The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation
Abstract
:1. Introduction
2. Theoretical Analysis and Research Hypothesis
2.1. Direct Impact of Relational Networks on Carbon Emissions of Enterprises
2.2. Theoretical Mechanism Behind Relational Networks and Carbon Emissions of Enterprises
2.2.1. Mediating Role of Technological Innovation
2.2.2. Regulating Role of Technological Innovation
3. Data and Methods
3.1. Description of Data
3.2. Variable Definition
3.2.1. Dependent Variable
3.2.2. Independent Variable
3.2.3. Mediating and Regulating Variable
3.2.4. Control Variables
3.3. Model Setting
3.3.1. Primary Model
3.3.2. Mediation Effect Model
3.3.3. Moderated Effect Model
4. Empirical Results
4.1. Baseline Results
4.2. Robustness Estimation and Endogeneity
4.3. Heterogeneity Analysis
4.3.1. Heterogeneity Analysis of Carbon Emission Level
4.3.2. Heterogeneity Analysis of Digitization Level
4.4. Mechanism Analysis
4.4.1. Analysis of Mediating Effect
- (1)
- Stepwise Test Method
- (2)
- Bootstrap Method
4.4.2. Analysis of Regulating Effect
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
Variables | (1) | (2) | (3) |
---|---|---|---|
COP | COP | COP | |
Network1 | −0.450 *** | ||
(−4.07) | |||
Network2 | −0.339 *** | ||
(−6.06) | |||
CRE | −0.029 * | ||
(−1.67) | |||
Controls | Yes | Yes | Yes |
Industry | Yes | Yes | Yes |
City | Yes | Yes | Yes |
Cons | 2.834 *** | 2.647 *** | −2.334 *** |
(12.25) | (11.53) | (−9.28) | |
N | 1226 | 1226 | 1226 |
R2 | 0.152 | 0.165 | 0.103 |
Appendix A.2
Second Stage | (1) | (2) |
---|---|---|
Variable | COI | COI |
Network1 | −2.125 ** | |
(−2.91) | ||
Network2 | −1.215 ** | |
(−2.89) | ||
Controls | Yes | Yes |
Industry | Yes | Yes |
City | Yes | Yes |
N | 1226 | 1226 |
AndersonCanon. LM (p value) | 37.638 [0.000] | 30.113 [0.000] |
Cragg–Donald Wald F | 38.577 | 30.669 |
Stock–Yogo weak ID test critical values: 10% maximal IV | 16.38 | 16.38 |
First stage | Network1 | Network2 |
Network1-Instrumental variable | 0.704 *** | |
(6.21) | ||
Network2-Instrumental variable | 1.231 *** | |
(5.54) | ||
F | 38.58 | 30.67 |
(0.000) | (0.000) |
References
- China Emission Accounts and Datasets. 2023. Available online: https://www.ceads.net (accessed on 13 January 2025).
- Wang, Z.; Fu, H.; Ren, X. Political Connections and Corporate Carbon Emission: New Evidence from Chinese Industrial Firms. Technol. Forecast. Soc. Change 2023, 188, 122326. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhao, R.; Qin, G. How Does Digital Finance Reduce Carbon Emissions Intensity? Evidence from Chain Mediation Effect of Production Technology Innovation and Green Technology Innovation. Heliyon 2024, 10, e30155. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Ren, X. Is the Spatial Impact of Digital Financial Inclusion on CO2 Emissions Real? A Spatial Fluctuation Spillover Perspective. Geosci. Front. 2024, 4, 101656. [Google Scholar] [CrossRef]
- Kang, X.; Chen, L.; Wang, Y.; Liu, W. Analysis on the Spatial Correlation Network and Driving Factors of Carbon Emissions in China’s Logistics Industry. J. Environ. Manag. 2024, 366, 121916. [Google Scholar] [CrossRef]
- Brust, D.; Liston-Heyes, C. Environmental Management Intentions: An Empirical Investigation of Argentina’s Polluting Firms. J. Environ. Manag. 2010, 91, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Lee, S. Corporate Carbon Strategies in Responding to Climate Change. Bus. Strateg. Environ. 2012, 21, 33–48. [Google Scholar] [CrossRef]
- Córdova, C.; Zorio-Grima, A.; Merello, P. Carbon Emissions by South American Companies: Driving Factors for Reporting Decisions and Emissions Reduction. Sustainability 2018, 10, 2411. [Google Scholar] [CrossRef]
- Xia, M.; Cai, H. The Driving Factors of Corporate Carbon Emissions: An Application of the LASSO Model with Survey Data. Environ. Sci. Pollut. Res. 2023, 30, 56484–56512. [Google Scholar] [CrossRef]
- Chang, L.; Fang, S. Climate Actions and Corporate Carbon Emissions along the Supply Chain. Econ. Lett. 2024, 235, 111503. [Google Scholar] [CrossRef]
- Berman, E.; Bui, L. Environmental Regulation and Productivity: Evidence from Oil Refineries. Rev. Econ. Stat. 2001, 83, 498–510. [Google Scholar] [CrossRef]
- Dai, R.; Duan, R.; Liang, H.; Ng, L. Outsourcing Climate Change. Finance Working Paper No. 723/2021; European Corporate Governance Institute: Brussels, Belgium, 2021. [Google Scholar]
- Bartram, S.M.; Hou, K.; Kim, S. Real Effects of Climate Policy: Financial Constraints and Spillovers. J. Financ. Econ. 2022, 142, 668–696. [Google Scholar] [CrossRef]
- Li, K.; Zhang, P.; Lian, Y.; Zhou, C.; Xiang, Y. Can Institutional Pressures Serve as an Efficacious Catalyst for Mitigating Corporate Carbon Emissions? Environ. Sci. Pollut. Res. 2024, 31, 21380–21398. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Shi, M.; Liu, J.; Tan, Z. Public Environmental Concern, Government Environmental Regulation and Urban Carbon Emission Reduction-Analyzing the Regulating Role of Green Finance and Industrial Agglomeration. Sci. Total Environ. 2024, 924, 171549. [Google Scholar] [CrossRef] [PubMed]
- Lin, X.; Zhu, X.; Feng, M.; Han, Y.; Geng, Z. Economy and Carbon Emissions Optimization of Different Countries or Areas in the World Using an Improved Attention Mechanism Based Long Short Term Memory Neural Network. Sci. Total Environ. 2021, 792, 148444. [Google Scholar] [CrossRef] [PubMed]
- Wu, F.; He, J.; Cai, L.; Du, M.; Huang, M. Accurate Multi-Objective Prediction of CO2 Emission Performance Indexes and Industrial Structure Optimization Using Multihead Attention-Based Convolutional Neural Network. J. Environ. Manag. 2023, 337, 117759. [Google Scholar] [CrossRef] [PubMed]
- Granovetter, M. Coase Revisited: Business Groups in the Modern Economy. Ind. Corp. Change 1995, 4, 93–130. [Google Scholar] [CrossRef]
- Radcliffe-Brown, A. On Social Structure. J. R. Anthropol. Inst. Great Br. Irel. 1940, 70, 1–12. [Google Scholar] [CrossRef]
- Woolcock, M. Microenterprise and Social Capital. J. Socio-Econ. 2001, 30, 193–198. [Google Scholar] [CrossRef]
- Jørgensen, F.; Ulhøi, J. Enhancing Innovation Capacity in SMEs through Early Network Relationships. Creat. Innov. Manag. 2010, 19, 397–404. [Google Scholar] [CrossRef]
- Li, T.; Zahari, A.I.; Sanusi, S. The Sustainability of Technological Innovation in China: From the Perspective of Network Relationships. Sustainability 2023, 15, 4242. [Google Scholar] [CrossRef]
- Alfani, A.; Vera, D. Determinants of Carbon Emission Disclosure. J. Econ. Bus. Accoutancy 2020, 22, 333–346. [Google Scholar] [CrossRef]
- Kern, P.; Schnyder, G. Corporate Networks in Post-War Britain: Do Finance–Industry Relationships Matter for Corporate Borrowing? Bus. Hist. 2021, 63, 966–987. [Google Scholar] [CrossRef]
- Niu, R.; Chen, L.; Jin, L.; Xie, G.; Zhao, L. Does Managerial Bank Relationship Network Matter Corporate Resilience? Evidence from the COVID-19 Crisis. Int. Rev. Econ. Financ. 2024, 89, 855–877. [Google Scholar] [CrossRef]
- Larcker, D.; So, E.; Wang, C. Boardroom Centrality and Firm Performance. J. Account. Econ. 2013, 55, 225–250. [Google Scholar] [CrossRef]
- Hossain, A.; Saadi, S.; Amin, A.S. Does CEO Risk-Aversion Affect Carbon Emission? J. Bus. Ethics 2023, 182, 1171–1198. [Google Scholar] [CrossRef]
- Li, P.; Lin, Z.; Peng, B.; Du, H. Do CEOs’ Social Networks Affect Carbon Emissions in China? The Moderating Role of CEO Reputation. Int. Rev. Econ. Financ. 2023, 88, 1122–1137. [Google Scholar] [CrossRef]
- Li, J.; Li, S.; Zhang, Y.; Tang, X. Network Evolutionary Game Analysis of Green Credit: A Perspective of Carbon Emissions Trading. Manag. Decis. Econ. 2024, 45, 1343–1362. [Google Scholar] [CrossRef]
- Chen, T.; Gozgor, G.; Koo, C.K.; Lau, C.K.M. Does International Cooperation Affect CO2 Emissions? Evidence from OECD Countries. Environ. Sci. Pollut. Res. 2020, 27, 8548–8556. [Google Scholar] [CrossRef]
- Zeng, S.; Xie, X.; Tam, C.M. Relationship between Cooperation Networks and Innovation Performance of SMEs. Technovation 2010, 30, 181–194. [Google Scholar] [CrossRef]
- Chen, S.; Yang, W. How Does Public Concern about Climate Change Affect Carbon Emissions? Evidence from Large-Scale Online Content and Provincial-Level Data in China. J. Clean. Prod. 2023, 426, 139137. [Google Scholar] [CrossRef]
- Jin, J.; Wang, F. Impact of Government Support on Firm Carbon Emission Efficiency: The Transmission Channel of Green Innovation. Financ. Res. Lett. 2024, 68, 105980. [Google Scholar] [CrossRef]
- Liu, L.; Cui, K. How Does Market-Incentive Environmental Regulation Affect Enterprises Green Growth? The Mediating Role of R&D Investment and Innovation Output. Heliyon 2024, 10, e30847. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.; Zhang, J.; Tang, C. Political Connection and Water Pollution: New Evidence from Chinese Listed Firms. Resour. Energy Econ. 2023, 74, 101390. [Google Scholar] [CrossRef]
- Holtkamp, C.; Weaver, R. Quantifying the Relationship between Social Capital and Economic Conditions in Appalachia. Appl. Geogr. 2018, 90, 175–186. [Google Scholar] [CrossRef]
- Zhao, Y.; Lee, C. The Impact of Vertical Environmental Regulation Mechanism on Greenwashing. J. Clean. Prod. 2024, 475, 143637. [Google Scholar] [CrossRef]
- Hu, C.; Wei, Y.; Hu, W. Research on the Relationship between Agricultural Policy, Technological Innovation and Agricultural Carbon Emissions. Issues. Agric. Econ. 2018, 9, 66–75. [Google Scholar] [CrossRef]
- Chen, X.; Chen, X. Media Pressure, Financing Constraints, and Industrial Enterprises’ Carbon Emissions—Based on Regulating Effect of Green Invention Patent. Sci. Technol. Prog. Policy 2021, 38, 69–78. [Google Scholar] [CrossRef]
- Richter, P.; Schiersch, A. CO2 Emission Intensity and Exporting: Evidence from Firm-Level Data. Eur. Econ. Rev. 2017, 98, 373–391. [Google Scholar] [CrossRef]
- Peng, M.; Luo, Y. Managerial Ties and Firm Performance in a Transition Economy: The Nature of a Micro-Macro Link. Acad. Manag. J. 2000, 43, 486–501. [Google Scholar] [CrossRef]
- Kang, M.; Yang, S. Impact of Social Capital on Corporate Performance and Contextual Performance of Social Enterprises. Korean J. Bus. Adm. 2016, 29, 151–167. [Google Scholar] [CrossRef]
- Wassmer, U.; Li, S.; Madhok, A. Resource Ambidexterity through Alliance Portfolios and Firm Performance. Strateg. Manag. J. 2017, 38, 384–394. [Google Scholar] [CrossRef]
- Cao, G.; Geng, W.; Zhang, J.; Li, Q. Social Network, Financial Constraint, and Corporate Innovation. Eurasian Bus. Rev. 2023, 13, 667–692. [Google Scholar] [CrossRef]
- Cole, M.; Elliott, R.; Okubo, T.; Zhou, Y. The Carbon Dioxide Emissions of Firms: A Spatial Analysis. J. Environ. Econ. Manag. 2013, 65, 290–309. [Google Scholar] [CrossRef]
- Khwaja, A.; Mian, A. Do Lenders Favor Politically Connected Firms? Rent Provision in an Emerging Financial Market. Q. J. Econ. 2005, 120, 1371–1411. [Google Scholar] [CrossRef]
- Faccio, M. Politically Connected Firms. Am. Econ. Rev. 2006, 96, 369–386. [Google Scholar] [CrossRef]
- Wang, H.; He, Y.; Ding, Q. The Impact of Network Externalities and Altruistic Preferences on Carbon Emission Reduction of Low Carbon Supply Chain. Environ. Sci. Pollut. Res. 2022, 29, 66259–66276. [Google Scholar] [CrossRef] [PubMed]
- Zou, H.; Zeng, S.; Lin, H.; Xie, X. Top Executives’ Compensation, Industrial Competition, and Corporate Environmental Performance: Evidence from China. Manag. Decis. 2015, 53, 2036–2059. [Google Scholar] [CrossRef]
- Zhao, L.; Lingqian, K.; Kai, X. The Impact of Public Environmental Preferences and Government Environmental Regulations on Corporate Pollution Emissions. J. Environ. Manag. 2024, 351, 119766. [Google Scholar] [CrossRef]
- Phelps, C. A Longitudinal Study of the Influence of Alliance Network Structure and Composition on Firm Exploratory Innovation. Acad. Manag. J. 2010, 53, 890–913. [Google Scholar] [CrossRef]
- Inigo, E.; Ritala, P.; Albareda, L. Networking for Sustainability: Alliance Capabilities and Sustainability-Oriented Innovation. Ind. Mark. Manag. 2020, 89, 550–565. [Google Scholar] [CrossRef]
- Romero, D.; Molina, A. Collaborative Networked Organisations and Customer Communities: Value Co-Creation and Co-Innovation in the Networking Era. Prod. Plan. Control 2011, 22, 447–472. [Google Scholar] [CrossRef]
- Čirjevskis, A. What Dynamic Managerial Capabilities Are Needed for Greater Strategic Alliance Performance? J. Open Innov. Technol. Mark. Complex. 2019, 5, 36. [Google Scholar] [CrossRef]
- Ahmed, Z.; Cary, M.; Ali, S.; Murshed, M.; Ullah, H.; Mahmood, H. Moving toward a Green Revolution in Japan: Symmetric and Asymmetric Relationships among Clean Energy Technology Development Investments, Economic Growth, and CO2 Emissions. Energy Environ. 2022, 33, 1417–1440. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. 2021. Available online: https://www.ipcc.ch/about/vacancies/ (accessed on 13 January 2025).
- Xu, J.; Guan, Y.; Oldfield, J.; Guan, D.; Shan, Y. China Carbon Emission Accounts 2020–2021. Appl. Energy 2024, 360, 122837. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, M.; Cai, X.; Mao, Y.; Jiao, L.; Wu, L. Drivers of industrial carbon emissions in the Yangtze River Delta region, China: A combination of decoupling and LMDI models. Energy Sources 2024, 19, 2384551. [Google Scholar] [CrossRef]
- Wang, T.; Li, H. Dynamic Evaluation of Carbon Emission Performance of New Energy Enterprises Based on Orthogonal Projection Method. Discret. Dyn. Nat. Soc. 2022, 2022, 7627095. [Google Scholar] [CrossRef]
- Acs, Z.; Anselin, L.; Varga, A. Patents and Innovation Counts as Measures of Regional Production of New Knowledge. Res. Policy 2002, 31, 1069–1085. [Google Scholar] [CrossRef]
- Xiong, Y.; Yang, B. Dual Network Embeddedness, Institutional Environment and Regional Innovation Capability. Sci. Res. Manag. 2022, 43, 32–42. [Google Scholar] [CrossRef]
- Cheng, Z.; Wang, F.; Keung, C.; Bai, Y. Will Corporate Political Connection Influence the Environmental Information Disclosure Level? Based on the Panel Data of A-Shares from Listed Companies in Shanghai Stock Market. J. Bus. Ethics 2017, 143, 209–221. [Google Scholar] [CrossRef]
- Mastrandrea, R.; Ter Burg, R.; Shan, Y.; Hubacek, K.; Ruzzenenti, F. Assessments of the Environmental Performance of Global Companies Need to Account for Company Size. Commun. Earth Environ. 2024, 5, 42. [Google Scholar] [CrossRef]
- Baron, R.; Kenny, D. The Moderator–Mediator Variable Distinction in Social Psychological Research: Conceptual, Strategic, and Statistical Considerations. J. Pers. Soc. Psychol. 1986, 51, 1173–1182. [Google Scholar] [CrossRef]
- Qu, X.; Luo, H. Impact of China’s OFDI on Carbon Emissions and Its Transmission Mechanism:An Empirical Analysis Based on Multiple Mediation Effect Model. Popul. Resour. Environ. 2021, 31, 1–14. [Google Scholar]
- Zhou, J.; Liu, W. Carbon Reduction Effects of Digital Technology Transformation: Evidence from the Listed Manufacturing Firms in China. Technol. Forecast. Soc. Change 2024, 198, 122999. [Google Scholar] [CrossRef]
- Fisman, R.; Svensson, J. Are Corruption and Taxation Really Harmful to Growth? Firm Level Evidence. J. Dev. Econ. 2007, 83, 63–75. [Google Scholar] [CrossRef]
- Xie, Y. The Effect and Mechanism of Digital Economy on Regional Carbon Emission Intensity. Contemp. Econ. Manag. 2022, 44, 68–78. [Google Scholar] [CrossRef]
- Wen, Z.; Ye, B. Analyses of Mediating Effects: The Development of Methods and Models. Adv. Psychol. Sci. 2014, 22, 731–745. [Google Scholar] [CrossRef]
Variable Name | Variable Definition | Description of Variable | Mean | SD | Min. | Max. |
---|---|---|---|---|---|---|
Dependent variable | ||||||
COI | Carbon emission intensity | Carbon emissions per main business income (after taking the logarithm) | −1.674 | 1.842 | −6.549 | 3.015 |
Independent variables | ||||||
Network1 | Relationship network embedding status | 1 = embedded in at least one type of relational network described in this work; 0 = no embedding | 0.663 | 0.473 | 0 | 1 |
Network2 | Relationship network embedding degree | Number of network types in total: 0~5 | 1.065 | 0.974 | 0 | 4 |
Net1 | Government network | 1 = state-owned enterprise; 0 = not state-owned enterprise | 0.053 | 0.224 | 0 | 1 |
Net2 | Market network | 1 = involved in foreign sales market; 0 = not involved in foreign sales market | 0.003 | 0.057 | 0 | 1 |
Net3 | Industry network | 1 = participates in industry associations; 0 = does not participate | 0.269 | 0.444 | 0 | 1 |
Net4 | Public network | 1 = enterprise with brands; 0 = no brands | 0.506 | 0.500 | 0 | 1 |
Net5 | Network reputation | 1 = enterprise with honors; 0 = no honors | 0.234 | 0.424 | 0 | 1 |
Mediating/regulating variable | ||||||
PTN | Technological innovation | Number of authorized patents | 5.489 | 8.008 | 0 | 30 |
Control variables | ||||||
Age | Operating years of enterprise | 1 = 8 years and under, 2 = 9 to 18 years, 3 = longer than 18 years | 1.620 | 0.641 | 1 | 3 |
Lnsqu | Enterprise area | Area actually occupied by the enterprise or rented workshop area (acres) | 4.001 | 1.631 | 0.405 | 9.276 |
Lnsca | Enterprise size | Current number of employees in the enterprise (persons) | 4.796 | 1.271 | 2.079 | 7.980 |
Ind | Location in industry chain | 1 = final goods producer, 0 = intermediate goods producer | 0.472 | 0.499 | 0 | 1 |
DIG | Digital applications | Number of digital software applications, such as OA, ERP, SAAS, CRM, SCM, MES, etc. | 1.518 | 1.604 | 0 | 13 |
Industry | Industry effect | Whether the enterprise belongs to a high-energy-consumption industry: 1 = yes, 0 = no | 0.527 | 0.499 | 0 | 1 |
City | Regional effect | Whether the enterprise is located in the provincial capital city: 1 = yes, 0 = no | 0.112 | 0.315 | 0 | 1 |
Variable | COI | Network1 | Network2 | PTN | Age | Lnsqu | Lnsca | Ind | DIG | Industry | City |
---|---|---|---|---|---|---|---|---|---|---|---|
COI | 1 | ||||||||||
Network1 | −0.067 ** | 1 | |||||||||
Network2 | −0.090 *** | 0.780 *** | 1 | ||||||||
PTN | −0.097 *** | 0.222 *** | 0.340 *** | 1 | |||||||
Age | −0.020 | 0.170 *** | 0.284 *** | 0.130 *** | 1 | ||||||
Lnsqu | 0.203 *** | 0.186 *** | 0.231 *** | 0.220 *** | 0.235 *** | 1 | |||||
Lnsca | 0.133 *** | 0.234 *** | 0.311 *** | 0.350 *** | 0.211 *** | 0.482 *** | 1 | ||||
Ind | −0.170 *** | 0.145 *** | 0.096 *** | 0.068 ** | 0.033 | −0.054 * | 0.042 | 1 | |||
DIG | −0.069 ** | 0.249 *** | 0.342 *** | 0.369 *** | 0.099 *** | 0.254 *** | 0.485 *** | 0.123 *** | 1 | ||
Industry | −0.080 *** | −0.008 | 0.023 | −0.055 * | 0.131 *** | 0.029 | −0.124 *** | 0.013 | −0.068 ** | 1 | |
City | −0.122 *** | 0.045 | 0.053 * | 0.082 *** | 0.093 *** | 0.017 | 0.081 *** | 0.110 *** | 0.158 *** | 0.082 *** | 1 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
COI | COI | COI | COI | COI | COI | |
Network1 | −0.277 ** | −0.283 ** | ||||
(−2.36) | (−2.43) | |||||
Network2 | −0.214 *** | −0.216 *** | ||||
(−3.57) | (−3.62) | |||||
Net1 | −0.091 | 0.033 | ||||
(−0.39) | (0.14) | |||||
Net2 | −1.354 | −1.478 * | ||||
(−1.54) | (−1.69) | |||||
Net3 | −0.107 | −0.123 | ||||
(−0.90) | (−1.05) | |||||
Net4 | −0.286 ** | −0.314 ** | ||||
(−2.25) | (−2.47) | |||||
Net5 | −0.226 ** | −0.208 * | ||||
(−2.08) | (−1.92) | |||||
Age | −0.190 ** | −0.140 | −0.142 | −0.092 | −0.134 | −0.084 |
(−2.23) | (−1.63) | (−1.63) | (−1.06) | (−1.60) | (−1.00) | |
Lnsqu | 0.229 *** | 0.231 *** | 0.231 *** | 0.232 *** | 0.217 *** | 0.216 *** |
(6.19) | (6.26) | (6.26) | (6.32) | (6.11) | (6.11) | |
Lnsca | 0.193 *** | 0.177 *** | 0.202 *** | 0.188 *** | 0.212 *** | 0.197 *** |
(3.68) | (3.36) | (3.86) | (3.56) | (4.22) | (3.90) | |
Ind | −0.532 *** | −0.498 *** | −0.541 *** | −0.506 *** | −0.501 *** | −0.469 *** |
(−4.98) | (−4.66) | (−5.10) | (−4.78) | (−4.86) | (−4.55) | |
DIG | −0.166 *** | −0.152 *** | −0.147 *** | −0.133 *** | −0.149 *** | −0.136 *** |
(−4.35) | (−2.21) | (−3.82) | (−3.44) | (−4.02) | (−3.65) | |
Industry | No | Yes | No | Yes | No | Yes |
City | No | Yes | No | Yes | No | Yes |
Cons | −2.526 *** | −2.391 *** | −2.636 *** | −2.509 *** | −2.660 *** | −2.525 *** |
(−10.62) | (−9.77) | (−11.11) | (−10.28) | (−11.55) | (−10.68) | |
N | 1226 | 1226 | 1226 | 1226 | 1226 | 1226 |
R2 | 0.094 | 0.105 | 0.099 | 0.110 | 0.103 | 0.116 |
Variable | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
COI | COI | |||||
25% | 50% | 75% | 25% | 50% | 75% | |
Network1 | −0.178 | −0.273 ** | −0.352 *** | |||
(−1.00) | (−2.26) | (−3.01) | ||||
Network2 | −0.174 ** | −0.190 *** | −0.220 *** | |||
(−2.18) | (−2.94) | (−3.90) | ||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | −3.199 *** | −2.366 *** | −1.312 *** | −3.339 *** | −2.489 *** | −1.380 *** |
(−7.49) | (−9.54) | (−3.97) | (−8.04) | (−11.52) | (−4.57) | |
N | 1226 | 1226 | 1226 | 1226 | 1226 | 1226 |
Variable | (1) | (2) | (3) | (4) |
---|---|---|---|---|
Low_Digitization | High_Digitization | Low_Digitization | High_Digitization | |
Network1 | −0.127 | −0.694 *** | ||
(−0.89) | (−3.30) | |||
Network2 | −0.075 | −0.332 *** | ||
(−0.89) | (−3.92) | |||
Controls | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes |
Cons | −2.989 *** | −1.534 *** | −3.012 *** | −1.865 *** |
(−9.01) | (−3.98) | (−9.08) | (−4.92) | |
N | 750 | 476 | 750 | 476 |
R2 | 0.084 | 0.189 | 0.084 | 0.196 |
Variable | Mediating Effect (Stepwise Test Model) | Regulating Effect | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
PTN | COI | PTN | COI | COI | COI | |
Network1 | 1.760 *** | −0.231 ** | ||||
(3.80) | (−1.98) | |||||
Network2 | 1.711 *** | −0.169 ** | ||||
(7.34) | (−2.79) | |||||
PTN | −0.030 *** | −0.027 *** | ||||
(−4.18) | (−3.76) | |||||
Network1 × PTN | −0.033 *** | |||||
(−4.13) | ||||||
Network2 × PTN | −0.016 *** | |||||
(−4.29) | ||||||
Controls | Yes | Yes | Yes | Yes | Yes | Yes |
Industry | Yes | Yes | Yes | Yes | Yes | Yes |
City | Yes | Yes | Yes | Yes | Yes | Yes |
Cons | −4.586 *** | −2.528 *** | −3.720 *** | −2.611 *** | −2.635 *** | −2.644 *** |
(−4.73) | (−10.31) | (−3.89) | (−10.68) | (−10.64) | (−10.68) | |
Sobel Z | −0.053 ** | −0.047 *** | ||||
(−2.810) | (−3.343) | |||||
N | 1226 | 1226 | 1226 | 1226 | 1226 | 1226 |
R2 | 0.192 | 0.118 | 0.215 | 0.121 | 0.113 | 0.114 |
Mediating Variable | Conduction Path | Effect | Coefficient of Influence | Standard Error | 95% Confidence Interval | |
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | Limit | Lower Limit | |
PTN | COI-PTN-Network1 | Indirect | −0.053 *** | 0.018 | −0.089 | −0.017 |
COI-PTN-Network1 | Direct | −0.231 ** | 0.116 | −0.456 | −0.004 | |
COI-Network1 | Total | −0.284 ** | 0.116 | −0.511 | −0.056 | |
PTN | COI-PTN-Network2 | Indirect | −0.047 *** | 0.014 | −0.075 | −0.019 |
COI-PTN-Network2 | Direct | −0.169 *** | 0.061 | −0.288 | −0.050 | |
COI-Network2 | Total | −0.216 *** | 0.060 | −0.334 | −0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, B.; Lv, L.; Luo, X.; Huang, X. The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation. Sustainability 2025, 17, 1655. https://doi.org/10.3390/su17041655
Zhao B, Lv L, Luo X, Huang X. The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation. Sustainability. 2025; 17(4):1655. https://doi.org/10.3390/su17041655
Chicago/Turabian StyleZhao, Bo, Li Lv, Xiaojuan Luo, and Xinzao Huang. 2025. "The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation" Sustainability 17, no. 4: 1655. https://doi.org/10.3390/su17041655
APA StyleZhao, B., Lv, L., Luo, X., & Huang, X. (2025). The Impact of Multidimensional Relational Network Embedding on the Carbon Emission Reductions of Manufacturing Enterprises: From the Mediating and Regulating Roles of Technological Innovation. Sustainability, 17(4), 1655. https://doi.org/10.3390/su17041655