A Sustainable Alternative for Cosmetic Applications: NADES Extraction of Bioactive Compounds from Hazelnut By-Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples Preparation
2.2. NADES Preparation and Characterization
2.3. Extraction of the Polyphenolic Fraction from Hazelnut Skin, Shells, and Defatted Flour
2.3.1. Traditional Extraction
2.3.2. Ultrasound-Assisted Extraction
2.4. Physical and Chemical Characterization of the Extracts
2.4.1. pH and Density of Extracts
2.4.2. Free Radical Scavenging Capacity (FRC) Assay
2.4.3. Total Phenols Content
2.4.4. Chromatographic Characterization of Phenolic Compounds
2.5. Chemical–Physical Characterization of Exhausted Panel
- Raw DFT flour;
- Raw skin;
- The residue (panel) of DFT flour extraction by FL (FL-DFT-Flour);
- The residue (panel) of skin extraction by BS (BS-Skin).
2.5.1. Proximate Analysis
2.5.2. Ultimate Analysis
2.5.3. Biogas Potential
2.6. Statistical Analysis
3. Results and Discussion
3.1. NADES Characterization
3.2. pH and Density of the Extracts
3.3. Total Phenols Content, Extraction Efficiency, and Free Radical Scavenging Capacity
3.4. Chromatographic Characterization of Phenolic
3.5. Chemical–Physical Characterization for Energy Conversion of Exhausted Panel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ufitikirezi, J.d.D.M.; Filip, M.; Ghorbani, M.; Zoubek, T.; Olšan, P.; Bumbálek, R.; Strob, M.; Bartoš, P.; Umurungi, S.N.; Murindangabo, Y.T.; et al. Agricultural Waste Valorization: Exploring Environmentally Friendly Approaches to Bioenergy Conversion. Sustainability 2024, 16, 3617. [Google Scholar] [CrossRef]
- Riseh, R.S.; Vazvani, M.G.; Hassanisaadi, M.; Thakur, V.K. Agricultural Wastes: A Practical and Potential Source for the Isolation and Preparation of Cellulose and Application in Agriculture and Different Industries. Ind. Crops Prod. 2024, 208, 117904. [Google Scholar] [CrossRef]
- Ravindran, R.; Jaiswal, A.K. Exploitation of Food Industry Waste for High-Value Products. Trends Biotechnol. 2016, 34, 58–69. [Google Scholar] [CrossRef] [PubMed]
- Manterola-Barroso, C.; Padilla, D.; Ondrasek, G.; Horvatinec, J.; Gavilán-Cuicui, G.; Meriño-Gergichevich, C. Hazelnut and Walnut Nutshell Features, as Emerging Added Value by-Products of the Nut Industry: A Review. Plants 2024, 13, 1034. [Google Scholar] [CrossRef]
- FAOSTAT. Available online: https://www.fao.org/faostat/es/#data/QCL (accessed on 17 December 2024).
- Athar, M.; Nasir, S.M. Taxonomic Perspective of Plant Species Yielding Vegetable Oils Used in Cosmetics and Skin Care Products. African J. Biotechnol. 2005, 4, 36–44. [Google Scholar]
- Ollani, S.; Peano, C.; Sottile, F. Recent Innovations on the Reuse of Almond and Hazelnut By-Products: A Review. Sustainability 2024, 16, 2577. [Google Scholar] [CrossRef]
- Licursi, D.; Antonetti, C.; Fulignati, S.; Vitolo, S.; Puccini, M.; Ribechini, E.; Bernazzani, L.; Raspolli Galletti, A.M. In-Depth Characterization of Valuable Char Obtained from Hydrothermal Conversion of Hazelnut Shells to Levulinic Acid. Bioresour. Technol. 2017, 244, 880–888. [Google Scholar] [CrossRef]
- Allegrini, A.; Salvaneschi, P.; Schirone, B.; Cianfaglione, K.; Michele, A. Di Multipurpose Plant Species and Circular Economy: Corylus avellana L. as a Study Case. Front. Biosci.-Landmark 2022, 27, 11. [Google Scholar] [CrossRef]
- Bertolino, M.; Belviso, S.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Rolle, L.; Gerbi, V.; Zeppa, G. Influence of the Addition of Different Hazelnut Skins on the Physicochemical, Antioxidant, Polyphenol and Sensory Properties Ofyogurt. LWT 2015, 63, 1145–1154. [Google Scholar] [CrossRef]
- Bellomo, M.; Margiotta, V.R.; Saeli, M.; Colajanni, S.; Campisi, T. Dried-Fruit Shell Reuse in Green Construction and Building Materials. In Mediterranean Architecture and the Green-Digital Transition; Springer: Cham, Switzerland, 2023; pp. 467–478. [Google Scholar] [CrossRef]
- Costantini, L.; Frangipane, M.T.; Molinari, R.; Garzoli, S.; Massantini, R.; Merendino, N. Hazelnut Skin Waste as a Functional Ingredient to Nutritionally Improve a Classic Shortbread Cookie Recipe. Foods 2023, 12, 2774. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, X.; Lin, H.; Lin, Z. Hazelnut and Its By-Products: A Comprehensive Review of Nutrition, Phytochemical Profile, Extraction, Bioactivities and Applications. Food Chem. 2023, 413, 135576. [Google Scholar] [CrossRef] [PubMed]
- Rivas, S.; Moure, A.; Parajó, J.C. Pretreatment of Hazelnut Shells as a Key Strategy for the Solubilization and Valorization of Hemicelluloses into Bioactive Compounds. Agronomy 2020, 10, 760. [Google Scholar] [CrossRef]
- Özdemir, K.S.; Yilmaz, C.; Durmaz, G.; Gokmen, V. Hazelnut Skin Powder: A New Brown Colored Functional Ingredient. Food Res. Int. 2014, 65, 291–297. [Google Scholar] [CrossRef]
- Taş, N.G.; Gökmen, V. Bioactive Compounds in Different Hazelnut Varieties and Their Skins. J. Food Compos. Anal. 2015, 43, 203–208. [Google Scholar] [CrossRef]
- Shahidi, F.; Varatharajan, V.; Oh, W.Y.; Peng, H. Phenolic Compounds in Agri-Food by-Products, Their Bioavailability and Health Effects. J. Food Bioact. 2019, 5, 57–119. [Google Scholar] [CrossRef]
- Cikrikci, S.; Demirkesen, I.; Mert, B. Production of Hazelnut Skin Fibres and Utilisation in a Model Bakery Product. Qual. Assur. Saf. Crops Foods 2016, 8, 195–206. [Google Scholar] [CrossRef]
- ÖZTÜRK, G. A Waste Material Rich in Bioactive Compounds: Hazelnut Waste. Eur. Food Sci. Eng. 2023, 4, 15–25. [Google Scholar] [CrossRef]
- Turan, D.; Capanoglu, E.; Altay, F. Investigating the Effect of Roasting on Functional Properties of Defatted Hazelnut Flour by Response Surface Methodology (RSM). LWT 2015, 63, 758–765. [Google Scholar] [CrossRef]
- Xu, Y.; Hanna, M.A. Nutritional and Anti-Nutritional Compositions of Defatted Nebraska Hybrid Hazelnut Meal. Int. J. Food Sci. Technol. 2011, 46, 2022–2029. [Google Scholar] [CrossRef]
- Pérez-Armada, L.; Rivas, S.; González, B.; Moure, A. Extraction of Phenolic Compounds from Hazelnut Shells by Green Processes. J. Food Eng. 2019, 255, 1–8. [Google Scholar] [CrossRef]
- Wąsik, A.; Klimowicz, A. Extracts from Corylus avellana as a Source of Antioxidants Useful in Cosmetic Preparations*. Pomeranian J. Life Sci. 2022, 68, 56–66. [Google Scholar] [CrossRef]
- Bertino, A.; Mazzeo, L.; Gallo, V.; Posta, S.D.; Fanali, C.; Piemonte, V. Polyphenols Extraction from Hazelnut Skin Using Water as Solvent: Equilibrium Studies and Quantification of the Total Extractable Polyphenols. Chem. Eng. Trans. 2023, 102, 55–60. [Google Scholar] [CrossRef]
- Kaoui, S.; Chebli, B.; Zaidouni, S.; Basaid, K.; Mir, Y. Deep Eutectic Solvents as Sustainable Extraction Media for Plants and Food Samples: A Review. Sustain. Chem. Pharm. 2023, 31, 100937. [Google Scholar] [CrossRef]
- Panja, P. Green Extraction Methods of Food Polyphenols from Vegetable Materials. Curr. Opin. Food Sci. 2018, 23, 173–182. [Google Scholar] [CrossRef]
- Fanali, C.; Gallo, V.; Posta, S.D.; Dugo, L.; Mazzeo, L.; Cocchi, M.; Piemonte, V.; De Gara, L. Choline Chloride–Lactic Acid-Based NADES as an Extraction Medium in a Response Surface Methodology-Optimized Method for the Extraction of Phenolic Compounds from Hazelnut Skin. Molecules 2021, 26, 2652. [Google Scholar] [CrossRef]
- Dabetić, N.; Todorović, V.; Panić, M.; Redovniković, I.R.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Szopa, D.; Wróbel, P.; Witek-Krowiak, A. Enhancing Polyphenol Extraction Efficiency: A Systematic Review on the Optimization Strategies with Natural Deep Eutectic Solvents. J. Mol. Liq. 2024, 404, 124902. [Google Scholar] [CrossRef]
- Wang, W.; Pan, Y.; Zhao, J.; Wang, Y.; Yao, Q.; Li, S. Development and Optimization of Green Extraction of Polyphenols in Michelia Alba Using Natural Deep Eutectic Solvents (NADES) and Evaluation of Bioactivity. Sustain. Chem. Pharm. 2024, 37, 101425. [Google Scholar] [CrossRef]
- Pavlić, B.; Mrkonjić, Ž.; Teslić, N.; Kljakić, A.C.; Pojić, M.; Mandić, A.; Stupar, A.; Santos, F.; Duarte, A.R.C.; Mišan, A. Natural Deep Eutectic Solvent (NADES) Extraction Improves Polyphenol Yield and Antioxidant Activity of Wild Thyme (Thymus serpyllum L.) Extracts. Molecules 2022, 27, 1508. [Google Scholar] [CrossRef]
- Khadhraoui, B.; Ummat, V.; Tiwari, B.K.; Fabiano-Tixier, A.S.; Chemat, F. Review of Ultrasound Combinations with Hybrid and Innovative Techniques for Extraction and Processing of Food and Natural Products. Ultrason. Sonochem. 2021, 76, 105625. [Google Scholar] [CrossRef]
- Rosarina, D.; Narawangsa, D.R.; Chandra, N.S.R.; Sari, E.; Hermansyah, H. Optimization of Ultrasonic—Assisted Extraction (UAE) Method Using Natural Deep Eutectic Solvent (NADES) to Increase Curcuminoid Yield from Curcuma longa L., Curcuma xanthorrhiza, and Curcuma mangga Val. Molecules 2022, 27, 6080. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.K.; Paniwnyk, L.; Hassan, S. Polyphenols as Natural Antioxidants: Sources, Extraction and Applications in Food, Cosmetics and Drugs; Springer: Singapore, 2019; ISBN 9789811338106. [Google Scholar]
- Benoit, C.; Virginie, C.; Boris, V. The Use of NADES to Support Innovation in the Cosmetic Industry, 1st ed.; Elsevier Ltd.: Amsterdam, The Netherlands, 2021; Volume 97, ISBN 9780128216910. [Google Scholar]
- Bener, M.; Şen, F.B.; Önem, A.N.; Bekdeşer, B.; Çelik, S.E.; Lalikoglu, M.; Aşçı, Y.S.; Capanoglu, E.; Apak, R. Microwave-Assisted Extraction of Antioxidant Compounds from by-Products of Turkish Hazelnut (Corylus avellana L.) Using Natural Deep Eutectic Solvents: Modeling, Optimization and Phenolic Characterization. Food Chem. 2022, 385, 132633. [Google Scholar] [CrossRef] [PubMed]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Özdemir, M.; Torun, M. Ultrasound-Assisted Extraction of Natural Antioxidants From the Hazelnut Skin: Optimization and Comparision With Conventional Method. Gıda 2024, 49, 326–341. [Google Scholar] [CrossRef]
- Deepa, N.; Kaur, C.; Singh, B.; Kapoor, H.C. Antioxidant Activity in Some Red Sweet Pepper Cultivars. J. Food Compos. Anal. 2006, 19, 572–578. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Slatnar, A.; Mikulic-Petkovsek, M.; Stampar, F.; Veberic, R.; Solar, A. HPLC-MSn Identification and Quantification of Phenolic Compounds in Hazelnut Kernels, Oil and Bagasse Pellets. Food Res. Int. 2014, 64, 783–789. [Google Scholar] [CrossRef]
- ISO 18134-2:2024; Solid Biofuels—Determination of Moisture Content—Part 2: Simplified Method. International Organization for Standardization: Vernier, Switzerland, 2024.
- ISO 18122:2022; Solid Biofuels—Determination of Ash Content. International Organization for Standardization: Vernier, Switzerland, 2022.
- ASTM D 3175-89; Standards Test Method for Volatile Matter in the Analysis Sample of Coal and Coke, in Gaseous Fuels; Coal and Coke, 1989, p. 305. ASTM International: West Conshohocken, PA, USA, 1989.
- ISO 18125:2017; Solid Biofuels—Determination of Calorific Value. International Organization for Standardization: Vernier, Switzerland, 2017.
- UNI EN 13037:2012; Ammendanti e Substrati Di Coltivazione—Determinazione Del PH. Ente Italiano Di Normazione: Roma, Italy, 2012.
- ISO 16948:2015; Solid Biofuels—Determination of Total Content of Carbon, Hydrogen and Nitrogen. International Organization for Standardization: Vernier, Switzerland, 2015.
- ISO 16967:2015; Solid Biofuels—Determination of Major Elements—Al, Ca, Fe, Mg, P, K, Si, Na and Ti. International Organization for Standardization: Vernier, Switzerland, 2015.
- ISO 16968:2015; Solid Biofuels—Determination of Minor Elements. International Organization for Standardization: Vernier, Switzerland, 2015.
- ABuswell, M.; Hatfield, W.D. Bulletin No. 32, Anaerobic Fermentations, State of Illinois, Department of Registration and Education, Division of the State Water Survey, Urbana, Illinois. 1936. Available online: http://www.isws.illinois.edu/pubdoc/B/ISWSB-32.pdf (accessed on 9 January 2025).
- Achinas, S.; Euverink, G.J.W. Theoretical Analysis of Biogas Potential Prediction from Agricultural Waste. Resour. Technol. 2016, 2, 143–147. [Google Scholar] [CrossRef]
- Roati, C.; Fiore, S.; Ruffino, B.; Marchese, F.; Novarino, D.; Zanetti, M.C. Preliminary Evaluation of the Potential Biogas Production of Food-Processing Industrial Wastes. Am. J. Environ. Sci. 2012, 8, 291–296. [Google Scholar] [CrossRef]
- Santangelo, E.; Carnevale, M.; Migliori, C.A.; Picarella, M.E.; Dono, G.; Mazzucato, A.; Gallucci, F. Evaluation of Tomato Introgression Lines Diversified for Peel Color as a Source of Functional Biocompounds and Biomass for Energy Recovery. Biomass Bioenergy 2020, 141, 105735. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 1–9. [Google Scholar]
- Montanari, M. Statistica Ambientale. Analisi Multivariata—Metodologie Di Ordinamento; SISSAD Snc: Trieste, Italy, 2012. [Google Scholar]
- Fedotova, M.V.; Kruchinin, S.E. Hydration and Ion-Binding of Glycine Betaine: How They May Be Involved into Protection of Proteins under Abiotic Stresses. J. Mol. Liq. 2017, 244, 489–498. [Google Scholar] [CrossRef]
- Simsek, A.; Artik, N.; Konar, N. Phenolic Profile of Meals Obtained from Defatted Hazelnut (Corylus avellana L.) Varieties. Int. J. Life Sci. Biotechnol. Pharma Res. 2017, 6, 12–17. [Google Scholar] [CrossRef]
- Zeppa, G.; Belviso, S.; Bertolino, M.; Cavallero, M.C.; Dal Bello, B.; Ghirardello, D.; Giordano, M.; Giorgis, M.; Grosso, A.; Rolle, L.; et al. The Effect of Hazelnut Roasted Skin from Different Cultivars on the Quality Attributes, Polyphenol Content and Texture of Fresh Egg Pasta. J. Sci. Food Agric. 2015, 95, 1678–1688. [Google Scholar] [CrossRef] [PubMed]
- Di Michele, A.; Pagano, C.; Allegrini, A.; Blasi, F.; Cossignani, L.; Di Raimo, E.; Faieta, M.; Oliva, E.; Pittia, P.; Primavilla, S.; et al. Hazelnut Shells as Source of Active Ingredients: Extracts Preparation and Characterization. Molecules 2021, 26, 6607. [Google Scholar] [CrossRef]
- Stévigny, C.; Rolle, L.; Valentini, N.; Zeppa, G. Optimization of Extraction of Phenolic Content from Hazelnut Shell Using Response Surface Methodology. J. Sci. Food Agric. 2007, 87, 2817–2822. [Google Scholar] [CrossRef]
- Rente, D.; Paiva, A.; Duarte, A.R. The Role of Hydrogen Bond Donor on the Extraction of Phenolic Compounds from Natural Matrices Using Deep Eutectic Systems. Molecules 2021, 26, 2336. [Google Scholar] [CrossRef]
- Jakopic, J.; Petkovsek, M.M.; Likozar, A.; Solar, A.; Stampar, F.; Veberic, R. HPLC-MS Identification of Phenols in Hazelnut (Corylus avellana L.) Kernels. Food Chem. 2011, 124, 1100–1106. [Google Scholar] [CrossRef]
- Alonso, C.; Martí, M.; Barba, C.; Lis, M.; Rubio, L.; Coderch, L. Skin Penetration and Antioxidant Effect of Cosmeto-Textiles with Gallic Acid. J. Photochem. Photobiol. B Biol. 2016, 156, 50–55. [Google Scholar] [CrossRef]
- Bae, J.; Kim, N.; Shin, Y.; Kim, S.-Y.; Kim, Y.-J. Activity of Catechins and Their Applications. Biomed. Dermatol. 2020, 4, 8. [Google Scholar] [CrossRef]
- Elloumi, W.; Mahmoudi, A.; Ortiz, S.; Boutefnouchet, S.; Chamkha, M.; Sayadi, S. Wound Healing Potential of Quercetin-3-O-Rhamnoside and Myricetin-3-O-Rhamnoside Isolated from Pistacia Lentiscus Distilled Leaves in Rats Model. Biomed. Pharmacother. 2022, 146, 112574. [Google Scholar] [CrossRef] [PubMed]
- Baldisserotto, A.; Malisardi, G.; Scalambra, E.; Andreotti, E.; Romagnoli, C.; Vicentini, C.B.; Manfredini, S.; Vertuani, S. Synthesis, Antioxidant and Antimicrobial Activity of a New Phloridzin Derivative for Dermo-Cosmetic Applications. Molecules 2012, 17, 13275–13289. [Google Scholar] [CrossRef] [PubMed]
- Telmo, C.; Lousada, J. Heating Values of Wood Pellets from Different Species. Biomass Bioenergy 2011, 35, 2634–2639. [Google Scholar] [CrossRef]
- Monti, A.; Di Virgilio, N.; Venturi, G. Mineral Composition and Ash Content of Six Major Energy Crops. Biomass Bioenergy 2008, 32, 216–223. [Google Scholar] [CrossRef]
- Riva, G.; Pedretti, E.F.; Toscano, G.; Corinaldesi, F. Model for the Forecasting of the Fusion Temperature of Biomass Ashes. In Proceedings of the XXXIII CIOSTA-CIGR V Conference, Reggio Calabria, Italy, 17–19 June 2009. [Google Scholar]
- Lesteur, M.; Bellon-Maurel, V.; Gonzalez, C.; Latrille, E.; Roger, J.M.; Junqua, G.; Steyer, J.P. Alternative Methods for Determining Anaerobic Biodegradability: A Review. Process Biochem. 2010, 45, 431–440. [Google Scholar] [CrossRef]
- Labatut, R.A.; Angenent, L.T.; Scott, N.R. Biochemical Methane Potential and Biodegradability of Complex Organic Substrates. Bioresour. Technol. 2011, 102, 2255–2264. [Google Scholar] [CrossRef]
- Dinuccio, E.; Balsari, P.; Gioelli, F.; Menardo, S. Evaluation of the Biogas Productivity Potential of Some Italian Agro-Industrial Biomasses. Bioresour. Technol. 2010, 101, 3780–3783. [Google Scholar] [CrossRef]
- Fiore, S.; Ruffino, B.; Campo, G.; Roati, C.; Zanetti, M.C. Scale-up Evaluation of the Anaerobic Digestion of Food-Processing Industrial Wastes. Renew. Energy 2016, 96, 949–959. [Google Scholar] [CrossRef]
- Santangelo, E.; Migliori, C.A.; Carnevale, M.; Vincenti, B.; Gallucci F, M.A. Bioactive Componuds in Tomato Peels of New Breeding Lines. In Proceedings of the 30th European Biomass Conference and Exhibition Proceedings, Online, 9–12 May 2022; pp. 244–248. [Google Scholar]
- Scaglia, B.; D’Incecco, P.; Squillace, P.; Dell’Orto, M.; De Nisi, P.; Pellegrino, L.; Botto, A.; Cavicchi, C.; Adani, F. Development of a Tomato Pomace Biorefinery Based on a CO2-Supercritical Extraction Process for the Production of a High Value Lycopene Product, Bioenergy and Digestate. J. Clean. Prod. 2020, 243, 118650. [Google Scholar] [CrossRef]
- Borkowska, A.; Klimek, K.; Maj, G.; Kapłan, M. Analysis of the Energy Potential of Hazelnut Husk Depending on the Variety. Energies 2024, 17, 3933. [Google Scholar] [CrossRef]
- Picchi, G.; Lombardini, C.; Pari, L.; Spinelli, R. Physical and Chemical Characteristics of Renewable Fuel Obtained from Pruning Residues. J. Clean. Prod. 2018, 171, 457–463. [Google Scholar] [CrossRef]
- Scoma, A.; Rebecchi, S.; Bertin, L.; Fava, F. High Impact Biowastes from South European Agro-Industries as Feedstock for Second-Generation Biorefineries. Crit. Rev. Biotechnol. 2016, 36, 175–189. [Google Scholar] [CrossRef] [PubMed]
- McKendry, P. Energy Production from Biomass (Part 1): Overview of Biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef] [PubMed]
NADES | HBA | HBD | Molar Ratio |
---|---|---|---|
BS | Betaine | Sorbitol | 1:1 |
FL | Fructose | Lactic acid | 1:5 |
FG | Fructose | Glycerol | 1:1 |
pH | Density (g cm−3) | °Brix | IR(nD) | |||||
---|---|---|---|---|---|---|---|---|
C | 5.20 | b | 0.88 | c | 18.75 | d | 1.3615 | d |
BS | 6.56 | a | 1.24 | a | 72.75 | a | 1.4723 | a |
FL | 1.18 | c | 1.24 | a | 57.73 | c | 1.4360 | c |
FG | 5.30 | b | 1.19 | b | 63.00 | b | 1.4485 | b |
DFT Flour | Skin | Shell | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | Density (g cm−3) | pH | Density (g cm−3) | pH | Density (g cm−3) | |||||||
C-t | 6.74 | cd | 0.92 | c | 5.69 | b | 0.90 | b | 5.47 | c | 0.94 | b |
BS-t | 7.64 | a | 1.25 | b | 6.58 | a | 1.25 | a | 7.25 | a | 1.24 | a |
FL-t | 0.78 | e | 1.24 | b | 0.27 | c | 1.24 | a | 0.20 | d | 1.28 | a |
FG-t | 6.50 | d | 1.22 | b | 5.87 | b | 1.25 | a | 5.99 | b | 1.28 | a |
C-us | 6.77 | c | 0.91 | c | 7.07 | a | 0.90 | b | 6.21 | b | 0.92 | b |
BS-us | 7.37 | b | 1.24 | b | 6.78 | a | 1.24 | a | 7.48 | a | 1.27 | a |
FL-us | 0.93 | e | 1.25 | b | 0.62 | c | 1.19 | a | 0.45 | d | 1.28 | a |
FG-us | 6.68 | cd | 1.43 | a | 5.92 | b | 1.19 | a | 6.32 | b | 1.25 | a |
Phenolic Acid | Flavan-3-ols | Flavonols | Flavonoid | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gallic Acid | (+)-Catechin | (−)-Epicatechin | Myricetin-3-O-Rhamnoside | Quercetin-3-O-Rhamnoside | Phloridzin | ||||||||
DFT flour | C-t | 135.74 | bc | 49.87 | b | 10.77 | ns | 0.18 | b | 1.78 | c | 3.12 | b |
C-us | 248.82 | b | 185.45 | a | 21.27 | ns | 0.62 | b | 2.50 | c | 2.38 | b | |
Skin | C-t | 1136.47 | a | 183.91 | a | 34.55 | ns | 13.00 | a | 49.67 | a | 88.76 | a |
C-us | 990.89 | a | 125.49 | ab | 15.82 | ns | 13.03 | a | 56.09 | a | 84.92 | a | |
Shell | C-t | 5.87 | c | 36.30 | b | 28.81 | ns | 0.40 | b | 5.09 | c | 0.00 | c |
C-us | 8.27 | c | 24.19 | b | 21.59 | ns | 0.00 | c | 20.12 | b | 10.51 | b |
DFT-Flour | FL-DFT Flour | Skin | BS Skin | |||||
---|---|---|---|---|---|---|---|---|
Moisture (% tq) | 7.60 | c | 20.18 | a | 8.76 | bc | 10.40 | b |
Volatile solids (% tq) | 86.28 | b | 78.46 | c | 88.70 | a | 88.62 | a |
Fixed carbon (% tq) | 1.89 | a | 0.72 | b | 0.26 | b | 0.62 | b |
Ashes (% ss) | 4.23 | a | 0.64 | c | 2.28 | b | 0.36 | c |
Low heating value (MJ kg−1) | 20.75 | b | 23.78 | a | 19.58 | c | 17.46 | d |
pH | 6.10 | a | 2.22 | d | 4.88 | b | 4.05 | c |
Raw Material | Exhausted Panel | |||||||
---|---|---|---|---|---|---|---|---|
DFT Flour | Skin | FL-DFT Flour | BS Skin | |||||
C (% ss) | 31.72 | b | 41.26 | a | 30.65 | b | 33.46 | b |
H (% ss) | 1.61 | b | 3.88 | a | 4.63 | a | 1.57 | b |
N (% ss) | 3.50 | b | 2.47 | c | 1.87 | c | 4.37 | a |
O (% ss) | 58.94 | ab | 50.11 | b | 62.21 | a | 60.25 | a |
C/N | 9.10 | b | 17.04 | a | 16.46 | a | 7.69 | b |
DFT Flour | FL-DFT Flour | Skin | BS Skin | |||||
---|---|---|---|---|---|---|---|---|
Macroelement | ||||||||
Na | 0.007 | <LOQ | 0.319 | 0.839 | ||||
Mg | 4.73 | a | 0.40 | bc | 2.04 | ab | 0.14 | c |
K | 20.23 | a | 1.68 | bc | 7.63 | ab | 0.32 | c |
Ca | 1.023 | a | 0.146 | bc | 0.808 | ab | 0.058 | c |
Mn | 0.065 | a | 0.006 | bc | 0.019 | ab | 0.001 | c |
Fe | 0.147 | ab | 0.015 | c | 0.342 | a | 0.020 | bc |
Cu | 0.057 | a | 0.005 | bc | 0.010 | ab | 0.001 | c |
Zn | 0.061 | a | 0.005 | bc | 0.015 | ab | 0.001 | c |
Al | 0.011 | c | 0.026 | ab | 0.252 | a | 0.014 | bc |
DFT Flour | FL-DFT Flour | Skin | BS Skin | |||||
---|---|---|---|---|---|---|---|---|
Trace Element | ||||||||
Cr | 0.179 | bc | 0.072 | c | 6.411 | a | 0.412 | ab |
Co | 0.232 | a | 0.025 | b | 0.178 | ab | 0.013 | b |
Ni | 5.850 | a | 1.090 | bc | 3.789 | ab | 0.253 | c |
As | 0.007 | <LOQ | 0.057 | <LOQ | ||||
Se | 0.055 | <LOQ | 0.028 | 0.012 | ||||
Sr | 21.600 | ab | 2.512 | bc | 26.401 | a | 2.072 | c |
Cd | 0.034 | <LOQ | 0.038 | <LOQ | ||||
Pb | 0.079 | ab | 0.026 | b | 0.097 | a | 0.028 | b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bencresciuto, G.F.; Carnevale, M.; Paris, E.; Gallucci, F.; Santangelo, E.; Migliori, C.A. A Sustainable Alternative for Cosmetic Applications: NADES Extraction of Bioactive Compounds from Hazelnut By-Products. Sustainability 2025, 17, 1516. https://doi.org/10.3390/su17041516
Bencresciuto GF, Carnevale M, Paris E, Gallucci F, Santangelo E, Migliori CA. A Sustainable Alternative for Cosmetic Applications: NADES Extraction of Bioactive Compounds from Hazelnut By-Products. Sustainability. 2025; 17(4):1516. https://doi.org/10.3390/su17041516
Chicago/Turabian StyleBencresciuto, Grazia Federica, Monica Carnevale, Enrico Paris, Francesco Gallucci, Enrico Santangelo, and Carmela Anna Migliori. 2025. "A Sustainable Alternative for Cosmetic Applications: NADES Extraction of Bioactive Compounds from Hazelnut By-Products" Sustainability 17, no. 4: 1516. https://doi.org/10.3390/su17041516
APA StyleBencresciuto, G. F., Carnevale, M., Paris, E., Gallucci, F., Santangelo, E., & Migliori, C. A. (2025). A Sustainable Alternative for Cosmetic Applications: NADES Extraction of Bioactive Compounds from Hazelnut By-Products. Sustainability, 17(4), 1516. https://doi.org/10.3390/su17041516