Evaluating Climate Change Effects on Coastal Tourism over the Black Sea Region by Using the Summer Simmer Index
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Study Area
3.2. Data Acquisition
- i.
- NCEP Climate Forecast System Reanalysis (CFSR) Selected Hourly Time-Series Products, January 1979 to December 2010 (ds093.1) (https://rda.ucar.edu/datasets/d093001/ (accessed on 22 February 2023));
- ii.
- NCEP Climate Forecast System Version 2 (CFSv2) Selected Hourly Time-Series Products (ds094.1) (https://rda.ucar.edu/datasets/d094001/ (accessed on 22 February 2023)). Version 2 provides data from January 2011.
3.3. Methodology
3.3.1. Summer Simmer Index (SSI)
- SSI: summer simmer index (°F)
- T: air temperature (°F)
- RH: relative humidity (%)
3.3.2. Mann–Kendall Test
3.3.3. Şen’s Innovative Trend Analysis (ITA)
4. Results
4.1. Evaluation of SSI Scores
4.2. Trend Analysis Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SSI | Summer Simmer Index |
NCEP/NCAR | National Centers for Environmental Prediction/National Center for Atmospheric Research |
MK | Mann–Kendall |
ITA | Şen’s innovative trend analysis |
TCI | Tourism Climate Index |
Humidex | Humidity Index |
ESI | Environmental Stress Index |
DI | Discomfort Index |
WGBT | Wet-Bulb Globe Temperature |
HI | Heat Index |
THI | Temperature Humidity Index |
CFSR | Climate Forecast System Reanalysis |
ASHRAE | American Society of Heating, Refrigerating and Air-Conditioning Engineers |
SDG | Sustainable Development Goals |
Appendix A
Province | Accommodation Facilities | Room Capacity | Bed Capacity | Tourist Arrivals | Tourist Overnight Stays (Days) | Average Stay (Days) | Occupancy Rate (%) |
---|---|---|---|---|---|---|---|
Düzce | 96 | 2282 | 4611 | 101,440 | 202,985 | 2.00 | 31.08 |
Zonguldak | 52 | 1876 | 3808 | 177,291 | 284,377 | 1.60 | 36.13 |
Bartın | 196 | 2217 | 4426 | 167,270 | 293,679 | 1.76 | 34.15 |
Kastamonu | 100 | 2288 | 4567 | 163,885 | 238,537 | 1.46 | 26.84 |
Sinop | 114 | 1529 | 3421 | 102,730 | 210,003 | 2.04 | 25.42 |
Samsun | 150 | 3973 | 7998 | 425,968 | 653,387 | 1.53 | 34.82 |
Ordu | 107 | 3137 | 6399 | 384,845 | 557,313 | 1.45 | 41.81 |
Giresun | 75 | 1874 | 3763 | 139,791 | 230,874 | 1.65 | 31.96 |
Trabzon | 246 | 9340 | 19,041 | 742,783 | 1,614,914 | 2.17 | 38.49 |
Rize | 120 | 3102 | 6335 | 144,747 | 262,263 | 1.81 | 37.67 |
Artvin | 136 | 2787 | 5585 | 102,092 | 163,102 | 1.60 | 34.31 |
Total study area | 1392 | 34,405 | 69,954 | 2,652,842 | 4,711,434 | 1.78 | 33.88 * |
Total Türkiye | 20,690 | 921,560 | 1,907,917 | 70,242,410 | 185,902,110 | 2.65 | 54.15 |
Appendix B
Location | Relative Humidity (ds093.1 and ds094.1) | Temperature (ds093.1) | Temperature (ds094.1) |
---|---|---|---|
Akçakoca | 41.0000N–31.0000E | 41.0581N–31.2500E | 40.9881N–31.0909E |
Zonguldak | 41.5000N–32.0000E | 41.3703N–31.8750E | 41.3969N–31.9091E |
Amasra | 42.0000N–32.5000E | 41.6825N–32.5000E | 41.8058N–32.3182E |
Cide | 42.0000N–33.0000E | 41.9948N–33.1250E | 42.0102N–32.9318E |
İnebolu | 42.0000N–34.0000E | 41.9948N–33.7500E | 42.0102N–33.7500E |
Sinop | 42.0000N–35.0000E | 41.9948N–35.0000E | 42.0102N–34.9773E |
Samsun | 41.5000N–36.0000E | 41.3703N–36.2500E | 41.3969N–36.2045E |
Ordu | 41.0000N–38.0000E | 41.0581N–37.8125E | 40.9881N–37.8409E |
Giresun | 41.0000N–38.5000E | 41.0581N–38.4375E | 40.9881N–38.4545E |
Trabzon | 41.0000N–39.5000E | 41.0581N–39.6875E | 40.9881N–39.6818E |
Rize | 41.0000N–40.5000E | 41.0581N–40.6250E | 40.9881N–40.5000E |
Hopa | 41.5000N–41.5000E | 41.3703N–41.2500E | 41.3969N–41.3182E |
References
- Ceyhunlu, A.I.; Ceribasi, G.; Ahmed, N.; Al-Najjar, H. Climate Change Analysis by Using Sen’s Innovative and Trend Analysis Methods for Western Black Sea Coastal Region of Turkey. J. Coast. Conserv. 2021, 25, 50. [Google Scholar] [CrossRef]
- Arabadzhyan, A.; Figini, P.; García, C.; González, M.M.; Lam-González, Y.E.; León, C.J. Climate Change, Coastal Tourism, and Impact Chains—A Literature Review. Curr. Issues Tour. 2021, 24, 2233–2268. [Google Scholar] [CrossRef]
- Matzarakis, A. Weather-and Climate-Related Information for Tourism. Tour. Hosp. Plan. Dev. 2006, 3, 99–115. [Google Scholar] [CrossRef]
- Coombes, E.G.; Jones, A.P. Assessing the Impact of Climate Change on Visitor Behaviour and Habitat Use at the Coast: A UK Case Study. Glob. Environ. Chang. 2010, 20, 303–313. [Google Scholar] [CrossRef]
- Gómez-Martín, M. Climate Potential and Tourist Demand in Catalonia (Spain) during the Summer Season. Clim. Res. 2006, 32, 75–87. [Google Scholar] [CrossRef]
- Nojarov, P. Impact of Climate Change on Atmospheric Circulation, Wind Characteristics and Wave in the Western Part of the Black Sea. Nat. Hazards 2021, 109, 1073–1095. [Google Scholar] [CrossRef]
- Ibret, B.U.; Aydinozu, D.; Bastemur, C. A Geographic Study on the Effects of Coastal Tourism on Sustainable Development: Coastal Tourism in Cide. Int. J. Sustain. Dev. World Ecol. 2013, 20, 134–141. [Google Scholar] [CrossRef]
- Aygün Oğur, A.; Baycan, T. Assessing Climate Change Impacts on Tourism Demand in Turkey; Springer: Dordrecht, The Netherlands, 2023; Volume 25, ISBN 0123456789. [Google Scholar]
- Guclu, Y. The Determination of Sea Tourism Season with Respect to Climatical Conditions on the Black Sea Region of Turkey. Procedia-Soc. Behav. Sci. 2011, 19, 258–269. [Google Scholar] [CrossRef]
- Kaján, E.; Saarinen, J. Tourism, Climate Change and Adaptation: A Review. Curr. Issues Tour. 2013, 16, 167–195. [Google Scholar] [CrossRef]
- Robert, S.; Quercy, A.; Schleyer-Lindenmann, A. Territorial Inertia versus Adaptation to Climate Change. When Local Authorities Discuss Coastal Management in a French Mediterranean Region. Glob. Environ. Chang. 2023, 81, 102702. [Google Scholar] [CrossRef]
- Dumitrescu, G.C.; Poladian, S.M.; Aluculesei, A.C. Repositioning of Romanian Seaside Tourism as an Effect of Climate Change. Information 2021, 12, 108. [Google Scholar] [CrossRef]
- Kostianaia, E.A.; Kostianoy, A.G. Regional Climate Change Impact on Coastal Tourism: A Case Study for the Black Sea Coast of Russia. Hydrology 2021, 8, 133. [Google Scholar] [CrossRef]
- Njoroge, J.M. Climate Change and Tourism Adaptation: Literature Review. Tour. Hosp. Manag. 2015, 21, 95–108. [Google Scholar] [CrossRef]
- Güçlü, Y. Batı Karadeniz Kıyı Kuşağında Klimatik Konfor ve Deniz Turizmi Mevsiminin İklim Koşullarına Göre Belirlenmesi. Türk Coğrafya Derg. 2009, 53, 1–14. [Google Scholar]
- Pang, S.F.H.; McKercher, B.; Prideaux, B. Climate Change and Tourism: An Overview. Asia Pac. J. Tour. Res. 2013, 18, 4–20. [Google Scholar] [CrossRef]
- Mansuroğlu, S.; Dağ, V.; Kalaycı Önaç, A. Attitudes of People toward Climate Change Regarding the Bioclimatic Comfort Level in Tourism Cities; Evidence from Antalya, Turkey. Environ. Monit. Assess. 2021, 193, 420. [Google Scholar] [CrossRef]
- Cetin, M. Determining the Bioclimatic Comfort in Kastamonu City. Environ. Monit. Assess. 2015, 187, 640. [Google Scholar] [CrossRef] [PubMed]
- Dönmez, Y.; Özyavuz, M.; Çabuk, S.; Çorbaci, Ö.L. Determination of Bioclimatic Comfort Zones by Geographic Information Systems: Karabük Province, Turkey. J. Int. Environ. Appl. Sci. 2018, 13, 41–49. [Google Scholar]
- Ghalhari, G.F.; Dehghan, S.F.; Asghari, M. Trend Analysis of Humidex as a Heat Discomfort Index Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests. Environ. Health Eng. Manag. J. 2022, 9, 165–176. [Google Scholar] [CrossRef]
- Simsek, O. Hydrological Drought Analysis of Mediterranean Basins, Turkey. Arab. J. Geosci. 2021, 14, 2136. [Google Scholar] [CrossRef]
- Linsheng, Z.; Hu, Y.; Yuxi, Z. Impact of Climate Change on Tibet Tourism Based on Tourism Climate Index. J. Geogr. Sci. 2019, 29, 2085–2100. [Google Scholar] [CrossRef]
- Demiroglu, O.C.; Saygili-Araci, F.S.; Pacal, A.; Hall, C.M.; Kurnaz, M.L. Future Holiday Climate Index (HCI) Performance of Urban and Beach Destinations in the Mediterranean. Atmosphere 2020, 11, 911. [Google Scholar] [CrossRef]
- Hasanah, N.A.I.; Maryetnowati, D.; Edelweis, F.N.; Indriyani, F.; Nugrahayu, Q. The Climate Comfort Assessment for Tourism Purposes in Borobudur Temple Indonesia. Heliyon 2020, 6, e05828. [Google Scholar] [CrossRef]
- Gao, C.; Liu, J.; Zhang, S.; Zhu, H.; Zhang, X. The Coastal Tourism Climate Index (CTCI): Development, Validation, and Application for Chinese Coastal Cities. Sustainability 2022, 14, 1425. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, S.; Huang, G. Assessing Climate Change Impacts on Human-Perceived Temperature Extremes and Underlying Uncertainties. J. Geophys. Res. Atmos. 2019, 124, 3800–3821. [Google Scholar] [CrossRef]
- Lee, J.S.; Byun, H.R.; Kim, D.W. Development of Accumulated Heat Stress Index Based on Time-Weighted Function. Theor. Appl. Climatol. 2016, 124, 541–554. [Google Scholar] [CrossRef]
- Sancar, M.C.; Güngör, Ş. A Review of Bioclimatic Comfort Areas Determined by the New Summer Index in Terms of Tourism in Antalya. Acta Biol. Turc. 2020, 33, 20–30. [Google Scholar]
- Asghari, M.; Fallah Ghalhari, G.A.; Heidari, H. Investigation of Thermal Comfort Changes Using Summer Simmer Index (SSI): A Case Study in Different Climates of Iran. Open Environ. Res. J. 2021, 14, 13–23. [Google Scholar] [CrossRef]
- Ghalhari, G.F.; Heidari, H.; Dehghan, S.F.; Asghari, M. Consistency Assessment between Summer Simmer Index and Other Heat Stress Indices (WBGT and Humidex) in Iran’s Climates. Urban Clim. 2022, 43, 101178. [Google Scholar] [CrossRef]
- Guclu, Y. Human Thermal Comfort Situation in the Goller (Lakes) District of Turkey. Glob. J. Adv. Pure Appl. Sci. 2016, 7, 137–144. [Google Scholar] [CrossRef]
- Cetin, M.; Alrabiti, O.B.M. Determination of Appropriate Areas in Terms of Bio Comfort by Using Summer Temperature Index with the Help of GIS throughout Ordu Province. J. Des. Resil. Archit. Plan. 2022, 3, 409–417. [Google Scholar] [CrossRef]
- Arıcak, B. CBS Yardımıyla Yaz Sıcaklık İndeksi Kullanılarak Biyokonfor Açısından Uygun Alanların Belirlenmesi; Samsun Örneği. Turk. J. Agric.-Food Sci. Technol. 2020, 8, 2657–2663. [Google Scholar] [CrossRef]
- Güçlü, Y. Sinop-Ordu Kıyı Kuşağında Iklim Konforu ve Deniz Turizmi Mevsiminin Iklim Koşullarına Göre Belirlenmesi. Doğu Coğrafya Derg. 2010, 15, 119–144. [Google Scholar]
- GDSAA. Airports. Available online: https://www.dhmi.gov.tr/Sayfalar/HavaLimanlari.aspx (accessed on 23 June 2023).
- Zeydan, Ö.; Zeydan, İ. Impacts of Travel Bans and Travel Intention Changes on Aviation Emissions Due to Covid-19 Pandemic. Environ. Dev. Sustain. 2024, 26, 4955–4972. [Google Scholar] [CrossRef] [PubMed]
- MCT. Tourism Statistics General Assessment. 2022. Available online: https://yigm.ktb.gov.tr/TR-9851/turizm-istatistikleri.html (accessed on 11 January 2025).
- Khan, A.A. Projections of Tourist Arrivals in the Eastern Black Sea Region of Turkey. Turk. J. Geogr. Sci. 2020, 18, 85–98. [Google Scholar] [CrossRef]
- Apak, Ö.C.; Gürbüz, A. The Effect of Local Food Consumption of Domestic Tourists on Sustainable Tourism. J. Retail. Consum. Serv. 2023, 71, 103192. [Google Scholar] [CrossRef]
- TÜRÇEV. Blue Flag Türkiye. Available online: http://www.mavibayrak.org.tr/turkiye/anasayfa.aspx (accessed on 10 January 2025).
- Güçlü, Y. Doğu Karadeniz Bölümü Kıyı Kuşağında İklim Konforu Şartlarının Kıyı Turizmi Yönünden İncelenmesi. Coğrafi Bilim. Derg. 2010, 8, 111–136. [Google Scholar] [CrossRef]
- Zeydan, İ.; Zeydan, Ö. Karadeniz Turizmi Açısından Uzaktan Algılama Ile Sıcaklık Nem İndeksinin Belirlenmesi. Anatolia Tur. Araştırmaları Derg. 2023, 34, 60–70. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, D.; Bunde, A.; Havlin, S. Testing Reanalysis Data Sets in Antarctica: Trends, Persistence Properties, and Trend Significance. J. Geophys. Res. Atmos. 2016, 121, 12839–12855. [Google Scholar] [CrossRef]
- Hocke, K.; Kämpfer, N. Hovmöller Diagrams of Climate Anomalies in NCEP/NCAR Reanalysis from 1948 to 2009. Clim. Dyn. 2011, 36, 355–364. [Google Scholar] [CrossRef]
- Gumus, B.; Oruc, S.; Yucel, I.; Yilmaz, M.T. Impacts of Climate Change on Extreme Climate Indices in Türkiye Driven by High-Resolution Downscaled CMIP6 Climate Models. Sustainability 2023, 15, 7202. [Google Scholar] [CrossRef]
- Raziei, T.; Parehkar, A. Performance Evaluation of NCEP/NCAR Reanalysis Blended with Observation-Based Datasets for Estimating Reference Evapotranspiration across Iran. Theor. Appl. Climatol. 2021, 144, 885–903. [Google Scholar] [CrossRef]
- Zhang, X.; Alexander, L.; Hegerl, G.C.; Jones, P.; Tank, A.K.; Peterson, T.C.; Trewin, B.; Zwiers, F.W. Indices for Monitoring Changes in Extremes Based on Daily Temperature and Precipitation Data. Wiley Interdiscip. Rev. Clim. Chang. 2011, 2, 851–870. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Serykh, I.V.; Ekba, Y.A.; Kravchenko, P.N. Climate Variability of Extreme Air Temperature Events in the Eastern Black Sea. Ecol. Montenegrina 2017, 14, 21–29. [Google Scholar] [CrossRef]
- Külekçioğlu, T.; Fıstıkoğlu, O. İstasyon Bazlı Günlük Maksimum Yağışlar İle Büyük Ölçekli Atmosferik Parametreler Arasındaki İlişkilerin Araştırılması. Deu Muhendis. Fak. Fen Ve Muhendis. 2022, 24, 901–912. [Google Scholar] [CrossRef]
- Pepi, J.W. The Summer Simmer Index. Weatherwise 1987, 40, 143–145. [Google Scholar] [CrossRef]
- Mihaila, D.; Bistricean, P.; Lazurca, L.G. Spatial and Temporal Relevance of Some Bioclimatic Indexes for the Study of the Bioclimate of Moldova (West of the Prut River). Georeview 2016, 26, 78–94. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of Changes in Meteorological Variables Using Mann-Kendall and Sen’s Slope Estimator Statistical Tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Yadav, R.; Tripathi, S.K.; Pranuthi, G.; Dubey, S.K. Trend Analysis by Mann-Kendall Test for Precipitation and Temperature for Thirteen Districts of Uttarakhand. J. Agrometeorol. 2014, 16, 164–171. [Google Scholar] [CrossRef]
- Banc, S.; Croitoru, A.E.; David, N.A.; Scripcă, A.S. Changes Detected in Five Bioclimatic Indices in Large Romanian Cities over the Period 1961–2016. Atmosphere 2020, 11, 819. [Google Scholar] [CrossRef]
- Islam, S.; Ojasvi, P.R.; Srivastava, P.; Gupta, A.K.; Yadav, R.S. Temperature and Rainfall Trend Analysis at Monthly Scale in Dehradun District, Uttarakhand Using Variance Corrected Mann- Kendall Test. Clim. Change Environ. Sustain. 2020, 8, 201–212. [Google Scholar] [CrossRef]
- Meals, D.W.; Spooner, J.; Dressing, S.A.; Harcum, J.B. Tech Notes 6: Statistical Analysis for Monotonic Trends; Tetra Tech, Inc.: Fairfax, VA, USA, 2011. [Google Scholar]
- Helsel, D.R.; Frans, L.M. Regional Kendall Test for Trend. Environ. Sci. Technol. 2006, 40, 4066–4073. [Google Scholar] [CrossRef] [PubMed]
- Şen, Z. Innovative Trend Analysis Methodology. J. Hydrol. Eng. 2012, 17, 1042–1046. [Google Scholar] [CrossRef]
- Dabanli, I.; Şişman, E.; Güçlü, Y.S.; Birpınar, M.E.; Şen, Z. Climate Change Impacts on Sea Surface Temperature (SST) Trend around Turkey Seashores. Acta Geophys. 2021, 69, 295–305. [Google Scholar] [CrossRef]
- Efe, B.; Gözet, E.; Özgür, E.; Lupo, A.R.; Deniz, A. Spatiotemporal Variation of Tourism Climate Index for Türkiye during 1981–2020. Climate 2022, 10, 151. [Google Scholar] [CrossRef]
- Ali, R.; Kuriqi, A.; Abubaker, S.; Kisi, O. Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method. Water 2019, 11, 1855. [Google Scholar] [CrossRef]
- Kisi, O. An Innovative Method for Trend Analysis of Monthly Pan Evaporations. J. Hydrol. 2015, 527, 1123–1129. [Google Scholar] [CrossRef]
- Alashan, S. Innovative Trend Analysis Methodology in Logarithmic Axis. Konya J. Eng. Sci. 2020, 8, 573–585. [Google Scholar] [CrossRef]
- Nguyen, H.M.; Ouillon, S.; Vu, V.D. Sea Level Variation and Trend Analysis by Comparing Mann–Kendall Test and Innovative Trend Analysis in Front of the Red River Delta, Vietnam (1961–2020). Water 2022, 14, 1709. [Google Scholar] [CrossRef]
- Seenu, P.Z.; Jayakumar, K.V. Comparative Study of Innovative Trend Analysis Technique with Mann-Kendall Tests for Extreme Rainfall. Arab. J. Geosci. 2021, 14, 536. [Google Scholar] [CrossRef]
- Cinar, İ.; Karakus, N.; Toy, S. Analysing Daytime Summer Thermal Comfort Conditions for Turkey’s Third Largest Tourism Destination. Environ. Sci. Pollut. Res. 2023, 30, 50046–50056. [Google Scholar] [CrossRef]
- Efe, B.; Gözet, E. Samsun Ilinin Turizm Iklim Indeksi Değerlerinin Trend Analizi. Gümüşhane Üniv. Fen Bilim. Enst. Derg. 2021, 11, 1164–1176. [Google Scholar] [CrossRef]
SSI (°F) | Zone | Thermal Comfort Class for Human |
---|---|---|
70 ≤ SSI < 77 | 1 | Most people are comfortable, but slightly cool |
77 ≤ SSI < 83 | 2 | Nearly everyone feels quite comfortable |
83 ≤ SSI < 91 | 3 | Most are comfortable, but slightly warm |
91 ≤ SSI < 100 | 4 | Increasing discomfort is experienced (warm) |
100 ≤ SSI < 112 | 5 | A caution of sunstroke and heat exhaustion exists for prolonged exposure and activity, along with significant discomfort (extremely warm) |
112 ≤ SSI < 125 | 6 | Virtually everyone is uncomfortable, a danger of heatstroke and great discomfort exists (hot) |
125 ≤ SSI < 150 | 7 | There is an extreme danger of heatstroke, especially for the weakened or elderly, and even young children, whose body metabolism demands cooler effective temperatures than most adults. Maximum discomfort exists in these conditions (extremely hot) |
SSI ≥ 150 | 8 | Circulatory collapse is imminent for prolonged exposure |
1993–2007 | 2008–2022 | ||||||||
---|---|---|---|---|---|---|---|---|---|
Location | Month | Relative Humidity (%) | Temperature (°C and °F) | SSI (°F) | Zone | Relative Humidity (%) | Temperature (°C and °F) | SSI (°F) | Zone |
Akçakoca | June | 64.4 | 18.7–65.7 | 70.3 | 1 | 69.7 | 19.8–67.6 | 73.9 | 1 |
July | 64.1 | 21.5–70.7 | 78.1 | 2 | 69.7 | 22.0–71.6 | 80.5 | 2 | |
August | 67.4 | 21.3–70.3 | 78.1 | 2 | 70.2 | 22.1–71.8 | 80.7 | 2 | |
Zonguldak | June | 66.9 | 19.5–67.1 | 72.6 | 1 | 71.8 | 20.0–68.0 | 74.8 | 1 |
July | 66.0 | 22.2–72.0 | 80.6 | 2 | 71.0 | 22.3–72.1 | 81.5 | 2 | |
August | 68.7 | 22.0–71.6 | 80.3 | 2 | 70.8 | 22.2–72.0 | 81.3 | 2 | |
Amasra | June | 72.0 | 19.0–66.2 | 71.8 | 1 | 77.5 | 18.7–65.7 | 71.2 | 1 |
July | 71.1 | 22.2–72.0 | 81.2 | 2 | 75.7 | 22.3–72.1 | 82.2 | 2 | |
August | 72.0 | 22.7–72.9 | 83.0 | 3 | 74.4 | 23.3–73.9 | 84.9 | 3 | |
Cide | June | 70.0 | 18.8–65.8 | 71.0 | 1 | 76.1 | 17.9–64.2 | 68.4 | - |
July | 68.5 | 22.0–71.6 | 80.4 | 2 | 74.7 | 21.5–70.7 | 79.5 | 2 | |
August | 70.3 | 22.5–72.5 | 81.9 | 2 | 73.5 | 22.4–72.3 | 82.2 | 2 | |
İnebolu | June | 66.4 | 18.0–64.4 | 68.4 | - | 76.2 | 16.9–62.4 | 65.6 | - |
July | 64.6 | 21.1–70.0 | 77.2 | 2 | 74.8 | 20.5–68.9 | 76.5 | 1 | |
August | 68.4 | 20.8–69.4 | 76.6 | 1 | 74.1 | 21.2–70.2 | 78.5 | 2 | |
Sinop | June | 73.3 | 18.3–64.9 | 69.8 | - | 78.1 | 17.7–63.9 | 68.0 | - |
July | 71.7 | 21.8–71.2 | 80.1 | 2 | 75.8 | 21.7–71.1 | 80.2 | 2 | |
August | 72.4 | 23.0–73.4 | 83.9 | 3 | 74.8 | 22.9–73.2 | 83.8 | 3 | |
Samsun | June | 72.3 | 17.8–64.0 | 68.1 | - | 76.9 | 18.8–65.8 | 71.6 | 1 |
July | 69.5 | 21.1–70.0 | 77.7 | 2 | 73.2 | 21.8–71.2 | 80.3 | 2 | |
August | 71.3 | 21.6–70.9 | 79.5 | 2 | 73.9 | 22.3–72.1 | 81.8 | 2 | |
Ordu | June | 77.2 | 18.5–65.3 | 70.6 | 1 | 80.1 | 18.5–65.3 | 71.0 | 1 |
July | 76.2 | 21.8–71.2 | 80.7 | 2 | 76.7 | 21.7–71.1 | 80.6 | 2 | |
August | 75.4 | 23.0–73.4 | 84.5 | 3 | 77.8 | 21.9–71.4 | 81.3 | 2 | |
Giresun | June | 76.6 | 19.1–66.4 | 72.6 | 1 | 79.4 | 18.6–65.5 | 70.9 | 1 |
July | 76.1 | 22.3–72.1 | 82.4 | 2 | 77.2 | 22.2–72.0 | 82.1 | 2 | |
August | 75.5 | 23.6–74.5 | 86.2 | 3 | 77.4 | 23.1–73.6 | 85.1 | 3 | |
Trabzon | June | 77.6 | 17.9–64.2 | 68.7 | - | 83.6 | 17.7–63.9 | 68.5 | - |
July | 77.8 | 21.0–69.8 | 78.6 | 2 | 81.2 | 20.4–68.7 | 77.0 | 2 | |
August | 78.3 | 22.1–71.8 | 82.1 | 2 | 83.0 | 20.7–69.3 | 78.2 | 2 | |
Rize | June | 77.5 | 15.7–60.3 | 61.8 | - | 78.1 | 17.7–63.9 | 68.1 | - |
July | 79.0 | 18.4–65.1 | 70.6 | 1 | 80.3 | 19.5–67.1 | 74.0 | 1 | |
August | 79.6 | 19.0–66.2 | 72.3 | 1 | 82.4 | 19.9–67.8 | 75.4 | 1 | |
Hopa | June | 81.3 | 15.7–60.3 | 61.9 | - | 81.4 | 17.7–63.9 | 68.3 | - |
July | 83.3 | 18.4–65.1 | 70.9 | 1 | 82.3 | 19.5–67.1 | 74.2 | 1 | |
August | 83.1 | 19.0–66.2 | 72.6 | 1 | 83.0 | 19.9–67.8 | 75.5 | 1 |
SSI Zones (1993–2007) | SSI Zones (2008–2022) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Location | Cold | 1 | 2 | 3 | 4 | Cold | 1 | 2 | 3 | 4 |
Akçakoca | 11.1 | 51.1 | 33.3 | 4.4 | 0.0 | 4.4 | 33.3 | 46.7 | 15.6 | 0.0 |
Zonguldak | 6.7 | 31.1 | 46.7 | 15.6 | 0.0 | 2.2 | 28.9 | 46.7 | 22.2 | 0.0 |
Amasra | 8.9 | 24.4 | 42.2 | 24.4 | 0.0 | 13.3 | 20.0 | 31.1 | 26.7 | 8.9 |
Cide | 15.6 | 20.0 | 48.9 | 15.6 | 0.0 | 15.6 | 35.6 | 22.2 | 26.7 | 0.0 |
İnebolu | 24.4 | 48.9 | 24.4 | 2.2 | 0.0 | 24.4 | 33.3 | 33.3 | 8.9 | 0.0 |
Sinop | 20.0 | 15.6 | 37.8 | 26.7 | 0.0 | 17.8 | 31.1 | 15.6 | 35.6 | 0.0 |
Samsun | 24.4 | 26.7 | 37.8 | 11.1 | 0.0 | 11.1 | 28.9 | 44.4 | 15.6 | 0.0 |
Ordu | 20.0 | 15.6 | 35.6 | 28.9 | 0.0 | 13.3 | 33.3 | 31.1 | 22.2 | 0.0 |
Giresun | 4.4 | 28.9 | 26.7 | 40.0 | 0.0 | 11.1 | 26.7 | 22.2 | 35.6 | 4.4 |
Trabzon | 24.4 | 20.0 | 37.8 | 17.8 | 0.0 | 20.0 | 40.0 | 35.6 | 4.4 | 0.0 |
Rize | 57.8 | 40.0 | 2.2 | 0.0 | 0.0 | 26.7 | 51.1 | 22.2 | 0.0 | 0.0 |
Hopa | 55.6 | 37.8 | 6.7 | 0.0 | 0.0 | 26.7 | 51.1 | 22.2 | 0.0 | 0.0 |
Location | S | τ | 2-Sided p-Value | Trend |
---|---|---|---|---|
Akçakoca | 955 | 0.238 | <0.001 | Upward trend |
Zonguldak | 491 | 0.123 | 0.088 | No trend |
Amasra | 207 | 0.052 | 0.473 | No trend |
Cide | −103 | −0.026 | 0.722 | No trend |
İnebolu | 85 | 0.021 | 0.770 | No trend |
Sinop | 53 | 0.013 | 0.856 | No trend |
Samsun | 815 | 0.203 | 0.005 | Upward trend |
Ordu | −91 | −0.023 | 0.754 | No trend |
Giresun | −89 | −0.022 | 0.759 | No trend |
Trabzon | −287 | −0.072 | 0.319 | No trend |
Rize | 1219 | 0.304 | <0.001 | Upward trend |
Hopa | 1183 | 0.295 | <0.001 | Upward trend |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zeydan, Ö.; Zeydan, İ.; Gürbüz, A. Evaluating Climate Change Effects on Coastal Tourism over the Black Sea Region by Using the Summer Simmer Index. Sustainability 2025, 17, 1490. https://doi.org/10.3390/su17041490
Zeydan Ö, Zeydan İ, Gürbüz A. Evaluating Climate Change Effects on Coastal Tourism over the Black Sea Region by Using the Summer Simmer Index. Sustainability. 2025; 17(4):1490. https://doi.org/10.3390/su17041490
Chicago/Turabian StyleZeydan, Özgür, İlknur Zeydan, and Ahmet Gürbüz. 2025. "Evaluating Climate Change Effects on Coastal Tourism over the Black Sea Region by Using the Summer Simmer Index" Sustainability 17, no. 4: 1490. https://doi.org/10.3390/su17041490
APA StyleZeydan, Ö., Zeydan, İ., & Gürbüz, A. (2025). Evaluating Climate Change Effects on Coastal Tourism over the Black Sea Region by Using the Summer Simmer Index. Sustainability, 17(4), 1490. https://doi.org/10.3390/su17041490