Biological Resources for Renewable Energies in the European Union: A Hierarchical Approach
Abstract
:1. Introduction
- (1)
- Which member state has achieved the best socio-economic outcomes in the bio-based energy and biofuels sectors?
- (2)
- How are the EU member states grouped based on socio-economic indicators in the bioeconomy?
- (3)
- What are the similarities and differences among the clustered member states according to SEIB?
2. Literature Background
3. Materials and Methods
3.1. Cluster Research
3.2. The Socio-Economic Indicator of Bioeconomy
4. Results
4.1. Cluster Approach
4.2. SEIB Analysis
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
Abbreviation | Meaning |
AHP | Analytical Hierarchy Process |
ANOVA | Analysis of variance |
BBE | Bio-based electricity |
CEECs | Central and Eastern European Countries |
EU | European Union |
GHG | Greenhouse Gas |
LB | Liquid biofuels |
MSs | Member States |
SEIB | Socio-economic indicator of bioeconomy |
NPE | Number of persons employed |
TRN | Turnover |
VAFC | Value added at factor cost |
WP | Socio-economic indicator weight |
WS | Weight of the bio-based sector |
References
- Barragán-Ocaña, A. Role of Waste Biomass in a Future Circular Bioeconomy: Regulations and Policy Framework. In Catalytic Applications of Biochar for Environmental Remediation: Sustainable Strategies Towards a Circular Economy; American Chemical Society: Washington, DC, USA, 2024; Volume 2, pp. 73–93. [Google Scholar]
- Shirvani, T. The Role of Bioengineering in Building a Bioeconomy. Nat. Rev. Bioeng. 2024, 2, 908–910. [Google Scholar] [CrossRef]
- Tapiola, T.; Leppälä, J.; Ghalibaf, M. How to Advance Sustainable Innovations for Circular Bioeconomy: Perspectives from a Public Research Institute. J. Innov. Manag. 2024, 12, 117–141. [Google Scholar] [CrossRef]
- Van Lancker, J.; Wauters, E.; Van Huylenbroeck, G. Managing Innovation in the Bioeconomy: An Open Innovation Perspective. Biomass Bioenergy 2016, 90, 60–69. [Google Scholar] [CrossRef]
- Popp, J.; Kovács, S.; Oláh, J.; Divéki, Z.; Balázs, E. Bioeconomy: Biomass and Biomass-Based Energy Supply and Demand. New Biotechnol. 2021, 60, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Rozakis, S.; Juvančič, L.; Kovacs, B. Bioeconomy for Resilient Post-COVID Economies. Energies 2022, 15, 2958. [Google Scholar] [CrossRef]
- European Parliament and Council of the European Union. Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009 on the Promotion of the Use of Energy from Renewable Sources and Amending and Subsequently Repealing Directives 2001/77/EC and 2003/30/EC. Off. J. Eur. Union 2009, L140, 16–62. [Google Scholar]
- Rashedi, A.; Khanam, T. Life cycle assessment of most widely adopted solar photovoltaic energy technologies by mid-point and end-point indicators of ReCiPe method. Environ. Sci. Pollut. Res. 2020, 27, 29075–29090. [Google Scholar] [CrossRef] [PubMed]
- Kulisic, B.; Gagnon, B.; Schweinle, J.; Van Holsbeeck, S.; Brown, M.; Simurina, J.; Dimitriou, I.; McDonald, H. The Contributions of Biomass Supply for Bioenergy in the Post-COVID-19 Recovery. Energies 2021, 14, 8415. [Google Scholar] [CrossRef]
- Erb, K.-H.; Haberl, H.; Plutzar, C. Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability. Energy Policy 2012, 47, 260–269. [Google Scholar] [CrossRef]
- Shafie, S.M.; Mahlia, T.M.; Masjuki, H.H.; Ahmad-Yazid, A. A Review on Electricity Generation Based on Biomass Residue in Malaysia. Renew. Sustain. Energy Rev. 2012, 16, 5879–5889. [Google Scholar] [CrossRef]
- Shortall, O.K.; Raman, S.; Millar, K. Are plants the new oil? Responsible innovation, biorefining and multipurpose agriculture. Energy Policy 2015, 86, 360–368. [Google Scholar] [CrossRef]
- Bracco, S.; Calicioglu, O.; Gomez San Juan, M.; Flammini, A. Assessing the Contribution of Bioeconomy to the Total Economy: A Review of National Frameworks. Sustainability 2018, 10, 1698. [Google Scholar] [CrossRef]
- Egenolf, V.; Bringezu, S. Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy. Sustainability 2019, 11, 443. [Google Scholar] [CrossRef]
- Lamers, P.; Junginger, M.; Dymond, C.C.; Faaij, A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy 2014, 6, 44–60. [Google Scholar] [CrossRef]
- Casau, M.; Dias, M.F.; Matias, J.C.O.; Nunes, L.J.R. Residual Biomass: A Comprehensive Review on the Importance, Uses and Potential in a Circular Bioeconomy Approach. Resources 2022, 11, 35. [Google Scholar] [CrossRef]
- Ersoy, A.E.; Ugurlu, A. Bioenergy’s role in achieving a low-carbon electricity future: A case of Türkiye. Appl. Energy 2024, 372, 123799. [Google Scholar] [CrossRef]
- Sharma, V.; Gupta, R. Biomass Digestion for Production of Electrical Energy. In Sustainable and Clean Energy Production Technologies; Pal, D.B., Jha, J.M., Eds.; Clean Energy Production Technologies; Springer: Singapore, 2022; pp. 151–178. [Google Scholar] [CrossRef]
- Roni, M.S.; Chowdhury, S.; Mamun, S.; Marufuzzaman, M.; Lein, W.; Johnson, S. Biomass co-firing technology with policies, challenges, and opportunities: A global review. Renew. Sustain. Energy Rev. 2017, 78, 1089–1101. [Google Scholar] [CrossRef]
- Petersen, J.-E. Energy production with agricultural biomass: Environmental implications and analytical challenges. Eur. Rev. Agric. Econ. 2008, 35, 385–408. [Google Scholar] [CrossRef]
- Söderberg, C.; Eckerberg, K.; Eckerberg, K.; Sandström, C. Rising policy conflicts in Europe over bioenergy and forestry. For. Policy Econ. 2013, 33, 112–119. [Google Scholar] [CrossRef]
- Schuenemann, F.; Msangi, S.; Zeller, M. Policies for a sustainable biomass energy sector in Malawi: Enhancing energy and food security simultaneously. World Dev. 2018, 103, 14–26. [Google Scholar] [CrossRef]
- Ibitoye, S.E.; Mahamood, R.M.; Jen, T.C.; Loha, C.; Akinlabi, E.T. An overview of biomass solid fuels: Biomass sources, processing methods, and morphological and microstructural properties. J. Bioresour. Bioprod. 2023, 8, 333–360. [Google Scholar] [CrossRef]
- Schmidhuber, J. Biofuels: An Emerging Threat to Europe’s Food Security? Impact of an Increased Biomass Use on Agricultural Markets, Prices and Food Security: A Longer-Term Perspective. In Proceedings of the Energy Security in Europe Conference, Lund, Sweden, 24–25 September 2007. [Google Scholar]
- Welfle, A.; Gilbert, P.; Thornley, P. Securing a bioenergy future without imports. Energy Policy 2014, 68, 1–14. [Google Scholar] [CrossRef]
- Zuniga-Gonzalez, C.A.; Quiroga-Canaviri, J.L.; Brambila-Paz, J.J.; Ceballos-Pérez, S.G.; Rojas-Rojas, M.M. Formulation of an innovative model for the bioeconomy. PLoS ONE 2024, 19, e0309358. [Google Scholar] [CrossRef]
- Ronzon, T.; Iost, S.; Philippidis, G. Has the European Union entered a bioeconomy transition? Combining an output-based approach with a shift-share analysis. Environ. Dev. Sustain. 2022, 24, 8195–8217. [Google Scholar] [CrossRef]
- Hassan, S.S.; Williams, G.A.; Jaiswal, A.K. Moving towards the Second Generation of Lignocellulosic Biorefineries in the EU: Drivers, Challenges, and Opportunities. Renew. Sustain. Energy Rev. 2019, 101, 590–599. [Google Scholar] [CrossRef]
- Liobikienė, G.; Miceikienė, A. Contribution of the European Bioeconomy Strategy to the Green Deal Policy: Challenges and Opportunities in Implementing These Policies. Sustainability 2023, 15, 7139. [Google Scholar] [CrossRef]
- Gołębiewski, J. Employment and Added Value in Europen Union Bioeconomy—A Sustainable Development Perspective. Roczniki 2020, XXII, 74–83. [Google Scholar] [CrossRef]
- Swetha, T.A.; Mohanrasu, K.; Sudhakar, M.; Raja, R.; Ponnuchamy, K.; Muthusamy, G.; Arun, A. Acomprehensive review on techniques used in conversion of biomass into bioeconomy. Sustain. Energy Technol. Assess. 2022, 53, 102682. [Google Scholar] [CrossRef]
- Proskurina, S.; Mendoza-Martinez, C. Expectations for Bioenergy Considering Carbon Neutrality Targets in the EU. Energies 2023, 16, 5314. [Google Scholar] [CrossRef]
- Proskurina, S.; Stolarski, M.; Vakkilainen, E. Bioenergy Perspectives in the EU Regions: Carbon Neutrality Pathway. J. Sustain. Bioenergy Syst. 2023, 13, 16–39. [Google Scholar] [CrossRef]
- Sterman, J.D.; Siegel, L.; Rooney-Varga, J.N. Does replacing coal with wood lower CO2 emissions? Dynamic lifecycle analysis of wood bioenergy. Environ. Res. Lett. 2018, 13, 015007. [Google Scholar] [CrossRef]
- Purwestri, R.C.; Hájek, M.; Šodková, M.; Sane, M.; Kašpar, J. Bioeconomy in the National Forest Strategy: A Comparison Study in Germany and the Czech Republic. Forests 2020, 11, 608. [Google Scholar] [CrossRef]
- Philp, J. Biotechnologies to Bridge the Schism in the Bioeconomy. Energies 2021, 14, 8393. [Google Scholar] [CrossRef]
- Mainar-Causapé, A.J.; Philippidis, G.; Sanjuán-López, A.I. Constructing an open access economy-wide database for bioeconomy impact assessment in the European Union member states. Econ. Syst. Res. 2021, 33, 133–156. [Google Scholar] [CrossRef]
- Morales, D. Spaces of the forest-based bioeconomy in Finnish Lapland and Catalonia: Practitioners, narratives and forgotten spatialities. Fennia 2021, 199, 174–187. [Google Scholar] [CrossRef]
- Kleinschmit, D.; Lindstad, B.H.; Thorsen, B.J.; Toppinen, A.; Roos, A.; Baardsen, S. Shades of green: A social scientific view on bioeconomy in the forest sector. Scand. J. For. Res. 2014, 29, 402–410. [Google Scholar] [CrossRef]
- McCormick, K.; Kautto, N. The Bioeconomy in Europe: An Overview. Sustainability 2013, 5, 2589–2608. [Google Scholar] [CrossRef]
- Calderon, C.; Colla, M.; Jossart, J.-M.; Hemeleers, N.; Martin, A.; Aveni, N.; Caferri, C. Statistical Report 2019; Report Biomass Supply; Bioenergy Europe: Brussels, Belgium, 2019; Available online: https://bioenergyeurope.org/bio-economy/ (accessed on 17 October 2022).
- Scarlat, N.; Dallemand, J.F.; Monforti-Ferrario, F.; Nita, V. The role of biomass and bioenergy in a future bioeconomy: Policies and facts. Environ. Dev. 2015, 15, 3–34. [Google Scholar] [CrossRef]
- European Network for Rural Development. Mainstreaming the Bioeconomy: EU Rural Review No. 28. 2019. Available online: http://rb.gy/3c5to9 (accessed on 22 June 2023).
- Yang, L.; Wang, X.-C.; Dai, M.; Chen, B.; Qiao, Y.; Deng, H.; Zhang, D.; Zhang, Y.; Almeida, C.; Chou, A.; et al. Shifting from Fossil-Based Economy to Bio-Based Economy: Status Quo, Challenges, and Prospects. Energy 2021, 228, 120533. [Google Scholar] [CrossRef]
- European Comission (EC). Fit for 55’: Delivering the EU’s 2030 Climate Target on the Way to Climate Neutrality; European Commission: Brussels, Belgium, 2019; Available online: http://rb.gy/n2lv7c (accessed on 15 July 2022).
- Ranta, T.; Laihanen, M.; Karhunen, A. Development of the Bioenergy as a Part of Renewable Energy in the Nordic Countries: A Comparative Analysis. J. Sustain. Bioenergy Syst. 2020, 10, 92–112. [Google Scholar] [CrossRef]
- Busu, M.; Nedelcu, A.C. Analyzing the Renewable Energy and CO2 Emission Levels Nexus at an EU Level: A Panel Data Regression Approach. Processes 2021, 9, 130. [Google Scholar] [CrossRef]
- Walter, S. The regional impact of biofuel economics. Margin J. Appl. Econ. 2018, 12, 369–386. [Google Scholar] [CrossRef]
- Takács-György, K.; Lászlók, A.; Takács, I. Examination of first generation biofuel production in some selected biofuel producing countries in Europe: A case study. Agric. Econ. (Zeměd. Ekon.) 2020, 66, 469–476. [Google Scholar] [CrossRef]
- Potrč, S.; Čuček, L.; Martin, M.; Kravanja, Z. Synthesis of European Union Biorefinery Supply Networks Considering Sustainability Objectives. Processes 2020, 8, 1588. [Google Scholar] [CrossRef]
- Lasarte-López, J.; Piotrowski, S.; M’barek, R.; Carus, M.; Tamosiunas, S.J. EU Bioeconomy Monitoring System Indicators Update: Jobs and Value Added in the EU Bioeconomy 2020; European Commission, Ed.; Publications Office of the European Union, European Commission: Brussels, Belgium, 2023; Available online: https://datam.jrc.ec.europa.eu/datam/perm/dataset/7d7d5481-2d02-4b36-8e79-697b04fa4278 (accessed on 12 March 2024).
- D’Adamo, I.; Falcone, P.M.; Morone, P. A New Socio-economic Indicator to Measure the Performance of Bioeconomy Sectors in Europe. Ecol. Econ. 2020, 176, 106724. [Google Scholar] [CrossRef]
- Puttkammer, J.; Grethe, H. Who with whom in biofuel policy? Coalitions in the media discourse on liquid biofuels in Germany. Ecol. Perspect. Sci. Soc. 2018, 27, 235–244. [Google Scholar] [CrossRef]
- Pata, U.K.; Erdogan, S.; Ozcan, B. Evaluating the role of the share and intensity of renewable energy for sustainable development in Germany. J. Clean. Prod. 2023, 42, 138482. [Google Scholar] [CrossRef]
- Hinrichs-Rahlwes, R. Renewable energy: Paving the way towards sustainable energy security. Lessons learnt from Germany. Renew. Energy 2013, 49, 10–14. [Google Scholar] [CrossRef]
- Sturm, V.; Banse, M. Transition paths towards a bio-based economy in Germany: A model-based analysis. Biomass Bioenergy 2021, 148, 106002. [Google Scholar] [CrossRef]
- Staffas, L.; Gustavsson, M.; McCormick, K. Strategies and Policies for the Bioeconomy and Bio-Based Economy: An Analysis of Official National Approaches. Sustainability 2013, 5, 2751–2769. [Google Scholar] [CrossRef]
- Galanopoulos, C.; Barletta, D.; Zondervan, E. A decision support platform for a bio-based supply chain: Application to the region of Lower Saxony and Bremen (Germany). Comput. Chem. Eng. 2018, 115, 233–242. [Google Scholar] [CrossRef]
- Goerg, S.J.; Hempel, C.; Pondorfer, A. Stated purchase of bio-based products: Personal and regional factors in Germany. Clean. Circ. Bioecon. 2024, 8, 100087. [Google Scholar] [CrossRef]
- Balkin, R.S.; Lenz, A.S. Contemporary Issues in Reporting Statistical, Practical, and Clinical Significance in Counseling Research. J. Couns. Dev. 2021, 99, 227–237. [Google Scholar] [CrossRef]
- Sharma, K.K.; Seal, A. Outlier-robust multi-view clustering for uncertain data. Knowl.-Based Syst. 2021, 211, 106567. [Google Scholar] [CrossRef]
- Anusha, M.; Sathiaseelan, J. Feature selection using k-means genetic algorithm for multi-objective optimization. Procedia Comput. Sci. 2015, 57, 1074–1080. [Google Scholar] [CrossRef]
- List, J.A.; Shaikh, A.M.; Xu, Y. Multiple hypothesis testing in experimental economics. Exp. Econ. 2019, 22, 773–793. [Google Scholar] [CrossRef]
- Murtagh, F.; Legendre, P. Ward’s hierarchical agglomerative clustering method: Which algorithms implement Ward’s criterion? J. Classif. 2014, 31, 274–295. [Google Scholar] [CrossRef]
- Bu, J.; Liu, W.; Pan, Z.; Ling, K. Comparative Study of Hydrochemical Classification Based on Different Hierarchical Cluster Analysis Methods. Int. J. Environ. Res. Public Health 2020, 17, 9515. [Google Scholar] [CrossRef] [PubMed]
- Yim, O.; Ramdeen, K.T. Hierarchical cluster analysis: Comparison of three linkage measures and application to psychological data. Quant. Methods Psychol. 2015, 11, 8–21. [Google Scholar] [CrossRef]
- Babucea, A.G.; Danacica, E.D. Using Cluster Analysis for studying the proximity of registered unemployment at the level of counties in Romania at the beginning of the economic crisis. Constantin Brancusi Univ. Ann. Econ. Ser. 2009, 1, 347–356. Available online: https://rebrand.ly/4m4y73o (accessed on 26 July 2024).
- M’barek, R.; Philippidis, G.; Suta, C.; Vinyes, C.; Caivano, A.; Ferrari, E.; Ronzon, T.; Sanjuan-Lopez, A.; Santini, F. Observing and analysing the Bioeconomy in the EU: Adapting data and tools to new questions and challenges. Bio-Based Appl. Econ. 2014, 3, 83–91. [Google Scholar] [CrossRef]
- Babucea, A.G.; Răbonțu, C.I. The State of Adopting CRM Software-Solutions as Part of The Enterprises’ Internal Processes Integration—A Cluster Analysis at the Level of the EU-Member States just Prior to the COVID-19 Pandemic. Constantin Brancusi Univ. Ann. Econ. Ser. 2020, 5, 115–125. Available online: https://rebrand.ly/ut1eeuz (accessed on 26 July 2024).
- O’Brien, M.; Wechsler, D.; Bringezu, S.; Schaldach, R. Toward a systemic monitoring of the European bioeconomy: Gaps, needs and the integration of sustainability indicators and targets for global land use. Land Use Policy 2017, 66, 162–171. [Google Scholar] [CrossRef]
- Ronzon, T.; M’Barek, R. Socioeconomic Indicators to Monitor the EU’s Bioeconomy in Transition. Sustainability 2018, 10, 1745. [Google Scholar] [CrossRef]
- Sanz-Hernández, A.; Esteban, E.; Garrido, P. Transition to a bioeconomy. Perspectives from social sciences. J. Clean. Prod. 2019, 224, 107–119. [Google Scholar] [CrossRef]
- Saaty, T.L. The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation; McGraw-Hill International Book Co.: New York, NY, USA; London, UK, 1980; ISBN 978-0070543713. [Google Scholar]
- Morone, P.; D’Adamo, I.; Cianfroni, M. Inter-Connected Challenges: An Overview of Bioeconomy in Europe. Environ. Res. Lett. 2022, 17, 114031. [Google Scholar] [CrossRef]
- Firoiu, D.; Ionescu, G.H.; Cojocaru, T.M.; Niculescu, M.; Cimpoeru, M.N.; Călin, O.A. Progress of EU Member States Regarding the Bioeconomy and Biomass Producing and Converting Sectors. Sustainability 2023, 15, 14128. [Google Scholar] [CrossRef]
- Mandley, S.; Daioglou, V.; Junginger, H.; van Vuuren, D.; Wicke, B. EU bioenergy development to 2050. Renew. Sustain. Energy Rev. 2020, 127, 109858. [Google Scholar] [CrossRef]
- Alsaleh, M.; Abdulwakil, M.M.; Abdul-Rahim, A.S. Does Social Businesses Development Affect Bioenergy Industry Growth under the Pathway of Sustainable Development? Sustainability 2021, 13, 1989. [Google Scholar] [CrossRef]
- Proskurina, S.; Sikkema, R.; Heinimö, J.; Vakkilainen, E. Five years left—How are the EU member states contributing to the 20% target for EU’s renewable energy consumption; the role of woody biomass. Biomass Bioenergy 2016, 95, 64–77. [Google Scholar] [CrossRef]
- Srebotnik, T.; Hardi, P. Prospects for Sustainable Bioenergy Production in Selected Former Communist Countries. Ecol. Indic. 2011, 11, 1009–1019. [Google Scholar] [CrossRef]
- Kaniapan, S.; Hassan, S.; Ya, H.; Patma Nesan, K.; Azeem, M. The Utilisation of Palm Oil and Oil Palm Residues and the Related Challenges as a Sustainable Alternative in Biofuel, Bioenergy, and Transportation Sector: A Review. Sustainability 2021, 13, 3110. [Google Scholar] [CrossRef]
- Kallemets, K. Economic sustainability of Estonian shale oil industry until 2030. Oil Shale 2016, 33, 272. [Google Scholar] [CrossRef]
- Capozza, I. Decarbonising Romania’s Economy; OECD Economics Department Working Papers, No. 1812; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- Bădan, D.N.; Dumitru, E.A. The bioenergy potential of agricultural residues in Romania. Sci. Pap. Ser. Manag. Econ. Eng. Agric. Rural Dev. 2020, 20, 125–130. [Google Scholar]
- Bilandzija, N.; Voca, N.; Jelcic, B.; Jurisic, V.; Matin, A.; Grubor, M.; Kricka, T. Evaluation of Croatian agricultural solid biomass energy potential. Renew. Sustain. Energy Rev. 2018, 93, 225–230. [Google Scholar] [CrossRef]
- Malico, I.; Nepomuceno Pereira, R.; Gonçalves, A.C.; Sousa, A.M.O. Current status and future perspectives for energy production from solid biomass in the European industry. Renew. Sustain. Energy Rev. 2019, 112, 960–977. [Google Scholar] [CrossRef]
- Borychowski, M. Labour Productivity in the Liquid Biofuels Sector in Selected European Union countries. In Proceedings of the 2018 International Scientific Conference ‘Economic Sciences for Agribusiness and Rural Economy’ No 1, Warsaw, Poland, 7–8 June 2018; pp. 116–124, ISBN 978-83-7583-802-2. [Google Scholar] [CrossRef]
- Proskurina, S.; Vakkilainen, E. Perspectives on challenges to bioenergy use in the EU. Biofuels Bioprod. Biorefin. 2024, 18, 938–951. [Google Scholar] [CrossRef]
- Petrov, P.; Zgureva-Filipova, D.; Filipov, K.; Ganev, I. Analysis of the overall potential for electricity production from farm animals manure in Bulgaria. IOP Conf. Ser. Earth Environ. Sci. 2023, 1128, 012001. [Google Scholar] [CrossRef]
- Kamburova, V.; Rasheva, V.; Velikanov, M. Energy-Efficient Reconstruction of Public Lighting in Pravets Municipality from Bulgaria. E3S Web Conf. 2019, 112, 04008. [Google Scholar] [CrossRef]
- Dang, Q.; Hu, W.; Rover, M.; Brown, R.C.; Wright, M.M. Economics of Biofuels and Bioproducts from an Integrated Pyrolysis Biorefinery. Biofuels Bioprod. Biorefin. 2016, 10, 790–803. [Google Scholar] [CrossRef]
- Vojtovic, S.; Stundziene, A.; Kontautiene, R. The Impact of Socio-Economic Indicators on Sustainable Consumption of Domestic Electricity in Lithuania. Sustainability 2018, 10, 162. [Google Scholar] [CrossRef]
- Lam, C.H.; Das, S.; Erickson, N.C.; Hyzer, C.D.; Garedew, M.; Anderson, J.E.; Wallington, T.J.; Tamor, M.A.; Jackson, J.E.; Saffron, C.M. Towards sustainable hydrocarbon fuels with biomass fast pyrolysis oil and electrocatalytic upgrading. Sustain. Energy Fuels 2017, 1, 258–266. [Google Scholar] [CrossRef]
- Pažėraitė, A.; Brandišauskas, D. Assessment of the Barriers towards More Rapid Development of Solar Power: The Case of Lithuania. Energetika 2022, 68, 68–78. [Google Scholar] [CrossRef]
- Dang, Q.; Wright, M.M.; Li, W. Technoeconomic Analysis of a Hybrid Biomass Thermochemical and Electrochemical Conversion System. Energy Technol. 2018, 6, 178–187. [Google Scholar] [CrossRef]
- Harnisch, F.; Rosa, L.F.M.; Kracke, F.; Virdis, B.; Krömer, J.O. Electrifying white biotechnology: Engineering and economic potential of electricity-driven bio-production. ChemSusChem 2015, 8, 758–766. [Google Scholar] [CrossRef] [PubMed]
- Philippidis, G.; Bartelings, H.; Helming, J.; M’barek, R.; Smeets, E.; van Meijl, H. Levelling the playing field for EU biomass usage. Econ. Syst. Res. 2019, 31, 158–177. [Google Scholar] [CrossRef]
- Kapustová, Z.; Kapusta, J.; Boháčiková, A.; Bielik, P. Development status in EU biofuels market. Visegr. J. Bioecon. Sustain. Dev. 2020, 9, 67–71. [Google Scholar] [CrossRef]
- Stattman, S.L.; Gupta, A.; Partzsch, L.; Oosterveer, P. Toward Sustainable Biofuels in the European Union? Lessons from a Decade of Hybrid Biofuel Governance. Sustainability 2018, 10, 4111. [Google Scholar] [CrossRef]
- Veipa, A.; Kirsanovs, V.; Barisa, A. Techno-economic analysis of biofuel production plants producing biofuels using Fisher Tropsch synthesis. Environ. Clim. Technol. 2020, 24, 373–387. [Google Scholar] [CrossRef]
- Follador, M.; Philippidis, G.; Davis, J.L.; Soares Filho, B.S. Assessing the Impacts of the EU Bioeconomy on Third Countries; Publications Office of the European Union: Luxembourg, 2019; ISBN 978-92-76-09820-1. [Google Scholar] [CrossRef]
- EUR-Lex. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: https://rebrand.ly/3vcwt2r (accessed on 2 September 2024).
- Trømborg, E.; Jåstad, E. Report on Market Outlook and Future Viability of Different Bioenergy Products and Value Chains in the Baltic Sea Region Energy System for the BalticBiomass4Value Project; Project Co-Funded by the European Regional Development Fund; Norwegian University of Life Sciences: Ås, Norway, 2019. [Google Scholar]
- Podolchuk, D. Exploring the Relationship Between the EU Emissions Trading System and Renewable Energy Development in the EU. Int. Sci. J. Manag. Econ. Financ. 2023, 2, 1–12. [Google Scholar] [CrossRef]
- Simionescu, M.; Strielkowski, W.; Tvaronavičienė, M. Renewable Energy in Final Energy Consumption and Income in the EU-28 Countries. Energies 2020, 13, 2280. [Google Scholar] [CrossRef]
- Xie, Z.; Yin, R.; Zhi, Y. Analysis of the Renewable Energy Development Situations Among Twenty-Seven EU Countries. In Proceedings of the 2022 International Conference on Economics, Smart Finance and Contemporary Trade (ESFCT 2022), Xi’an, China, 22–24 July 2022; Atlantis Press: Dordrecht, The Netherlands, 2022. ISBN 978-94-6463-052-7. [Google Scholar] [CrossRef]
- Tsiropoulos, I.; Siskos, P.; Capros, P. The cost of recharging infrastructure for electric vehicles in the EU in a climate neutrality context: Factors influencing investments in 2030 and 2050. Appl. Energy 2022, 322, 119446. [Google Scholar] [CrossRef]
- Višković, A.; Franki, V. Status of Croatia’s energy sector framework: Progress, potential, challenges and recommendations. Therm. Sci. 2015, 19, 751–770. [Google Scholar] [CrossRef]
- Megyesiova, S.; Dul’ová Spišáková, E.; Gontkovičová, B. European Union and Its Progress towards Affordable and Clean Energy in Context of the Agenda 2030. PLoS ONE 2023, 18, e0291933. [Google Scholar] [CrossRef] [PubMed]
- Jaworski, S.; Chrzanowska, M.; Zielińska-Sitkiewicz, M.; Pietrzykowski, R.; Jezierska-Thöle, A.; Zielonka, P. Evaluating the Progress of Renewable Energy Sources in Poland: A Multidimensional Analysis. Energies 2023, 16, 6431. [Google Scholar] [CrossRef]
- Khorishko, L.; Horlo, N.; Malovana, Y. Estonian energy policy in the context of modern challenges. Balt. J. Econ. Stud. 2023, 9, 184–188. [Google Scholar] [CrossRef]
- Sillak, S.; Vasser, M. How might we co-design energy transition policy in old industrial regions? Environ. Policy Gov. 2023, 33, 139–152. [Google Scholar] [CrossRef]
- Poljanskihh, A.; Levina, A.; Dubgorn, A. Investment in Renewable Energy: Practical Case in Estonia. MATEC Web Conf. 2018, 193, 05065. [Google Scholar] [CrossRef]
- Banja, M.; Sikkema, R.; Jégard, M.; Motola, V.; Dallemand, J.-F. Biomass for energy in the EU—The support framework. Energy Policy 2019, 131, 215–228. [Google Scholar] [CrossRef]
- de Queiroz-Stein, G.; Siegel, K.M. Possibilities for mainstreaming biodiversity? Two perspectives on the concept of bioeconomy. Earth Syst. Gov. 2023, 17, 100181. [Google Scholar] [CrossRef]
Cases | |||||
---|---|---|---|---|---|
Valid | Missing | Total | |||
N 2 | Percent | N | Percent | N | Percent |
24 | 88.9% | 3 | 11.1% | 27 | 100.0% |
NPE 1 BBE 4 | TRN 2 BBE | VAFC 3 BBE | NPE LB 5 | TRN LB | VAFC LB | |
---|---|---|---|---|---|---|
UE 27 | 23,328 | 18,354 | 4372 | 22,164 | 13,339 | 2924 |
Austria | 710.5039 | 450.1124 | 160.9226 | 901.4362 | 490.1357 | 111.2235 |
Belgium | 475.6467 | 976.9685 | 134.0009 | 1194.1847 | 1084.1338 | 249.4574 |
Bulgaria | 209.3146 | 42.3445 | 20.4574 | 889.3559 | 90.3098 | 15.2742 |
Croatia | 58.7035 | 16.0555 | 7.6312 | 114.3229 | 12.8931 | 2.9557 |
Cyprus | 21.9778 | 7.6723 | 2.8600 | - | - | - |
Czech Rep. | - | - | - | 1667.6667 | 308.4265 | 61.3661 |
Denmark | 649.1663 | 737.2601 | 248.8374 | 212.3786 | 96.3643 | 32.7368 |
Estonia | 238.4625 | 92.9159 | 24.6714 | 2.6972 | 1.2101 | 0.1560 |
Finland | 1131.4345 | 826.6686 | 289.9631 | 813.0163 | 662.6049 | 163.6769 |
France | 1595.4913 | 708.3214 | 253.8715 | 2728.4382 | 1814.4001 | 332.8786 |
Germany | 10,185.8512 | 14,391.9937 | 1527.6258 | 3847.5240 | 2077.2861 | 453.2493 |
Greece | 99.6707 | 53.0578 | 10.6280 | 596.4262 | 181.5771 | 35.2573 |
Hungary | 510.3362 | 156.5677 | 49.8745 | 424.3854 | 172.7603 | 37.5775 |
Ireland | - | - | - | - | - | - |
Italy | 1607.3491 | 2866.7013 | 564.5037 | 1450.9746 | 946.5958 | 151.8676 |
Latvia | 217.5846 | 70.3544 | 24.6205 | - | - | - |
Lithuania | 235.5147 | 37.2136 | 15.6596 | 294.1737 | 129.7616 | 39.9715 |
Luxembourg | 16.6939 | 7.9622 | 4.7824 | - | - | - |
Malta | 0.0260 | 2.5796 | 0.2289 | - | - | - |
Netherlands | 269.8166 | 572.7719 | 115.9118 | 267.7634 | 605.6469 | 67.5360 |
Poland | 1868.6154 | 457.0877 | 201.8204 | 3729.4237 | 811.7564 | 128.9138 |
Portugal | 338.3790 | 246.9682 | 127.0409 | 679.4222 | 395.0507 | 41.5789 |
Romania | 176.9008 | 19.2100 | 10.2011 | 1012.0118 | 124.2046 | 18.6667 |
Slovakia | 237.0709 | 130.2089 | 34.5520 | 82.9117 | 21.1724 | 3.8875 |
Slovenia | 50.0772 | 16.2968 | 4.5955 | - | - | - |
Spain | 401.6193 | 504.4238 | 179.1954 | 1804.6022 | 923.3980 | 178.5154 |
Sweden | 976.0049 | 814.1345 | 261.8166 | 1110.6264 | 591.6519 | 181.0822 |
Variable | Workers | Turnover | Value Added |
---|---|---|---|
Production of bio-based energy | 0.319 | 0.353 | 0.328 |
Production of liquid biofuels | 0.315 | 0.356 | 0.329 |
Cluster Number | Variable | Data | |||
---|---|---|---|---|---|
N * | Mean | Std. Deviation | Variance | ||
1 | V1 NPE BBE | 52 | 0.277625 | 0.5286804 | 0.280 |
V2 TRN BBE | 52 | 0.314585 | 0.5344430 | 0.286 | |
V3 VAFC BBE | 52 | 0.339390 | 0.5663521 | 0.321 | |
V4 NPE LB | 39 | 0.034169 | 0.2781271 | 0.077 | |
V5 TRN LB | 39 | 0.125513 | 0.3117818 | 0.097 | |
V6 VAFC LB | 39 | 0.200382 | 0.6714699 | 0.451 | |
2 | V1 NPE BBE | 52 | 0.277625 | 0.5286804 | 0.280 |
V2 TRN BBE | 52 | 0.314585 | 0.5344430 | 0.286 | |
V3 VAFC BBE | 52 | 0.339390 | 0.5663521 | 0.321 | |
V4 NPE LB | 39 | 0.034169 | 0.2781271 | 0.077 | |
V5 TRN LB | 39 | 0.125513 | 0.3117818 | 0.097 | |
V6 VAFC LB | 39 | 0.200382 | 0.6714699 | 0.451 | |
3 | V1 NPE BBE | - | - | - | - |
V2 TRN BBE | - | - | - | - | |
V3 VAFC BBE | - | - | - | - | |
V4 NPE LB | - | - | - | - | |
V5 TRN LB | - | - | - | - | |
V6 VAFC LB | - | - | - | - | |
4 | V1 NPE BBE | - | - | - | - |
V2 TRN BBE | - | - | - | - | |
V3 VAFC BBE | - | - | - | - | |
V4 NPE LB | - | - | - | - | |
V5 TRN LB | - | - | - | - | |
V6 VAFC LB | - | - | - | - |
Cluster Number | Variable | SS | df | MS | F | p-Value | F Crit |
---|---|---|---|---|---|---|---|
1 | V1 NPE BBE | 0.62348 | 17 | 0.03668 | 0.56653 | 0.91392 | 1.67025 |
V2 TRN BBE | 0.77199 | 17 | 0.04541 | 0.63851 | 0.85893 | 1.67025 | |
V3 VAFC BBE | 0.82433 | 17 | 0.04849 | 0.68893 | 0.81224 | 1.67070 | |
V4 NPE LB | 0.80181 | 17 | 0.04717 | 0.56018 | 0.91712 | 1.68077 | |
V5 TRN LB | 1.22640 | 17 | 0.07214 | 0.58818 | 0.89792 | 1.68077 | |
V6 VAFC LB | 0.99998 | 17 | 0.05882 | 0.43297 | 0.97587 | 1.68077 | |
2 | V1 NPE BBE | 0.23689 | 3 | 0.07896 | 0.27039 | 0.84643 | 2.79806 |
V2 TRN BBE | 0.51861 | 3 | 0.17287 | 0.59066 | 0.62413 | 2.79806 | |
V3 VAFC BBE | 0.53502 | 3 | 0.17834 | 0.54099 | 0.65654 | 2.79806 | |
V4 NPE LB | 0.11926 | 3 | 0.03975 | 0.49336 | 0.68920 | 2.87419 | |
V5 TRN LB | 0.09399 | 3 | 0.03133 | 0.30459 | 0.82187 | 2.87419 | |
V6 VAFC LB | 0.09739 | 3 | 0.03246 | 0.06669 | 0.97721 | 2.87419 | |
3 | V1 NPE BBE | - | - | - | - | - | - |
V2 TRN BBE | - | - | - | - | - | - | |
V3 VAFC BBE | - | - | - | - | - | - | |
V4 NPE LB | - | - | - | - | - | - | |
V5 TRN LB | - | - | - | - | - | - | |
V6 VAFC LB | - | - | - | - | - | - | |
4 | V1 NPE BBE | - | - | - | - | - | - |
V2 TRN BBE | - | - | - | - | - | - | |
V3 VAFC BBE | - | - | - | - | - | - | |
V4 NPE LB | - | - | - | - | - | - | |
V5 TRN LB | - | - | - | - | - | - | |
V6 VAFC LB | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bălan, E.M.; Zeldea, C.G.; Cismaș, L.M.; Iordan, M.; Cismaș, C.M.; Costin, M.P. Biological Resources for Renewable Energies in the European Union: A Hierarchical Approach. Sustainability 2025, 17, 1484. https://doi.org/10.3390/su17041484
Bălan EM, Zeldea CG, Cismaș LM, Iordan M, Cismaș CM, Costin MP. Biological Resources for Renewable Energies in the European Union: A Hierarchical Approach. Sustainability. 2025; 17(4):1484. https://doi.org/10.3390/su17041484
Chicago/Turabian StyleBălan, Emilia Mary, Cristina Georgiana Zeldea, Laura Mariana Cismaș, Marioara Iordan, Cristian Mihai Cismaș, and Melinda Petronela Costin. 2025. "Biological Resources for Renewable Energies in the European Union: A Hierarchical Approach" Sustainability 17, no. 4: 1484. https://doi.org/10.3390/su17041484
APA StyleBălan, E. M., Zeldea, C. G., Cismaș, L. M., Iordan, M., Cismaș, C. M., & Costin, M. P. (2025). Biological Resources for Renewable Energies in the European Union: A Hierarchical Approach. Sustainability, 17(4), 1484. https://doi.org/10.3390/su17041484