Patterns and Dynamics of PM2.5 and PM10 Across Portugal: A Twelve-Year Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. PM Measurements
- Comissão de Coordenação e Desenvolvimento Regional (CCDR) do Norte: D. Manuel II (DM), Douro Norte (DN), Paços de Ferreira (PF), and Sobreiras (SB);
- CCDR do Centro: Ervedeira (ER), Estarreja (ES), and Fundão (FU);
- CCDR de Lisboa e Vale do Tejo: Camarinha (CA), Chamusca (CH), Entrecampos (EN), Fernando Pó (FP), Laranjeiro (LA), Lourinhã (LO), Mem Martins (MM), Olivais (OL), and Paio Pires (PP);
- CCDR do Alentejo: Monte Chãos (MC), Monte Velho (MV), Santiago do Cacém (SC), Sonega (SN), and Terena (TE);
- CCDR do Algarve: Cerro (CE) and Joaquim Magalhães (JM);
- Direção Regional do Ambiente dos Açores: Faial (FA);
- Direção Regional do Ambiente da Região Autónoma da Madeira: Santana (SA), São Gonçalo (SG), and São João (SJ).
2.2. Statistical Methods
3. Results and Discussion
3.1. Temporal and Spatial Analysis of PM2.5 and PM10 Concentrations
3.2. PM Concentration Profiles
3.3. PM2.5/PM10 Ratio
3.4. PCA
3.5. Study Contributions to National and EU Air Quality Policies
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scaramboni, C.; Farias, C.N.; Vasconcellos, P.D.; Levi, M.; Sadiktsis, I.; Pozza, S.A.; Umbuzeiro, G.D.; Watanabe, T.; Rodrigues, P.C.D.; Grandis, A.; et al. Characterization of cross-continental PM2.5: Insights into emissions and chemical composition. Atmos. Res. 2024, 305, 107423. [Google Scholar] [CrossRef]
- Silva, J.C.D.; Potgieter-Vermaak, S.; Medeiros, S.H.W.; da Silva, L.V.; Ferreira, D.V.; Godoi, A.F.L.; Yamamoto, C.I.; Godoi, R.H.M. A fingerprint of source-specific health risk of PM2.5-bound components over a coastal industrial city. J. Hazard. Mater. 2024, 480, 136369. [Google Scholar] [CrossRef]
- Popovicheva, O.; Diapouli, E.; Chichaeva, M.; Kosheleva, N.; Kovach, R.; Bitukova, V.; Eleftheriadis, K.; Kasimov, N. Aerosol characterization and peculiarities of source apportionment in Moscow, the largest and northernmost European megacity. Sci. Total Environ. 2024, 918, 170315. [Google Scholar] [CrossRef]
- Namasivayam, S.K.R.; Priyanka, S.; Lavanya, M.; Shree, S.K.; Francis, A.L.; Avinash, G.P.; Bharani, R.S.A.; Kavisri, M.; Moovendhan, M. A review on vulnerable atmospheric aerosol nanoparticles: Sources, impact on the health, ecosystem and management strategies. J. Environ. Manag. 2024, 365, 121644. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Kim, J.; Lee, M.; Park, J. Adverse impacts of Asian dust events on human health and the environment -A probabilistic risk assessment study on particulate matter-bound metals and bacteria in Seoul, South Korea. Sci. Total Environ. 2023, 875, 162637. [Google Scholar] [CrossRef]
- De Marco, A.; Proietti, C.; Anav, A.; Ciancarella, L.; D’Elia, I.; Fares, S.; Fornasier, M.F.; Fusaro, L.; Gualtieri, M.; Manes, F.; et al. Impacts of air pollution on human and ecosystem health, and implications for the National Emission Ceilings Directive: Insights from Italy. Environ. Int. 2019, 125, 320–333. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Hoek, G. Long-term exposure to PM and all-cause and cause-specific mortality: A systematic review and meta-analysis. Environ. Int. 2020, 143, 105974. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Chen, R.; Sera, F.; Vicedo-Cabrera, A.M.; Guo, Y.M.; Tong, S.L.; Coelho, M.S.Z.S.; Saldiva, P.H.N.; Lavigne, E.; Matus, P.; et al. Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. N. Engl. J. Med. 2019, 381, 705–715. [Google Scholar] [CrossRef] [PubMed]
- WHO. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide, and Carbon Monoxide; WHO: Geneva, Switzerland, 2021. [Google Scholar]
- Hand, J.L.; Gill, T.E.; Schichtel, B.A. Urban and rural coarse aerosol mass across the United States: Spatial and seasonal variability and long-term trends. Atmos. Environ. 2019, 218, 117025. [Google Scholar] [CrossRef]
- Bigi, A.; Ghermandi, G. Long-term trend and variability of atmospheric PM10 concentration in the Po Valley. Atmos. Chem. Phys. 2014, 14, 4895–4907. [Google Scholar] [CrossRef]
- Pivato, A.; Pegoraro, L.; Masiol, M.; Bortolazzo, E.; Bonato, T.; Formenton, G.; Cappai, G.; Beggio, G.; Giancristofaro, R.A. Long time series analysis of air quality data in the Veneto region (Northern Italy) to support environmental policies. Atmos. Environ. 2023, 298, 119610. [Google Scholar] [CrossRef]
- Unsal, M.H.; Ignatavicius, G.; Valiulis, A.; Prokopciuk, N.; Valskiene, R.; Valskys, V. Assessment of Heavy Metal Contamination in Dust in Vilnius Schools: Source Identification, Pollution Levels, and Potential Health Risks for Children. Toxics 2024, 12, 224. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Esteves, H.; Rente, L. Influence of an Extreme Saharan Dust Event on the Air Quality of the West Region of Portugal. Gases 2022, 2, 74–84. [Google Scholar] [CrossRef]
- Cipoli, Y.A.; Furst, L.; Feliciano, M.; Alves, C. Respiratory deposition dose of PM2.5 and PM10 during night and day periods at an urban environment. Air Qual. Atmos. Health 2023, 16, 2269–2283. [Google Scholar] [CrossRef]
- Núñez-Alonso, D.; Pérez-Arribas, L.V.; Manzoor, S.; Cáceres, J.O. Statistical Tools for Air Pollution Assessment: Multivariate and Spatial Analysis Studies in the Madrid Region. J. Anal. Methods Chem. 2019, 2019, 9753927. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, K.; Mitra, B.; Uddin, M.S.; Hridoy, A.E.; Aina, Y.A.; Abubakar, I.R.; Rahman, S.M.; Tan, M.L.; Rahman, M.M. Temporal assessment of air quality in major cities in Nigeria using satellite data. Atmos. Environ.-X 2023, 20, 100227. [Google Scholar] [CrossRef]
- Al-Anzi, B.; Abusam, A.; Khan, A.R. Evaluation of temporal variations in ambient air quality at Jahra using multivariate techniques. Environ. Technol. Innov. 2016, 5, 225–232. [Google Scholar] [CrossRef]
- Pires, J.C.M.; Pereira, M.C.; Alvim-Ferraz, M.C.M.; Martins, F.G. Identification of redundant air quality measurements through the use of principal component analysis. Atmos. Environ. 2009, 43, 3837–3842. [Google Scholar] [CrossRef]
- Santos, F.M.; Gómez-Losada, A.; Pires, J.C.M. Impact of the implementation of Lisbon low emission zone on air quality. J. Hazard. Mater. 2019, 365, 632–641. [Google Scholar] [CrossRef]
- Rodrigues, V.; Gama, C.; Ascenso, A.; Oliveira, K.; Coelho, S.; Monteiro, A.; Hayes, E.; Lopes, M. Assessing air pollution in European cities to support a citizen centered approach to air quality management. Sci. Total Environ. 2021, 799, 149311. [Google Scholar] [CrossRef]
- Zhao, C.W.; Pan, Y.Z.; Teng, Y.J.; Baqa, M.F.; Guo, W. Air Quality Improvement in China: Evidence from PM2.5 Concentrations in Five Urban Agglomerations, 2000-2021. Atmosphere 2022, 13, 1839. [Google Scholar] [CrossRef]
- Collivignarelli, M.C.; Abbà, A.; Bertanza, G.; Pedrazzani, R.; Ricciardi, P.; Miino, M.C. Lockdown for COVID-2019 in Milan: What are the effects on air quality? Sci. Total Environ. 2020, 732, 139280. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Zhang, A.C. Does lockdown reduce air pollution? Evidence from 44 cities in northern China. Sci. Total Environ. 2020, 731, 139052. [Google Scholar] [CrossRef] [PubMed]
- Gama, C.; Relvas, H.; Lopes, M.; Monteiro, A. The impact of COVID-19 on air quality levels in Portugal: A way to assess traffic contribution. Environ. Res. 2021, 193, 110515. [Google Scholar] [CrossRef]
- Slezakova, K.; Pereira, M.C. 2020 COVID-19 lockdown and the impacts on air quality with emphasis on urban, suburban and rural zones. Sci. Rep. 2021, 11, 21336. [Google Scholar] [CrossRef] [PubMed]
- Skiriene, A.F.; Stasiskiene, Z. COVID-19 and Air Pollution: Measuring Pandemic Impact to Air Quality in Five European Countries. Atmosphere 2021, 12, 290. [Google Scholar] [CrossRef]
- Castagna, J.; Senatore, A.; Bencardino, M.; Mendicino, G. Concurrent Influence of Different Natural Sources on the Particulate Matter in the Central Mediterranean Region during a Wildfire Season. Atmosphere 2021, 12, 144. [Google Scholar] [CrossRef]
- Gómez-Losada, A.; Pires, J.C.M.; Pino-Mejías, R. Time series clustering for estimating particulate matter contributions and its use in quantifying impacts from deserts. Atmos. Environ. 2015, 117, 271–281. [Google Scholar] [CrossRef]
- Du, Q.Y.; Zhao, C.; Zhang, M.S.; Dong, X.; Chen, Y.; Liu, Z.; Hu, Z.Y.; Zhang, Q.; Li, Y.B.; Yuan, R.M.; et al. Modeling diurnal variation of surface PM2.5 concentrations over East China with WRF-Chem: Impacts from boundary-layer mixing and anthropogenic emission. Atmos. Chem. Phys. 2020, 20, 2839–2863. [Google Scholar] [CrossRef]
- Ilenic, A.; Pranjic, A.M.; Zupancic, N.; Milacic, R.; Scancar, J. Fine particulate matter (PM2.5) exposure assessment among active daily commuters to induce behaviour change to reduce air pollution. Sci. Total Environ. 2024, 912, 169117. [Google Scholar] [CrossRef] [PubMed]
- Schweizer, D.; Cisneros, R.; Buhler, M. Coarse and Fine Particulate Matter Components of Wildland Fire Smoke at Devils Postpile National Monument, California, USA. Aerosol Air Qual. Res. 2019, 19, 1463–1470. [Google Scholar] [CrossRef]
- Ryder, C.L.; Highwood, E.J.; Walser, A.; Seibert, P.; Philipp, A.; Weinzierl, B. Coarse and giant particles are ubiquitous in Saharan dust export regions and are radiatively significant over the Sahara. Atmos. Chem. Phys. 2019, 19, 15353–15376. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Ruiz, C.R.; Artiñano, B.; Hansson, H.C.; Harrison, R.M.; Buringh, E.; ten Brink, H.M.; Lutz, M.; Bruckmann, P.; et al. Speciation and origin of PM10 and PM2.5 in selected European cities. Atmos. Environ. 2004, 38, 6547–6555. [Google Scholar] [CrossRef]
- Querol, X.; Alastuey, A.; Moreno, T.; Viana, M.M.; Castillo, S.; Pey, J.; Rodríguez, S.; Artiñano, B.; Salvador, P.; Sánchez, M.; et al. Spatial and temporal variations in airborne particulate matter (PM10 and PM2.5) across Spain 1999-2005. Atmos. Environ. 2008, 42, 3964–3979. [Google Scholar] [CrossRef]
- Fan, H.; Zhao, C.F.; Yang, Y.K.; Yang, X.C. Spatio-Temporal Variations of the PM2.5/PM10 Ratios and Its Application to Air Pollution Type Classification in China. Front. Environ. Sci. 2021, 9, 692440. [Google Scholar] [CrossRef]
- Olszowski, T. Influence of Individual Household Heating on PM2.5 Concentration in a Rural Settlement. Atmosphere 2019, 10, 782. [Google Scholar] [CrossRef]
- Zalakeviciute, R.; Alexandrino, K.; Rybarczyk, Y.; Debut, A.; Vizuete, K.; Diaz, M. Seasonal variations in-PM10 inorganic composition in the Andean city. Sci. Rep. 2020, 10, 17049. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Wang, P.; Chen, H.; Ma, J.; Jia, Y.; Wang, C.; Qiao, L.; Fu, Q.; Mellouki, A.; Li, L. Unraveling Contributions from Combustion, Secondary, Traffic, and Dust Sources through Particle Mass Size Distribution Measurement. Aerosol Air Qual. Res. 2024, 24, 240135. [Google Scholar] [CrossRef]
Site | Type | Longitude | Latitude | Altitude (m) |
---|---|---|---|---|
CA—Camarinha | Urban Background | −8.8732 | 38.5315 | 15 |
CE—Cerro | Rural Background | −7.6786 | 37.3125 | 300 |
CH—Chamusca | Rural Background | −8.4674 | 39.3541 | 143 |
DM—D. Manuel II | Urban Traffic | −8.6187 | 41.2356 | 90 |
DN—Douro Norte | Rural Background | −7.7908 | 41.3713 | 1086 |
EN—Entrecampos | Urban Traffic | −9.1490 | 38.7486 | 86 |
ER—Ervedeira | Rural Background | −8.8929 | 39.9246 | 68 |
ES—Estarreja | Suburban Background | −8.5672 | 40.7586 | 14 |
FA—Faial | Rural Background | −28.6314 | 38.6050 | 310 |
FP—Fernando Pó | Rural Background | −8.6918 | 38.6373 | 57 |
FU—Fundão | Rural Background | −7.2996 | 40.2331 | 461 |
JM—Joaquim Magalhães | Urban Background | −7.9267 | 37.0150 | 4 |
LA—Laranjeiro | Urban Background | −9.1576 | 38.6635 | 63 |
LO—Lourinhã | Rural Background | −9.2470 | 39.2800 | 143 |
MM—Mem Martins | Urban Background | −9.3485 | 38.7865 | 173 |
MC—Monte Chãos | Suburban Industrial | −8.8380 | 37.9546 | 129 |
MV—Monte Velho | Rural Background | −8.7986 | 38.0770 | 53 |
OL—Olivais | Urban Background | −9.1073 | 38.7698 | 32 |
PF—Paços de Ferreira | Urban Background | −8.3759 | 41.2741 | 300 |
PP—Paio Pires | Suburban Industrial | −9.0821 | 38.6210 | 47 |
SA—Santana | Rural Background | −16.8867 | 32.8089 | n.a. |
SC—Santiago do Cacém | Urban Industrial | −8.6977 | 38.0201 | 261 |
SG—São Gonçalo | Urban Background | −16.8832 | 32.6489 | n.a. |
SJ—São João | Urban Traffic | −16.9183 | 32.6497 | n.a. |
SB—Sobreiras | Urban Background | −8.6590 | 41.1474 | 17 |
SN—Sonega | Rural Industrial | −8.7240 | 37.8708 | 235 |
TE—Terena | Rural Background | −7.3989 | 38.6168 | 187 |
Site | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | 4.7 | |||||||||||
CE | 4.5 | 6.7 | 6.9 | 7.9 | 2.6 | |||||||
CH | 9.5 | 7.0 | 8.6 | 7.5 | 10.5 | 7.3 | 8.4 | 7.2 | 6.9 | 5.3 | 5.7 | 6.2 |
DM | 5.5 | 5.5 | 4.8 | 3.3 | ||||||||
DN | 4.3 | 3.7 | ||||||||||
EN | 12.9 | 10.8 | 11.8 | 10.9 | 14.9 | 14.4 | 13.5 | 11.7 | 10.0 | 8.6 | 6.8 | |
ER | 16.4 | 14.8 | 10.6 | 5.5 | 7.3 | 6.2 | 9.8 | 8.6 | 8.7 | 9.3 | ||
ES | 16.6 | 17.2 | 14.0 | 12.5 | 14.7 | 9.0 | 8.8 | 11.9 | 10.0 | |||
FA | 3.5 | 2.8 | 2.9 | 3.2 | 3.4 | 2.6 | ||||||
FP | 7.9 | 6.4 | 11.8 | 13.5 | 7.2 | 5.4 | 6.2 | |||||
FU | 6.5 | 5.5 | 5.2 | 4.3 | 5.6 | 5.4 | 4.2 | 4.2 | 8.6 | 5.7 | ||
JM | 11.4 | 11.9 | 9.8 | 3.6 | 3.9 | |||||||
LA | 12.0 | 9.4 | 10.9 | 8.6 | 13.6 | 12.7 | 14.8 | 13.5 | 10.0 | 9.2 | 8.2 | 7.3 |
LO | 5.8 | 6.7 | 8.5 | 7.2 | 7.2 | 6.7 | 7.5 | 5.8 | ||||
MM | 8.8 | 7.2 | 7.5 | 12.2 | 7.5 | 9.6 | 8.4 | 8.1 | 8.9 | 8.7 | 8.9 | |
MC | 10.9 | 6.5 | 5.9 | 6.7 | 6.7 | |||||||
MV | 10.6 | 8.9 | 12.8 | |||||||||
OL | 14.1 | 12.9 | 11.7 | 11.2 | 11.3 | 9.8 | 11.6 | 10.1 | 9.2 | 9.6 | 8.1 | 7.9 |
PF | 5.4 | 8.2 | ||||||||||
PP | 9.5 | 9.3 | 9.0 | |||||||||
SA | 2.9 | 6.4 | 3.4 | 3.2 | 3.1 | 3.7 | 3.6 | |||||
SC | 6.4 | 5.2 | ||||||||||
SG | 0.5 | 1.5 | 2.9 | 4.7 | 3.8 | 3.9 | 4.5 | |||||
SJ | 8.8 | 8.0 | 6.6 | 5.8 | 6.0 | 6.2 | 7.2 | |||||
SB | 6.8 | 6.2 | 4.8 | |||||||||
SN | 4.7 | 4.2 | 4.2 | 3.8 | 2.7 | 4.7 | 5.9 | |||||
TE | 9.3 | 8.2 | 10.3 | 12.3 | 13.0 | 13.3 | 4.1 | 3.5 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | 8 | |||||||||||
CE | 3 | 10 | 3 | 3 | 0 | |||||||
CH | 3 | 1 | 2 | 3 | 2 | 7 | 9 | 2 | 0 | 0 | 3 | 10 |
DM | 59 | 55 | 18 | 10 | ||||||||
DN | 0 | 0 | ||||||||||
EN | 31 | 17 | 3 | 7 | 15 | 9 | 3 | 10 | 1 | 6 | 7 | |
ER | 19 | 15 | 2 | 3 | 16 | 2 | 9 | 0 | 6 | 4 | ||
ES | 62 | 49 | 27 | 31 | 23 | 11 | 10 | 14 | 9 | |||
FA | 0 | 0 | 0 | 0 | 0 | 0 | ||||||
FP | 6 | 0 | 5 | 15 | 1 | 2 | 7 | |||||
FU | 0 | 6 | 1 | 2 | 2 | 11 | 0 | 4 | 6 | 9 | ||
JM | 4 | 9 | 1 | 4 | 13 | |||||||
LA | 29 | 7 | 5 | 6 | 12 | 8 | 12 | 8 | 14 | 3 | 7 | 12 |
LO | 1 | 6 | 2 | 2 | 2 | 0 | 7 | 4 | ||||
MM | 6 | 0 | 1 | 6 | 4 | 5 | 2 | 2 | 2 | 6 | 6 | |
MC | 36 | 3 | 1 | 7 | 8 | |||||||
MV | 3 | 2 | 0 | |||||||||
OL | 29 | 7 | 4 | 2 | 7 | 8 | 9 | 2 | 5 | 1 | 4 | 7 |
PF | 10 | 5 | ||||||||||
PP | 8 | 12 | 20 | |||||||||
SA | 0 | 8 | 3 | 8 | 3 | 9 | 15 | |||||
SC | 15 | 10 | ||||||||||
SG | 0 | 16 | 7 | 9 | 7 | 7 | 27 | |||||
SJ | 5 | 27 | 7 | 7 | 10 | 12 | 28 | |||||
SB | 49 | 37 | 21 | |||||||||
SN | 0 | 1 | 1 | 2 | 1 | 2 | 5 | |||||
TE | 24 | 10 | 2 | 5 | 10 | 16 | 0 | 1 |
2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
CA | 16.9 | |||||||||||
CE | 13.7 | 17.5 | 15.7 | 17.8 | 10.3 | |||||||
CH | 17.3 | 15.4 | 15.9 | 15.0 | 16.4 | 14.5 | 16.8 | 15.5 | 13.5 | 11.6 | 13.6 | 16.3 |
DM | 31.7 | 28.5 | 20.9 | 15.2 | ||||||||
DN | 12.4 | 12.5 | ||||||||||
EN | 29.7 | 25.2 | 22.3 | 22.4 | 24.3 | 22.7 | 23.0 | 20.9 | 18.2 | 17.8 | 20.1 | |
ER | 25.6 | 21.8 | 19.8 | 16.7 | 22.0 | 17.7 | 19.2 | 16.8 | 17.4 | 18.2 | ||
ES | 33.8 | 29.9 | 26.1 | 23.9 | 25.5 | 23.5 | 21.5 | 19.8 | 20.0 | |||
FA | 6.3 | 5.9 | 4.8 | 5.8 | 8.2 | 7.8 | ||||||
FP | 20.4 | 15.2 | 19.2 | 24.6 | 15.1 | 14.4 | 16.8 | |||||
FU | 10.9 | 12.7 | 11.4 | 10.2 | 13.8 | 15.9 | 11.6 | 15.2 | 14.6 | 16.2 | ||
JM | 19.5 | 21.6 | 19.7 | 18.3 | 21.6 | |||||||
LA | 26.5 | 21.7 | 22.9 | 20.0 | 22.0 | 19.6 | 22.2 | 22.4 | 21.2 | 19.5 | 19.1 | 22.3 |
LO | 16.7 | 15.1 | 16.8 | 15.3 | 16.0 | 14.2 | 14.8 | 15.7 | ||||
MM | 22.3 | 17.5 | 19.3 | 20.5 | 16.6 | 20.6 | 18.2 | 18.1 | 17.5 | 18.6 | 19.8 | |
MC | 26.3 | 18.0 | 16.7 | 17.9 | 19.6 | |||||||
MV | 22.0 | 20.0 | 21.5 | |||||||||
OL | 29.9 | 24.2 | 23.4 | 20.4 | 20.2 | 18.0 | 20.8 | 18.4 | 17.1 | 17.9 | 17.7 | 19.5 |
PF | 22.5 | 21.7 | ||||||||||
PP | 20.1 | 21.1 | 22.5 | |||||||||
SA | 14.7 | 18.9 | 14.2 | 12.3 | 11.4 | 12.0 | 14.1 | |||||
SC | 23.0 | 17.4 | ||||||||||
SG | 10.2 | 15.4 | 15.7 | 15.3 | 13.9 | 13.1 | 19.7 | |||||
SJ | 16.7 | 26.2 | 21.4 | 18.7 | 17.7 | 18.1 | 22.7 | |||||
SB | 31.3 | 26.8 | 22.4 | |||||||||
SN | 13.4 | 12.3 | 11.0 | 15.0 | 14.3 | 13.4 | 18.5 | |||||
TE | 22.0 | 20.2 | 17.5 | 19.7 | 20.6 | 23.8 | 12.1 | 11.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pires, J.C.M. Patterns and Dynamics of PM2.5 and PM10 Across Portugal: A Twelve-Year Perspective. Sustainability 2025, 17, 1402. https://doi.org/10.3390/su17041402
Pires JCM. Patterns and Dynamics of PM2.5 and PM10 Across Portugal: A Twelve-Year Perspective. Sustainability. 2025; 17(4):1402. https://doi.org/10.3390/su17041402
Chicago/Turabian StylePires, José C. M. 2025. "Patterns and Dynamics of PM2.5 and PM10 Across Portugal: A Twelve-Year Perspective" Sustainability 17, no. 4: 1402. https://doi.org/10.3390/su17041402
APA StylePires, J. C. M. (2025). Patterns and Dynamics of PM2.5 and PM10 Across Portugal: A Twelve-Year Perspective. Sustainability, 17(4), 1402. https://doi.org/10.3390/su17041402