Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter
Abstract
:1. Introduction
2. Materials and Methods
- MSWC (Municipal Solid Waste Compost): 50% of green waste and 50% domestic kitchen waste, m:m = 1:1;
- WHBC (Willow and Hay Biomass Compost): 50% of willow chips (Salix viminalis L., chips diameter 8–30 mm) and 50% of hay residues from feed production (share of main plant groups: 50% grasses, 25% legumes, and 25% herbaceous plants), m:m = 1:1;
- WHIBC (Willow and Hay and Inoculated Biomass Compost): 50% of willow chips (Salix viminalis L., chips diameter 8–30 mm) and 50% of hay residues from feed production (share of main plant groups: 50% grasses, 25% legumes, and 25% herbaceous plants), m:m = 1:1, inoculated with a single application (beginning of experiment) of Peniophora gigantea using the commercial preparation Pg-POSZWALD Eko (Wiązowna, Poland) according to the manufacturer’s requirements; the ratio of vaccine/willow biomass is covered by patent application No. P.448767—a legal procedure is currently underway.
2.1. Experiment Design and Sampling
2.2. Basic Laboratory Analyses
2.3. Humic Substance Analyses
- HR1 = CHA CFA−1;
- PHA = (CHA 100) TOC−1;
- PFA = (CFA 100) TOC−1;
- PCR = (CR 100) TOC−1.
2.4. Statistical Analysis
3. Results and Discussion
3.1. Changes in the Temperature and Moisture of the Investigated Composting Materials
3.2. Changes in the pHKCl, TOC, TN Contents and the TOC/TN Ratio During Composting of Investigated Biomass
3.3. Quantitative Changes in Humus Compounds in the Investigated Composts
3.4. Elemental Composition of Humic Acids Extracted from Investigated Composts
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Becher, M.; Banach-Szott, M.; Godlewska, A. Organic Matter Properties of Spent Button Mushroom Substrate in the Context of Soil Organic Matter Reproduction. Agronomy 2021, 11, 204. [Google Scholar] [CrossRef]
- Becher, M.; Tołoczko, W.; Godlewska, A.; Pakuła, K.; Żukowski, E. Fractional Composition of Organic Matter and Properties of Humic Acids in the Soils of Drained Bogs of the Siedlce Heights in Eastern Poland. J. Ecol. Eng. 2022, 23, 208–222. [Google Scholar] [CrossRef]
- Weber, J.; Kocowicz, A.; Bekier, J.; Jamroz, E.; Tyszka, R.; Debicka, M.; Parylak, D.; Kordas, L. The effect of a sandy soil amendment with municipal solid waste (MSW) compost on nitrogen uptake efficiency by plants. Eur. J. Agron. 2014, 54, 54–60. [Google Scholar] [CrossRef]
- Weber, J.; Chen, Y.; Jamroz, E.; Miano, T. Preface: Humic substances in the environment. J. Soils Sediments 2018, 18, 2665–2667. [Google Scholar] [CrossRef]
- Doichinova, V.; Zhiyanski, M.; Hursthouse, A. Impact of urbanisation on soil characteristics. Environ. Chem. Lett. 2006, 3, 160–163. [Google Scholar] [CrossRef]
- Lal, R. Carbon management in agricultural soils. Mitig. Adapt. Strateg. Glob. Change 2007, 12, 303–322. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2014, 304, 1623–1627. [Google Scholar] [CrossRef]
- Kwiatkowska-Malina, J. Qualitative and quantitative soil organic matter estimation for sustainable soil management. J. Soils Sediments 2018, 18, 2801–2812. [Google Scholar] [CrossRef]
- Pouyat, R.; Groffman, P.; Yesilonis, I.; Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 2002, 116, 107–118. [Google Scholar] [CrossRef]
- Żukowska, G.; Myszura, M.; Zdeb, M.; Pawlowska, M. Carbon Sequestration in Soil as a Sustainable Way of Greenhouse Effect Mitigation. Probl. Sustain. Dev. 2020, 2, 196–204. [Google Scholar] [CrossRef]
- Komatsuzaki, M.; Ohta, H. Soil management practices for sustainable Agro-ecosystems. Sustain. Sci. 2007, 2, 103–120. [Google Scholar] [CrossRef]
- Loffredo, E.; Senesi, N. The role of humic substances in the fate of anthropogenic organic pollutants in soil with emphasis on endocrine disruptor compounds. In Soil and Water Pollution Monitoring, Protection and Remediation; Twardowska, I., Allen, H.E., Häggblom, M.M., Stefaniak, S., Eds.; NATO Science Series; Springer: Dordrecht, The Netherlands, 2006; Volume 69, pp. 3–23. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- International Humic Substances Society. Available online: http://humic-substances.org (accessed on 20 November 2024).
- IUSS. Resolution of the 17th World Congress of Soil Science. In Global Enhancement of Soil Organic Matter; Bulletin of the International Union of Soil Sciences; Blum, W.E.H., Ed.; IUSS: Vienna, Austria, 2002; Volume 102, pp. 22–23. [Google Scholar]
- Lutzow, M.V.; Kögel-Knabner, I.; Ekschmit, K.; Matzner, E.; Guggenberger, G.; Marschner, B.; Flessa, H. Stabilization of organic matter in temperate soils: Mechanisms and their relevance under different soil conditions-a review. Eur. J. Soil. Sci. 2006, 57, 426–445. [Google Scholar] [CrossRef]
- Abbott, L.K.; Murphy, D.V. What is soil biological fertility? In Soil Biological Fertility; Abbott, L.K., Murphy, D.V., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 1–15. [Google Scholar]
- Dębska, B.; Kotwica, K.; Banach-Szott, M.; Spychaj-Fabisiak, E.; Tobiašová, E. Soil Fertility Improvement and Carbon Sequestration through Exogenous Organic Matter and Biostimulant Application. Agriculture 2022, 12, 1478. [Google Scholar] [CrossRef]
- Dębska, B.; Długosz, J.; Piotrowska-Długosz, A.; Banach-Szott, M. The impact of a bio-fertilizer on the soil organic matter status and carbon sequestration—Results from a field-scale study. J. Soils Sediments 2016, 16, 2335–2343. [Google Scholar] [CrossRef]
- Diacono, M.; Montemurro, F. Long-term effects of organic amendments on soil fertility. Agron. Sustain. Dev. 2010, 30, 401–422. [Google Scholar] [CrossRef]
- Hayes, M.H.B.; Swift, R.S. Vindication of humic substances as a key component of organic matter in soil and water. Adv. Agron. 2020, 163, 1–37. [Google Scholar]
- Kononova, M.M. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility, 2nd ed.; Pergamon: Oxford, UK, 1966. [Google Scholar]
- Schnitzer, M.; Khan, S.U. Humic Substances in the Environment; Marcel Dekker Inc.: New York, NY, USA, 1972. [Google Scholar]
- Adani, F.; Ricca, G.; Tambone, F.; Genevini, P. Isolation of the stable fraction (the core) of the humic acid. Chemosphere 2006, 65, 1300–1307. [Google Scholar] [CrossRef]
- Swift, R.S. Organic matter characterization. In Methods of Soil Analysis. Part 3. Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Eds.; Soil Science Society of America Inc.: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar]
- Ciavatta, C.; Centemero, M.; Toselli, M.; Zaccone, C.; Senesi, N. Compost production, analysis and applications in agriculture. In Multi-Scale Biogeochemical Processes in Soil Ecosystems; Yang, Y., Keiluweit, M., Senesi, N., Xing, B., Eds.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 297–321. [Google Scholar] [CrossRef]
- Gonet, S.S.; Dębska, B. Properties of humic acids developed during humification process of post-harvest plant residues. Environ. Int. 1998, 24, 603–608. [Google Scholar] [CrossRef]
- Schnitzer, M.; Monreal, C.M. Chapter Three - Quo Vadis Soil Organic Matter Research? A Biological Link to the Chemistry of Humification. Adv. Agron. 2011, 113, 143–217. [Google Scholar]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A review on circular economy: The expected transition to a balanced interplay of environmental and economic systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Eggen, T.; Vethe, O. Stability indices for different composts. Compost Sci. Util. 2001, 9, 19–26. [Google Scholar] [CrossRef]
- Kałuża-Haładyn, A.; Jamroz, E.; Bekier, J. Humic substances of differently matured composts produced from municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 2019, 70, 292–297. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Dębicka, M.; Ćwieląg-Piasecka, I.; Kocowicz, A. Quantitative Carbon Changes of Selected Organic Fractions during the Aerobic Biological Recycling of Biodegradable Municipal Solid Waste (MSW) as a Potential Soil Environment Improving Amendment—A Case Study. Agriculture 2022, 12, 2058. [Google Scholar] [CrossRef]
- Chefetz, B.; Hatcher, P.G.; Hadar, Y.; Chen, Y. Chemical and Biological Characterization of Organic Matter during Composting of Municipal Solid Waste. J. Environ. Qual. 1996, 25, 776–785. [Google Scholar] [CrossRef]
- Chen, Y.; Inbar, Y. Chemical and spectroscopical analyses of OM transformations during composting in relation to compost maturity. In Science and Engineering of Composting; Hoitink, H.A.J., Keener, H.M., Eds.; Renaissance Publications: Worthington, OH, USA, 1993; pp. 551–600. [Google Scholar]
- Kwiatkowska-Malina, J. Functions of organic matter in polluted soils: The effect of organic amendments on phytoavailability of heavy metals. Appl. Soil Ecol. 2018, 123, 542–545. [Google Scholar] [CrossRef]
- Ćwieląg-Piasecka, I. Soil Organic Matter Composition and pH as Factors Affecting Retention of Carbaryl, Carbofuran and Metolachlor in Soil. Molecules 2023, 28, 5552. [Google Scholar] [CrossRef]
- Bednik, M.; Medyńska-Juraszek, A.; Ćwieląg-Piasecka, I.; Dudek, M. Enzyme Activity and Dissolve Organic Carbon Content in Sois Amended with Different Types of Biochar and Exogenous Organic Matter. Sustainability 2023, 15, 15396. [Google Scholar] [CrossRef]
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef]
- Hughes, R. The EU Circular Economy Package—Life Cycle Thinking to Life Cycle Law? Procedia CIRP 2017, 61, 10–16. [Google Scholar] [CrossRef]
- Cesaro, A.; Belgiorno, V.; Guida, M. Compost from organic solid waste: Quality assessment and European regulations for its sustainable use. Resour. Conserv. Recycl. 2015, 94, 72–79. [Google Scholar] [CrossRef]
- Hay, J.C.; Kuchenrither, R. Fundamentals and application of windrow composting. J. Environ. Eng. 1990, 116, 746–763. [Google Scholar] [CrossRef]
- Chelinho, S.; Pereira, C.; Breitenbach, P.; Baretta, D.; Sousa, J.P. Quality standards for urban waste composts: The need for biological effect data. Sci. Total Environ. 2019, 694, 133602. [Google Scholar] [CrossRef] [PubMed]
- What are Humic Substances. Available online: https://humic-substances.org/what-are-humic-substances-2/ (accessed on 20 November 2024).
- Castaldi, P.; Guido, A.; Roberto, M.; Pietro, M. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manag. 2005, 25, 209–213. [Google Scholar] [CrossRef] [PubMed]
- Kaluza-Haladyn, A.; Jamroz, E.; Bekier, J. The dynamics of some physical and physico-chemical properties during composting of municipal solid wastes and biomass of energetic plants. Soil Sci. Ann. 2018, 69, 155–159. [Google Scholar] [CrossRef]
- Bekier, J.; Jamroz, E.; Sowiński, J.; Adamczewska-Sowińska, K.; Kałuża-Haładyn, A. Effect of Differently Matured Composts from Willow on Growth and Development of Lettuce. Agronomy 2022, 12, 175. [Google Scholar] [CrossRef]
- Hamer, G. Solid waste treatment and disposal: Effects on public health and environmental safety. Biotechnol. Adv. 2003, 22, 71–79. [Google Scholar] [CrossRef]
- Bekier, J.; Drozd, J.; Licznar, M. Nitrogen transformations in composts produced from municipal solid waste. Ecol. Chem. Eng. A 2011, 18, 497–506. [Google Scholar]
- Adani, F.; Genevini, P.; Tambone, F.; Montoneri, E. Compost effect on soil humic acid: A NMR study. Chemosphere 2006, 65, 1414–1418. [Google Scholar] [CrossRef]
- Knicker, H.; Hatcher, P.G.; Gonzàlez-Vila, F.J. Formation of heteroaromatic nitrogen after prolonged humification of vascular plant remains as revealed by nuclear magnetic resonance spectroscopy. J. Environ. Qual. 2002, 31, 444–449. [Google Scholar] [CrossRef]
- Amir, S.; Jouraiphy, A.; Meddich, A.; El Gharous, M.; Winterton, P.; Hafidi, M. Structural study of humic acids during composting of activated sludge greenwaste: Elemental analysis, FTIR and 13C NMR. J. Hazard. Mater. 2010, 177, 524–529. [Google Scholar] [CrossRef]
- Chanyasak, V.; Kubota, H. Carbon/organic nitrogen ratio in water extrect as measure of composting degredation. J. Ferment. Technol. 1981, 50, 215–219. [Google Scholar]
- Adamczewska-Sowińska, K.; Sowiński, J.; Jamroz, E.; Bekier, J. Compost from willow biomass (Salix viminalis L.) as a horticultural substrate alternative to peat in the production of vegetable transplants. Sci. Rep. 2022, 12, 17617. [Google Scholar] [CrossRef] [PubMed]
- Carmichael, E.; Ghassemieh, E.; Lyons, G. Biorefining of lignocellulosic feedstock and waste materials using ionic liquid. Mater. Sci. Eng. B 2020, 262, 114741. [Google Scholar] [CrossRef]
Variant | Composting Phase | Composting Day | Temperature [°C] |
---|---|---|---|
MSWC | initial | 1 | 21.7 |
thermophilic | 7 | 56.2 | |
stabilisation | 80 | 22.5 | |
WHBC | initial | 1 | 20.4 |
thermophilic | 42 | 55.2 | |
stabilisation | 102 | 22.1 | |
WHIBC | initial | 1 | 20.2 |
thermophilic | 42 | 57.3 | |
stabilisation | 105 | 21.7 |
Parameter | Composting Phase | TOC | TN | pH | CHA | CFA | CR | C | H | O | N | ꞷ |
---|---|---|---|---|---|---|---|---|---|---|---|---|
MSWC | ||||||||||||
Composting phase | 1.000 | −0.813 | 0.938 | −0.179 | 0.931 | 0.811 | −0.836 | −0.800 | −0.996 | 0.961 | 0.981 | 0.979 |
TOC | 1.000 | −0.955 | −0.419 | −0.965 | −0.974 | 0.999 | 0.947 | 0.842 | −0.912 | −0.877 | −0.886 | |
TN | 1.000 | 0.152 | 0.991 | 0.956 | −0.966 | −0.910 | −0.949 | 0.966 | 0.977 | 0.963 | ||
pH | 1.000 | 0.185 | 0.377 | −0.383 | −0.374 | 0.127 | 0.052 | −0.035 | −0.020 | |||
CHA | 1.000 | 0.952 | −0.975 | −0.939 | −0.948 | 0.981 | 0.963 | 0.971 | ||||
CFA | 1.000 | −0.977 | −0.914 | −0.828 | 0.886 | 0.879 | 0.866 | |||||
CR | 1.000 | 0.950 | 0.863 | −0.927 | −0.896 | −0.904 | ||||||
C | 1.000 | 0.834 | −0.930 | −0.863 | −0.901 | |||||||
H | 1.000 | −0.978 | −0.982 | −0.990 | ||||||||
O | 1.000 | 0.970 | 0.997 | |||||||||
N | 1.000 | 0.981 | ||||||||||
ꞷ | 1.000 | |||||||||||
WHBC | ||||||||||||
Composting phase | 1.000 | −0.863 | 0.967 | −0.052 | 0.040 | 0.938 | −0.896 | −0.927 | −0.803 | 0.836 | 0.973 | 0.859 |
TOC | 1.000 | −0.825 | −0.086 | −0.165 | −0.754 | 0.996 | 0.805 | 0.900 | −0.885 | −0.909 | −0.908 | |
TN | 1.000 | 0.069 | 0.100 | 0.905 | −0.860 | −0.906 | −0.820 | 0.850 | 0.908 | 0.865 | ||
pH | 1.000 | 0.671 | −0.227 | −0.066 | −0.204 | −0.463 | 0.446 | −0.093 | 0.399 | |||
CHA | 1.000 | −0.085 | −0.167 | −0.318 | −0.419 | 0.437 | −0.017 | 0.389 | ||||
CFA | 1.000 | −0.804 | −0.819 | −0.656 | 0.690 | 0.921 | 0.720 | |||||
CR | 1.000 | 0.837 | 0.903 | −0.894 | −0.933 | −0.917 | ||||||
C | 1.000 | 0.864 | −0.914 | −0.903 | −0.918 | |||||||
H | 1.000 | −0.993 | −0.808 | −0.993 | ||||||||
O | 1.000 | 0.831 | 0.998 | |||||||||
N | 1.000 | 0.860 | ||||||||||
ꞷ | 1.000 | |||||||||||
WHIBC | ||||||||||||
Composting phase | 1.000 | −0.954 | 0.889 | 0.000 | 0.640 | −0.845 | −0.888 | −0.642 | −0.939 | 0.754 | 0.917 | 0.829 |
TOC | 1.000 | −0.973 | −0.256 | −0.799 | 0.662 | 0.982 | 0.813 | 0.893 | −0.876 | −0.969 | −0.921 | |
TN | 1.000 | 0.437 | 0.873 | −0.528 | −0.987 | −0.884 | −0.860 | 0.923 | 0.982 | 0.948 | ||
pH | 1.000 | 0.741 | 0.479 | −0.426 | −0.679 | −0.115 | 0.567 | 0.382 | 0.478 | |||
CHA | 1.000 | −0.183 | −0.891 | −0.931 | −0.713 | 0.927 | 0.865 | 0.907 | ||||
CFA | 1.000 | 0.518 | 0.161 | 0.757 | −0.323 | −0.593 | −0.438 | |||||
CR | 1.000 | 0.896 | 0.854 | −0.932 | −0.973 | −0.955 | ||||||
C | 1.000 | 0.683 | −0.981 | −0.834 | −0.950 | |||||||
H | 1.000 | −0.810 | −0.924 | −0.876 | ||||||||
O | 1.000 | 0.901 | 0.991 | |||||||||
N | 1.000 | 0.940 | ||||||||||
ꞷ | 1.000 |
Variant | Composting Phase | Compost | Humic Acids | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
TOC | TN | CHA | CFA | CR | C | H | O | N | ꞷ | ||
g kg−1 | Atomic % | ||||||||||
MSWC | initial | 343.80 a | 11.23 a | 62.80 a | 66.70 a | 216.23 a | 33.74 a | 44.50 a | 18.90 a | 2.87 a | 0.05 a |
thermophilic | 276.92 b | 15.32 b | 72.90 b | 69.05 b | 134.27 b | 30.88 b | 42.79 b | 22.88 b | 3.46 b | 0.41 b | |
stabilisation | 244.61 c | 20.56 c | 83.05 c | 70.10 c | 92.99 c | 30.22 b | 36.22 c | 28.58 c | 4.99 c | 1.24 c | |
WHBC | initial | 416.40 a | 4.91 a | 33.42 a | 60.17 a | 337.82 a | 35.00 a | 44.97 a | 19.16 a | 0.87 a | −0.13 a |
thermophilic | 403.30 ab | 5.30 a | 35.18 a | 59.44 a | 308.69 a | 34.70 b | 42.83 b | 21.57 b | 0.91 a | 0.09 b | |
stabilisation | 374.90 c | 6.17 b | 34.17 a | 67.74 b | 273.00 b | 33.93 c | 42.04 c | 22.83 c | 1.21 b | 0.20 c | |
WHIBC | initial | 409.14 a | 4.90 a | 33.42 a | 70.17 a | 305.56 a | 34.15 a | 43.57 a | 21.38 a | 0.90 a | 0.05 a |
thermophilic | 382.40 b | 7.90 b | 43.72 b | 74.81 b | 263.88 b | 31.21 b | 43.43 a | 24.17 b | 1.20 b | 0.29 b | |
stabilisation | 326.89 c | 10.31 c | 47.50 b | 63.34 c | 216.05 c | 30.25 b | 42.08 b | 26.08 b | 1.59 c | 0.48 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bekier, J.; Jamroz, E.; Sowiński, J.; Adamczewska-Sowińska, K.; Wilusz-Nogueira, M.; Gruszka, D. Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter. Sustainability 2025, 17, 1491. https://doi.org/10.3390/su17041491
Bekier J, Jamroz E, Sowiński J, Adamczewska-Sowińska K, Wilusz-Nogueira M, Gruszka D. Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter. Sustainability. 2025; 17(4):1491. https://doi.org/10.3390/su17041491
Chicago/Turabian StyleBekier, Jakub, Elżbieta Jamroz, Józef Sowiński, Katarzyna Adamczewska-Sowińska, Małgorzata Wilusz-Nogueira, and Dariusz Gruszka. 2025. "Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter" Sustainability 17, no. 4: 1491. https://doi.org/10.3390/su17041491
APA StyleBekier, J., Jamroz, E., Sowiński, J., Adamczewska-Sowińska, K., Wilusz-Nogueira, M., & Gruszka, D. (2025). Selected Properties of Bioconversion Products of Lignocellulosic Biomass and Biodegradable Municipal Waste as a Method for Sustainable Management of Exogenous Organic Matter. Sustainability, 17(4), 1491. https://doi.org/10.3390/su17041491