techniques, and prediction models. J. Dairy Sci. 2018, 101, 6655–6674. [Google Scholar] [CrossRef] [PubMed]
- Chagunda, M.G.G. Opportunities and challenges in the use of the Laser Methane Detector to monitor enteric methane emissions from ruminants. Animal 2013, 7, 394–400. [Google Scholar] [CrossRef]
- Bekele, W.; Guinguina, A.; Zegeye, A.; Simachew, A.; Ramin, M. Contemporary methods of measuring and estimating methane emission from ruminants. Methane 2022, 1, 82–95. [Google Scholar] [CrossRef]
- Montoya, J.C.; Bhagwat, A.M.; Peiren, N.; De Campeneere, S.; De Baets, B.; Fievez, V. Relationships between odd-and branched-chain fatty acid profiles in milk and calculated enteric methane proportion for lactating dairy cattle. Anim. Feed Sci. Technol. 2011, 166, 596–602. [Google Scholar] [CrossRef]
- Dijkstra, J.; Van Zijderveld, S.M.; Apajalahti, J.A.; Bannink, A.; Gerrits, W.J.J.; Newbold, J.R.; Perdok, H.B.; Berends, H. Relationships between methane production and milk fatty acid profiles in dairy cattle. Anim. Feed Sci. Technol. 2011, 166, 590–595. [Google Scholar] [CrossRef]
- Brouček, J. Methods of methane measurement in ruminants. Slovak J. Anim. Sci. 2014, 47, 51–60. [Google Scholar]
- Kebreab, E.; Johnson, K.A.; Archibeque, S.L.; Pape, D.; Wirth, T. Model for estimating enteric methane emissions from United States dairy and feedlot cattle. J. Anim. Sci. 2008, 86, 2738–2748. [Google Scholar] [CrossRef]
- Kebreab, E.; Tedeschi, L.; Dijkstra, J.; Ellis, J.L.; Bannink, A.; France, J. Modeling greenhouse gas emissions from enteric fermentation. In Synthesis and Modeling of Greenhouse Gas Emissions and Carbon Storage in Agricultural and Forest Systems to Guide Mitigation and Adaptation; American Society of Agronomy, Inc.: Madison, WI, USA, 2016; Volume 6, pp. 173–195. [Google Scholar] [CrossRef]
- Tedeschi, L.; Fox, D. The Ruminant Nutrition System: An Applied Model for Predicting Nutrient Requirements and Feed Utilization in Ruminants, 2nd ed.; XanEdu: TX, USA, 2018; p. 622. ISBN 978-1-5066-9775-8. [Google Scholar]
- Tedeschi, L.O.; Abdalla, A.L.; Álvarez, C.; Anuga, S.W.; Arango, J.; Beauchemin, K.A.; Becquet, P.; Berndt, A.; Burns, R.; De Camillis, C.; et al. Quantification of methane emitted by ruminants: A review of methods. J. Anim. Sci. 2022, 100, 197. Available online: https://pubmed.ncbi.nlm.nih.gov/35657151/ (accessed on 19 February 2025). [CrossRef]
- Fox, D.G.; Tedeschi, L.O.; Tylutki, T.P.; Russell, J.B.; Van Amburgh, M.E.; Chase, L.E.; Pell, A.N.; Overton, T.R. The Cornell Net Carbohydrate and Protein System model for evaluating herd nutrition and nutrient excretion. Anim. Feed Sci. Technol. 2004, 112, 29–78. [Google Scholar] [CrossRef]
- Herrero, M.; Thornton, P.K.; Kruska, R.; Reid, R.S. Systems dynamics and the spatial distribution of methane emissions from African domestic ruminants to 2030. Agric. Ecosyst. Environ. 2008, 126, 122–137. [Google Scholar] [CrossRef]
- GhassemiNejad, J.; Ju, M.S.; Jo, J.H.; Oh, K.H.; Lee, Y.S.; Lee, S.D.; Kim, E.J.; Roh, S.; Lee, H.G. Advances in Methane Emission Estimation in Livestock: A Review of Data Collection Methods, Model Development and the Role of AI Technologies. Animals 2024, 14, 435. [Google Scholar] [CrossRef]
- Benaouda, M.; Martin, C.; Li, X.; Kebreab, E.; Hristov, A.N.; Yu, Z.; Yáñez-Ruiz, D.R.; Reynolds, C.K.; Crompton, L.A.; Dijkstra, J.; et al. Evaluation of the performance of existing mathematical models predicting enteric methane emissions from ruminants: Animal categories and dietary mitigation strategies. Anim. Feed Sci. Technol. 2019, 255, 114207. [Google Scholar] [CrossRef]
- Zimmerman, P.R.; Zimmerman, R.S. Method and System for Monitoring and Reducing Ruminant Methane Production. U.S. Patent US8307785B2, 13 November 2012. Available online: https://patents.google.com/patent/US8307785B2/en (accessed on 31 January 2024).
- Okpara, M.O. Methane Emissions in Ruminants: Perspectives on Measurement and Estimation Methods. Russ. Agric. Sci. 2018, 44, 290–294. [Google Scholar] [CrossRef]
- Patra, A.K. Recent advances in measurement and dietary mitigation of enteric methane emissions in ruminants. Front. Vet. Sci. 2016, 3, 39. [Google Scholar] [CrossRef] [PubMed]
- Hammond, K.J.; Waghorn, G.C.; Hegarty, R.S. The Green Feed system for measurement of enteric methane emission from cattle. Anim. Prod. Sci. 2016, 56, 181–189. [Google Scholar] [CrossRef]
- Gabbi, A.M.; Kolling, G.J.; Fischer, V.; Pereira, L.G.R.; Tomich, T.R.; Machado, F.S.; Campos, M.M.; Silva, M.V.B.D.; Cunha, C.S.; Santos, M.K.; et al. Use of infrared thermography to estimate enteric methane production in dairy heifers. Quant. InfraRed Thermogr. J. 2022, 19, 187–195. [Google Scholar] [CrossRef]
- Coates, T.W.; Flesch, T.K.; McGinn, S.M.; Charmley, E.; Chen, D. Evaluating an eddy covariance technique to estimate point-source emissions and its potential application to grazing cattle. Agric. For. Meteorol. 2017, 234, 164–171. [Google Scholar] [CrossRef]
- Prajapati, P.; Santos, E.A. Measurements of methane emissions from a beef cattle feedlot using the eddy covariance technique. Agric. For. Meteorol. 2017, 232, 349–358. [Google Scholar] [CrossRef]
- Linzey, C.; Linzey, A. Masking the Problem. J. Anim. Ethics 2021, 11, 5–7. Available online: https://muse.jhu.edu/article/837042 (accessed on 19 February 2025). [CrossRef]
- ISO 14040:2006; Environmental Management—Life Cycle Assessment—Principles and Framework. International Organization for Standardization—ISO: Geneva, Switzerland, 2006.
- ISO 14044:2006; Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organization for Standardization—ISO: Geneva, Switzerland, 2006.
- Tyagi, N.; Vinay, V.V.; Mishra, D.B.; Kumar, S. Life Cycle Assessment: A Novel Approach for Assessment of Carbon Emission at the Farm Gate. In Animal Manure; Mahajan, S., Varma, A., Eds.; Springer: Cham, Switzerland, 2022; Volume 64. [Google Scholar] [CrossRef]
- Sarkar, S.; Lal, B.; Gautam, P.; Bhatt, R.S.; Sahoo, A. Comparing Carbon Footprints of Sheep Farming Systems in Semi-Arid Regions of India: A Life Cycle Assessment Study. PLoS ONE 2024, 19, e0292066. [Google Scholar] [CrossRef]
- Benaouda, M.; González-Ronquillo, M.; Appuhamy, J.A.D.R.N.; Kebreab, E.; Molina, L.T.; Herrera-Camacho, J.; Ku-Vera, J.C.; Ángeles-Hernández, J.C.; Castelán-Ortega, O.A. Development of mathematical models to predict enteric methane emission by cattle in Latin America. Livest. Sci. 2020, 241, 104177. [Google Scholar] [CrossRef]
- Tong, X.; Zhao, L.; Heber, A.J.; Ni, J.Q. Mechanistic modelling of ammonia emission from laying hen manure at laboratory scale. Biosyst. Eng. 2020, 192, 24–41. [Google Scholar] [CrossRef]
- Hempel, S.; Adolphs, J.; Landwehr, N.; Willink, D.; Janke, D.; Amon, T. Supervised machine learning to assess methane emissions of a dairy building with natural ventilation. Appl. Sci. 2020, 10, 6938. [Google Scholar] [CrossRef]
- Sterman, J.D. Sustaining Sustainability: Creating a Systems Science in a Fragmented Academy and Polarized World. In Sustainability Science; Weinstein, M., Turner, R., Eds.; Springer: New York, NY, USA, 2012; Chapter 2. [Google Scholar] [CrossRef]
- Rotz, C.A. Modeling greenhouse gas emissions from dairy farms. J. Dairy Sci. 2018, 101, 6675–6690. [Google Scholar] [CrossRef] [PubMed]
- Thumba, D.A.; Lazarova-Molnar, S.; Niloofar, P. Data-driven decision support tools for reducing ghg emissions from livestock production systems: Overview and challenges. In Proceedings of the 2020 7th International Conference on Internet of Things: Systems, Management and Security (IOTSMS), Paris, France, 14–16 December 2020; pp. 1–8. [Google Scholar] [CrossRef]
- Ahmed, M.; Ahmad, S.; Waldrip, H.M.; Ramin, M.; Raza, M.A. Whole farm modeling: A systems approach to understanding and managing livestock for greenhouse gas mitigation, economic viability and environmental quality. Anim. Manure Prod. Charact. Environ. Concerns Manag. 2020, 67, 345–371. [Google Scholar] [CrossRef]
- Global Livestock Environmental Assessment Model (GLEAM). Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/gleam/en/ (accessed on 28 December 2023).
- Niloofar, P.; Lazarova-Molnar, S.; Francis, D.P.; Vulpe, A.; Suciu, G.; Balanescu, M. Modeling and simulation for decision support in precision livestock farming. In Proceedings of the 2020 Winter Simulation Conference (WSC), Orlando, FL, USA, 14–18 December 2020; pp. 2601–2612. [Google Scholar] [CrossRef]
- Johnson, I.R.; Chapman, D.F.; Parsons, A.J.; Eckard, R.; Fulkerson, W.J. DairyMod: A biophysical simulation model of the Australian dairy system. In Proceedings of the Australian Farming Systems Conference, Toowoomba, QLD, Australia, 7–10 September 2003. [Google Scholar]
- Chardon, X.; Rigolot, C.; Baratte, C.; Espagnol, S.; Raison, C.; Martin-Clouaire, R.; Rellier, J.P.; Le Gall, A.; Dourmad, J.Y.; Piquemal, B.; et al. MELODIE: A whole-farm model to study the dynamics of nutrients in dairy and pig farms with crops. Animal 2012, 6, 1711–1721. [Google Scholar] [CrossRef]
- Del Prado, A.; Scholefield, D. Use of SIMSDAIRY modelling framework system to compare the scope on the sustainability of a dairy farm of animal and plant genetic-based improvements with management-based changes. J. Agric. Sci. 2008, 146, 195–211. [Google Scholar] [CrossRef]
- FASSET. Available online: https://www.fasset.dk/ (accessed on 21 January 2024).
- USDA ARS Home Page. Integrated Farm System Model. Available online: https://www.ars.usda.gov/northeast-area/up-pa/pswmru/docs/integrated-farm-system-model/ (accessed on 5 January 2024).
- USDA ARS Home Page. Dairy Gas Emissions Model: USDA ARS. Available online: https://www.ars.usda.gov/northeast-area/up-pa/pswmru/docs/dairy-gas-emissions-model/ (accessed on 7 January 2024).
- Schils, R.L.; Olesen, J.E.; del Prado, A.; Soussana, J.F. A review of farm-level modelling approaches for mitigating greenhouse gas emissions from ruminant livestock systems. Livest. Sci. 2007, 112, 240–251. [Google Scholar] [CrossRef]
- FARMAC. Available online: http://www.farmac.dk/ (accessed on 21 January 2024).
- Evaluation of the Agricultural Greenhouse Gases Program-Agriculture.canada.ca. Available online: https://agriculture.canada.ca/en/department/transparency/evaluation-agricultural-greenhouse-gases-program (accessed on 7 January 2024).
- Poore, J.; Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed]
- McCrabb, G.J.; Hunter, R.A. Prediction of methane emissions from beef cattle in tropical production systems. Aust. J. Agric. Res. 1999, 50, 1335–1340. [Google Scholar] [CrossRef]
- Gaillac, R.; Marbach, S. The carbon footprint of meat and dairy proteins: A practical perspective to guide low carbon footprint dietary choices. J. Clean. Prod. 2021, 321, 128766. [Google Scholar] [CrossRef]
- Boadi, D.; Benchaar, C.; Chiquette, J.; Massé, D. Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Can. J. Anim. Sci. 2004, 84, 319–335. [Google Scholar] [CrossRef]
- Hristov, A.N.; Oh, J.; Firkins, J.L.; Dijkstra, J.; Kebreab, E.; Waghorn, G.; Makkar, H.P.S.; Adesogan, A.T.; Yang, W.; Lee, C.; et al. Special topics—Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. J. Anim. Sci. 2013, 91, 5045–5069. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Downing, M.M.; Nejadhashemi, A.P.; Harrigan, T.; Woznicki, S.A. Climate change and livestock: Impacts, adaptation, and mitigation. Clim. Risk Manag. 2017, 16, 145–163. [Google Scholar] [CrossRef]
- Soliva, C.R.; Hess, H.D.; Johnson, K.A.; Westberg, H.H.; Michal, J.J.; Cossalman, M.W. Measuring Methane Emission of Ruminants by In Vitro and In Vivo Techniques. In Measuring Methane Production from Ruminants; Makkar, H.P., Vercoe, P.E., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2007; pp. 15–67. ISBN 978-1-4020-6132-5. [Google Scholar]
- Llonch, P.; Haskell, M.J.; Dewhurst, R.J.; Turner, S.P. Current available strategies to mitigate greenhouse gas emissions in livestock systems: An animal welfare perspective. Animal 2017, 11, 274–284. [Google Scholar] [CrossRef]
- Bodas, R.; Prieto, N.; García-González, R.; Andrés, S.; Giráldez, F.J.; López, S. Manipulation of rumen fermentation and methane production with plant secondary metabolites. Anim. Feed Sci. Technol. 2012, 176, 78–93. [Google Scholar] [CrossRef]
- Knight, T.; Ronimus, R.S.; Dey, D.; Tootill, C.; Naylor, G.; Evans, P.; Molano, G.; Smith, A.; Tavendale, M.; Pinares-Patino, C.S.; et al. Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Anim. Feed Sci. Technol. 2011, 166, 101–112. [Google Scholar] [CrossRef]
- Patra, A.K. Estimation of methane and nitrous oxide emissions from Indian livestock. J. Environ. Monitor. 2012, 14, 2673–2684. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Fernandez, G.; Arco, A.; Abecia, L.; Cantalapiedra-Hijar, G.; Molina-Alcaide, E.; Martin-Garcia, A.I.; Kindermann, M.; Duval, S.; Yanez-Ruiz, D.R. The addition of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol in the diet of sheep substantially reduces methane emissions and the effect persists over a month. Adv. Anim. Biosci. 2013, 4, 368. [Google Scholar]
- Haisan, J.; Sun, Y.; Guan, L.L.; Beauchemin, K.A.; Iwaasa, A.; Duval, S.; Barreda, D.R.; Oba, M. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. J. Dairy Sci. 2014, 97, 3110–3119. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.K.; Humphries, D.J.; Kirton, P.; Kindermann, M.; Duval, S.; Steinberg, W. Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. J. Dairy Sci. 2014, 97, 3777–3789. [Google Scholar] [CrossRef] [PubMed]
- McAllister, T.A.; Newbold, C.J. Redirecting rumen fermentation to reduce methanogenesis. Aust. J. Exp. Agric. 2008, 48, 7–13. [Google Scholar] [CrossRef]
- Nolan, J.V.; Godwin, I.R.; de Raphélis-Soissan, V.; Hegarty, R.S. Managing the rumen to limit the incidence and severity of nitrite poisoning in nitrate-supplemented ruminants. Anim. Prod. Sci. 2016, 56, 1317–1329. [Google Scholar] [CrossRef]
- Guan, H.; Wittenberg, K.M.; Ominski, K.H.; Krause, D.O. Efficacy of ionophores in cattle diets for mitigation of enteric methane. J. Anim. Sci. 2006, 84, 1896–1906. [Google Scholar] [CrossRef] [PubMed]
- Appuhamy, J.R.N.; Strathe, A.B.; Jayasundara, S.; Wagner-Riddle, C.; Dijkstra, J.; France, J.; Kebreab, E. Anti-methanogenic effects of monensin in dairy and beef cattle: A meta-analysis. J. Dairy Sci. 2013, 96, 5161–5173. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Morgavi, D.P.; Doreau, M. Methane mitigation in ruminants: From microbe to the farm scale. Animal 2010, 4, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Hess, B.W.; Moss, G.E.; Rule, D.C. A decade of developments in the area of fat supplementation research with beef cattle and sheep. J. Anim. Sci. 2008, 86 (Suppl. S14), E188–E204. [Google Scholar] [CrossRef] [PubMed]
- Grainger, C.; Beauchemin, K.A. Can enteric methane emissions from ruminants be lowered without lowering their production? Anim. Feed Sci. Technol. 2011, 166, 308–320. [Google Scholar] [CrossRef]
- .Samad, H.A.; Konyak, Y.Y.; Latheef, S.K.; Kumar, A.; Khan, I.A.; Verma, V.; Chouhan, V.S.; Verma, M.R.; Maurya, V.P.; Kumar, P.; et al. Alpha Lipoic Acid Supplementation Ameliorates the Wrath of Simulated Tropical Heat and Humidity Stress in Male Murrah Buffaloes. Int. J. Biometeorol. 2019, 63, 1331–1346. [Google Scholar] [CrossRef] [PubMed]
- Troy, S.M.; Duthie, C.A.; Hyslop, J.J.; Roehe, R.; Ross, D.W.; Wallace, R.J.; Waterhouse, A.; Rooke, J.A. Effectiveness of nitrate addition and increased oil content as methane mitigation strategies for beef cattle fed two contrasting basal diets. J. Anim. Sci. 2015, 93, 1815–1823. [Google Scholar] [CrossRef]
- Rumin8. Available online: https://rumin8.com/the-science/ (accessed on 18 December 2023).
- Bovaer®. Available online: https://www.dsm.com/anh/products-and-services/products/methane-inhibitors/bovaer.html# (accessed on 8 January 2024).
- Malik, P.K.; Kolte, A.P.; Bakshi, B.; Baruah, L.; Dhali, A.; Bhatta, R. Effect of tamarind seed husk supplementation on ruminal methanogenesis, methanogen diversity and fermentation characteristics. Carbon Manag. 2017, 8, 319–329. [Google Scholar] [CrossRef]
- Poornachandra, K.T.; Malik, P.K.; Dhali, A.; Kolte, A.P.; Bhatta, R. Effect of combined supplementation of tamarind seed husk and soapnut on enteric methane emission in crossbred cattle. Carbon Manag. 2019, 10, 465–475. [Google Scholar] [CrossRef]
- Kataria, R.P. Use of feed additives for reducing greenhouse gas emissions from dairy farms. Microbiol. Res. 2015, 6, 6120. [Google Scholar] [CrossRef]
- Agrinnovate, Available Technology Page. Available online: http://www.agrinnovateindia.co.in/technologies (accessed on 18 December 2023).
- Vijayalakshmy, K.; Biswal, J.; Rahman, H. Amelioration of methane production from livestock production systems through effective management strategies. J. Entomol. Zool. Stud. 2020, 8, 148–152. [Google Scholar]
- Moumen, A.; Azizi, G.; Chekroun, K.B.; Baghour, M. The effects of livestock methane emission on the global warming: A review. Int. J. Glob. Warm. 2016, 9, 229–253. [Google Scholar] [CrossRef]
- Severo, I.A.; dos Santos, A.M.; Deprá, M.C.; Barin, J.S.; Jacob-Lopes, E. Microalgae photobioreactors integrated into combustion processes: A patent-based analysis to map technological trends. Algal Res. 2021, 60, 102529. [Google Scholar] [CrossRef]
- Brennan, L.; Owende, P. Biofuels from microalgae—A review of technologies for production, processing, and extractions of biofuels and co-products. Renew. Sustain. Energy Rev. 2010, 14, 557–577. [Google Scholar] [CrossRef]
- Chia, S.R.; Chew, K.W.; Show, P.L.; Yap, Y.J.; Ong, H.C.; Ling, T.C.; Chang, J.S. Analysis of economic and environmental aspects of microalgae biorefinery for biofuels production: A review. Biotechnol. J. 2018, 13, 1700618. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Bermudez, S.P.; Garcia-Perez, J.S.; Rittmann, B.E.; Parra-Saldivar, R. Photosynthetic bioenergy utilizing CO2: An approach on flue gases utilization for third generation biofuels. J. Clean. Prod. 2015, 98, 53–65. [Google Scholar] [CrossRef]
- Chiu, S.Y.; Kao, C.Y.; Huang, T.T.; Lin, C.J.; Ong, S.C.; Chen, C.D.; Chang, J.S.; Lin, C.S. Microalgal biomass production and on-site bioremediation of carbon dioxide, nitrogen oxide and sulfur dioxide from flue gas using Chlorella sp. cultures. Bioresour. Technol. 2011, 102, 9135–9142. [Google Scholar] [CrossRef] [PubMed]
- Soussana, J.F.; Tallec, T.; Blanfort, V. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands. Animal 2010, 4, 334–350. [Google Scholar] [CrossRef]
- Ghosh, P.K.; Mahanta, S.K. Carbon sequestration in grassland systems. Range Manag. Agrofor. 2014, 35, 173–181. [Google Scholar]
- Kleen, J.L.; Guatteo, R. Precision Livestock Farming: What Does It Contain and What Are the Perspectives? Animals 2023, 13, 779. [Google Scholar] [CrossRef]
- Thumba, D.A.; Lazarova-Molnar, S.; Niloofar, P. September. Estimating livestock greenhouse gas emissions: Existing models, emerging technologies and associated challenges. In Proceedings of the 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Bol and Split, Croatia, 8–11 September 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Padarian, J.; McBratney, A.B.; Minasny, B. Game theory interpretation of digital soil mapping convolutional neural networks. Soil Discuss. 2020, 6, 389–397. [Google Scholar] [CrossRef]
- Pyo, J.; Duan, H.; Baek, S.; Kim, M.S.; Jeon, T.; Kwon, Y.S.; Cho, K.H. A convolutional neural network regression for quantifying cyanobacteria using hyperspectral imagery. Remote Sens. Environ. 2019, 233, 111350. [Google Scholar] [CrossRef]
- Yim, W.W.Y.; Mizushima, N. Lysosome biology in autophagy. Cell Discov. 2020, 6, 6. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 57, 510–525. [Google Scholar] [CrossRef]
- Sagan, V.; Peterson, K.T.; Maimaitijiang, M.; Sidike, P.; Sloan, J.; Greeling, B.A.; Maalouf, S.; Adams, C. Monitoring inland water quality using remote sensing: Potential and limitations of spectral indices, bio-optical simulations, machine learning, and cloud computing. Earth Sci. Rev. 2020, 205, 103187. [Google Scholar] [CrossRef]
- Hill, P.R.; Kumar, A.; Temimi, M.; Bull, D.R. HABNet: Machine learning, remote sensing-based detection of harmful algal blooms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 3229–3239. [Google Scholar] [CrossRef]
- Mehla, M.K.; Kothari, M.; Singh, P.K.; Bhakar, S.R.; Yadav, K.K. Water Footprint Assessment and Its Importance in Indian Context: A Meta-Review. Water Supply 2023, 23, 3113–3127. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems 2012, 15, 401–415. [Google Scholar] [CrossRef]
- Jiao, F.; Nie, L.; Shao, J.; Wang, Y.; Du, Y.; Guo, X.; Feng, H.; Liu, Z. Water Footprint Analysis of Sheep and Goat from Various Production Systems in Northern China. Sustainability 2023, 15, 10504. [Google Scholar] [CrossRef]
- Sharma, H.; Singh, P.K.; Kaur, I.; Singh, R. Water Footprints of Dairy Milk Processing Industry: A Case Study of Punjab (India). Water 2024, 16, 435. [Google Scholar] [CrossRef]
- USEPA. Technical Support Document for Manure Management Systems: Proposed Rule for Mandatory Reporting of Greenhouse Gases. Available online: https://www.epa.gov/sites/default/files/2015-07/documents/tsd_manure_020409.pdf (accessed on 19 December 2023).
- Slade, E.M.; Riutta, T.; Roslin, T.; Tuomisto, H.L. The role of dung beetles in reducing greenhouse gas emissions from cattle farming. Sci. Rep. 2016, 6, 18140. [Google Scholar] [CrossRef]
- Kaartinen, R.; Hardwick, B.; Roslin, T. Using citizen scientists to measure an ecosystem service nationwide. Ecology 2013, 94, 2645–2652. [Google Scholar] [CrossRef] [PubMed]
- Penttilä, A.; Slade, E.M.; Simojoki, A.; Riutta, T.; Minkkinen, K.; Roslin, T. Quantifying beetle-mediated effects on gas fluxes from dung pats. PLoS ONE 2013, 8, 71454. [Google Scholar] [CrossRef]
- Montes, F.; Meinen, R.; Dell, C.; Rotz, A.; Hristov, A.N.; Oh, J.; Waghorn, G.; Gerber, P.J.; Henderson, B.; Makkar, H.P.S.; et al. Mitigation of Methane and Nitrous Oxide Emissions from Animal Operations: II. A Review of Manure Management Mitigation Options. J. Anim. Sci. 2013, 91, 5070–5094. [Google Scholar] [CrossRef]
- India GHG Program. Promoting Profitable, Sustainable and Competitive Business. Available online: https://indiaghgp.org/ (accessed on 27 December 2023).
- National Livestock Mission, Department of Animal Husbandry & Dairying. Available online: https://www.dahd.gov.in/sites/default/files/2023-11/NLMGuidelinesFinalApprovedByEC.pdf (accessed on 4 January 2024).
- Kaur, A.; Bhola, M.S. Indian Economy and Ecology. Ecology 2023, 14, 48–56. [Google Scholar] [CrossRef]
- Rakesh Kumar Tiwari. Union Budget-2023: A Forwarding Step towards Sustainable Future of India. J. Econ. Perspect. 2023, 17, 139–149. Available online: https://ijeponline.com/index.php/journal/article/view/474 (accessed on 17 January 2024).
- CSIR-CSMCRI, Applied Phycology and Biotechnology Division Achievements Page. Available online: https://www.csmcri.res.in/research-and-development/Applied-Phycology-and-Biotechnology-Division (accessed on 27 January 2024).
- Down to Earth. COP26: How India is Paving the Way Towards Climate Action. Available online: https://www.downtoearth.org.in/blog/climate-change/cop26-how-india-is-paving-the-way-towards-climate-action-80072 (accessed on 7 January 2024).
- COP26: India PM Narendra Modi Pledges Net Zero by 2070. BBC News. Available online: https://www.bbc.com (accessed on 7 January 2024).
- Fadda, G. CO2 Emissions and Underground Storage Analysis: Towards Achieving Net-Zero Targets by 2030 and 2050. Ph.D. Thesis, Politecnico di Torino, Torino, Italy, 2023. Available online: https://webthesis.biblio.polito.it/secure/29166/1/tesi.pdf (accessed on 25 December 2023).
- Jose, B.; Samad, H.A.; Bharati, J.; Tejaswi, V.; Konda, P.; Sharun, K.; Tripathi, M.K.; Kumar, S.; Punetha, M.; Mohan, D.; et al. Evaluation of Thermo-Adaptability Between Tharparkar (Bos indicus) and Crossbred (Bos indicus × Bos taurus) Calves in a Controlled Environment. J. Therm. Biol. 2022, 110, 103381. [Google Scholar] [CrossRef]
- International Livestock Research Institute Home page. Available online: https://www.ilri.org/where-we-work/south-asia/india (accessed on 23 December 2023).
- Methane at COP28. Global Methane Pledge. Available online: https://www.globalmethanepledge.org/events/methane-cop28 (accessed on 15 December 2023).
- United Nations Framework Convention on Climate Change, Annual Report 2022. Available online: https://unfccc.int/annualreport (accessed on 10 January 2024).
- Zelp. Livestock & Climate. Available online: https://www.zelp.co/livestock-climate/ (accessed on 14 January 2024).
- Stackhouse, K.R.; Rotz, C.A.; Oltjen, J.W.; Mitloehner, F.M. Growth-promoting technologies decrease the carbon footprint, ammonia emissions, and costs of California beef production systems. J. Anim. Sci. 2012, 90, 4656–4665. [Google Scholar] [CrossRef]
- Neethirajan, S.R. Digital Livestock Farming 2030 and Beyond (No. 11249). EasyChair 2023. Available online: https://www.researchgate.net/publication/376798983_Digital_Livestock_Farming_2030_and_Beyond (accessed on 18 January 2024).
- Garcia, E.; Ramos Filho, F.S.V.; Mallmann, G.M.; Fonseca, F. Costs, Benefits and Challenges of Sustainable Livestock Intensification in a Major Deforestation Frontier in the Brazilian Amazon. Sustainability 2017, 9, 158. [Google Scholar] [CrossRef]
- Ministry of Environment, Forest and Climate Change, Government of India. Guidelines for Implementing Wetlands (Conservation and Management) Rules. 2017. Available online: https://moef.gov.in/uploads/2020/01/final-version-and-printed-wetland-guidelines-rules-2017-03.01.20.pdf (accessed on 10 December 2023).
- Moret-Bailly, S.; Muro, M. The Costs and Benefits of Transitioning to Sustainable Agriculture in the EU. Institute of European Environmental Policy. 2024. Available online: https://ieep.eu/wp-content/uploads/2024/07/The-costs-and-benefits-of-transitioning-to-sustainable-agriculture-IEEP-2024.pdf (accessed on 19 February 2025).
Model | Description | Reference | Developed in |
---|---|---|---|
DairyMod | Simulating the biophysical processes of pasture-based dairy systems to predict the dynamics of greenhouse gas emissions, encompassing both primary and secondary emissions, while also assessing the soil carbon balance. | [93] | IMJ Consultants, Dairy Australia, University of Melbourne, Australia. |
MELODIE | Conducting a dynamic simulation of the movement of carbon, nitrogen, phosphorus, copper, zinc, and water within components such as animals, pastures, crops, and manure. | [94] | French National Institute for Agricultural Research, INRA, France |
SIMS (dairy) | Simulating the impact of management practices, climate conditions, and soil properties on the losses of nitrogen, phosphorus, and carbon, as well as evaluating effects on profitability, biodiversity, soil quality, and animal welfare. | [95] | BC3-Basque Centre for Climate Change, Spain |
FASSET | Utilizing process simulation to assess the impacts of alterations in regulations, management strategies, pricing, and subsidies on farm output, profitability, nitrogen runoff, energy usage, and GHG emissions. | [96] | Aarhus University, Denmark |
IFSM | Conducting process simulation for all crucial farm components, depicting their performance, economic aspects, and environmental impacts, encompassing both direct and indirect GHGEs and the carbon footprint. | [97] | USDA-Agricultural Research Service, University Park, PA, USA |
DairyGEM | A tool for estimating GHGs, ammonia (NH3), and other gaseous emissions, as well as the carbon footprint, through the utilization of emission factors and process simulation in dairy production systems. | [98] | USDA-Agricultural Research Service, University Park, PA, USA |
DairyWise | An empirical model designed to simulate the technical, environmental, and financial processes in a dairy farm, encompassing nitrogen and phosphorus cycling and losses, GHG emissions, and energy consumption. | [99] | Wageningen UR, the Netherlands |
FarmAC | Emission factors related to processes depict the carbon and nitrogen flow in both arable and livestock farms, quantifying GHGEs, soil carbon sequestration, and nitrogen losses to the environment. | [100] | Aarhus University, Denmark |
Holos | Emission factors based on processes estimate all significant direct and indirect sources of GHGEs from livestock operations. | [101] | Agriculture and Agri-Food Canada |
Types | Compounds | Advantages | Limitations |
---|---|---|---|
Chemical inhibitors | Halomethanes (bromochloromethane, chloroform) | CH4 emission reduction by up to 50% [111]; improved energy efficiency | Hepatotoxic, nephrotoxic, and carcinogenic |
3-nitrooxypropanol | CH4 emission reduction by up to 60% [115] | ||
Electron acceptors | Nitrate | CH4 emission reduction by up to 50% [124] | Methemoglobinemia and carcinogenic; ammonia pollution |
Ionophores | Monensin | CH4 emission reduction by up to 9% [119]; increased feed efficiency | Antibiotic resistance |
Lipids | Medium-chain fatty acids | CH4 emission reduction by up to 5.4% [120] | Impaired gastrointestinal function |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samad, H.A.; Kumar Eshwaran, V.; Muquit, S.P.; Sharma, L.; Arumugam, H.; Kant, L.; Fatima, Z.; Sharun, K.; Aradotlu Parameshwarappa, M.; Latheef, S.K.; et al. Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives. Sustainability 2025, 17, 2105. https://doi.org/10.3390/su17052105
Samad HA, Kumar Eshwaran V, Muquit SP, Sharma L, Arumugam H, Kant L, Fatima Z, Sharun K, Aradotlu Parameshwarappa M, Latheef SK, et al. Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives. Sustainability. 2025; 17(5):2105. https://doi.org/10.3390/su17052105
Chicago/Turabian StyleSamad, Hari Abdul, Vineeth Kumar Eshwaran, Suhana Parvin Muquit, Lokesh Sharma, Hemavathi Arumugam, Lata Kant, Zikra Fatima, Khan Sharun, Madhusoodan Aradotlu Parameshwarappa, Shyma Kanirawther Latheef, and et al. 2025. "Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives" Sustainability 17, no. 5: 2105. https://doi.org/10.3390/su17052105
APA StyleSamad, H. A., Kumar Eshwaran, V., Muquit, S. P., Sharma, L., Arumugam, H., Kant, L., Fatima, Z., Sharun, K., Aradotlu Parameshwarappa, M., Latheef, S. K., Chouhan, V. S., Maurya, V. P., Singh, G., & Kaniyamattam, K. (2025). Sustainable Livestock Solutions: Addressing Carbon Footprint Challenges from Indian and Global Perspectives. Sustainability, 17(5), 2105. https://doi.org/10.3390/su17052105