Modeling the Effect of Climate Change on Sustainable Food Consumption Behaviors: A Study on Artificial Meat and Edible Insects
Abstract
:1. Introduction
2. Theoretical Background
2.1. Climate Change Risk Perception
2.2. Food Neophobia
2.3. Edible Insects Diffusion Optimism
2.4. Artificial Meat Diffusion Optimism
3. Hypothetical Model
3.1. The Effect of Climate Change Risk Perception on Artificial Meat Diffusion Optimism and Edible Insect Diffusion Optimism
3.2. The Effect of Climate Change Risk Perception on Food Neophobia
3.3. The Effect of Food Neophobia on Artificial Meat Diffusion Optimism
3.4. The Effect of Food Neophobia on Edible Insect Diffusion Optimism
3.5. Mediating Role of Food Neophobia
4. Research Design and Methodology
4.1. Study Region
4.2. Measurement Instruments
4.3. Data Collection
5. Findings
5.1. Pre-Analysis Requirements
5.2. Hypothesis Testing
5.2.1. Direct Effect Testing
5.2.2. Indirect Effect Testing
6. Discussion
7. Conclusions and Implications
7.1. Theoretical Implications
7.2. Practical Implications
7.3. Limitations and Future Agenda
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lacroix, K.; Gifford, R. Reducing Meat Consumption: Identifying Group-Specific Inhibitors Using Latent Profile Analysis. Appetite 2019, 138, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Gifford, R.; Lacroix, K.; Chen, A. Understanding Responses to Climate Change: Psychological Barriers to Mitigation and a New Theory of Behavioral Choice. In Psychology and Climate Change; Elsevier: Amsterdam, The Netherlands, 2018; pp. 161–183. [Google Scholar]
- Taylor, A.; Dessai, S.; Bruin, W.B.d. Public Perception of Climate Risk and Adaptation in the UK: A Review of the Literature. Clim. Risk Manag. 2014, 4–5, 1–16. [Google Scholar] [CrossRef]
- Vermeir, I.; Weijters, B.; De Houwer, J.; Geuens, M.; Slabbinck, H.; Spruyt, A.; Van Kerckhove, A.; Van Lippevelde, W.; De Steur, H.; Verbeke, W.; et al. Economic Evaluation of the Climate Changes on Food Security in Iran: Application of CGE Model. Nat. Clim. Change 2019, 1, 100. [Google Scholar] [CrossRef]
- Richardson, K.; Lewis, K.; Krishnamurthy, P.K.; Kent, C.; Wiltshire, A.J.; Hanlon, H.M. Food Security Outcomes Under a Changing Climate: Impacts of Mitigation and Adaptation on Vulnerability to Food Insecurity. Clim. Change 2018, 147, 327–341. [Google Scholar] [CrossRef]
- Loboguerrero, A.M.; Campbell, B.M.; Cooper, P.J.M.; Hansen, J.; Rosenstock, T.S.; Wollenberg, E. Food and Earth Systems: Priorities for Climate Change Adaptation and Mitigation for Agriculture and Food Systems. Sustainability 2019, 11, 1372. [Google Scholar] [CrossRef]
- Gómez, B.; Munekata, P.E.S.; Zhu, Z.; Barba, F.J.; Toldrá, F.; Putnik, P.; Kovačević, D.B.; Lorenzo, J.M. Challenges and Opportunities Regarding the Use of Alternative Protein Sources: Aquaculture and Insects. Adv. Food Nutr. Res. 2019, 89, 259–295. [Google Scholar]
- Leinonen, I.; Williams, A.G.; Waller, A.H.; Kyriazakis, I. Comparing the Environmental Impacts of Alternative Protein Crops in Poultry Diets: The Consequences of Uncertainty. Agric. Syst. 2013, 121, 33–42. [Google Scholar] [CrossRef]
- Bonny, S.P.F.; Gardner, G.E.; Pethick, D.W.; Hocquette, J.-F. Artificial Meat and the Future of the Meat Industry. Anim. Prod. Sci. 2017, 57, 2216–2223. [Google Scholar] [CrossRef]
- Sorjonen, J.; Valtonen, A.; Hirvisalo, E.; Karhapää, M.; Lehtovaara, V.J.; Lindgren, J.; Marnila, P.; Mooney, P.; Mäki, M.; Siljander-Rasi, H.; et al. The Plant-Based by-Product Diets for the Mass-Rearing of Acheta domesticus and Gryllus bimaculatus. PLoS ONE 2019, 14, e0218830. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, T.; Fujimori, S.; Havlík, P.; Valin, H.; Bodirsky, B.L.; Doelman, J.C.; Fellmann, T.; Kyle, P.; Koopman, J.F.; Lotze-Campen, H.; et al. Risk of Increased Food Insecurity Under Stringent Global Climate Change Mitigation Policy. Nat. Clim. Change 2018, 8, 699–703. [Google Scholar] [CrossRef]
- Spence, A.; Poortinga, W.; Butler, C.; Pidgeon, N.F. Perceptions of Climate Change and Willingness to Save Energy Related to Flood Experience. Nat. Clim. Change 2011, 1, 46–49. [Google Scholar] [CrossRef]
- Vainio, A.; Mäkiniemi, J.-P.; Paloniemi, R. System Justification and the Perception of Food Risks. Group Process. Intergr. Relat. 2014, 17, 509–523. [Google Scholar] [CrossRef]
- Rogers, R.W. A Protection Motivation Theory of Fear Appeals and Attitude Change. J. Psychol. 1975, 91, 93–114. [Google Scholar] [CrossRef]
- Tsai, H.S.; Jiang, M.; Alhabash, S.; LaRose, R.; Rifon, N.J.; Cotten, S.R. Understanding Online Safety Behaviors: A Protection Motivation Theory Perspective. Comput. Secur. 2016, 59, 138–150. [Google Scholar] [CrossRef]
- Mostafavi, F.; Eshghinia, S.; Vakili, M.A.; Ozouni-Davaji, R.B.; Aryaie, M. Effect of Motivational Interviewing on a Weight Loss Program Based on the Protection Motivation Theory. Iran. Red Crescent Med. J. 2015, 17, e23492. [Google Scholar] [CrossRef]
- Okati-Aliabad, H.; Hosseini, E.-S.; MorowatiSharifabad, M.A.; Borzu, Z.A.; Ardakani, M.E.; Shahreki, S. Determinants of Sun Protection Behaviors Among Students: A Path Analysis Based on the Protection Motivation Theory. Res. Sq. 2023. [Google Scholar] [CrossRef]
- Asah, S.T.; Blahna, D.J. Motivational Functionalism and Urban Conservation Stewardship: Implications for Volunteer Involvement. Conserv. Lett. 2012, 5, 470–477. [Google Scholar] [CrossRef]
- Ghobbe, S.; Nohekhan, M. Mental Perception of Quality: Green Marketing as a Catalyst for Brand Quality Enhancement. arXiv 2023, arXiv:2312.15865. [Google Scholar]
- Djekic, I.; Rajic, S.; Đorđević, V.; Lazic, I.B.; Jovanovic, J.; Simunovic, S.; Terjung, N.; Volker, H.; Tomasevic, I. Halo effect of persuasive messages towards pork. Fleischwirtschaft 2024, 11, 58–65. [Google Scholar]
- Batat, W.; Peter, P. The Healthy and Sustainable Bugs Appetite: Factors Affecting Entomophagy Acceptance and Adoption in Western Food Cultures. J. Consum. Mark. 2020, 37, 291–303. [Google Scholar] [CrossRef]
- Onur, M. Sentiment Analysis of Online User Comments on Artificial Meat. J. Multidiscip. Acad. Tour. 2024, 2, 33–43. [Google Scholar]
- Trenberth, K.E. Climate Change Caused by Human Activities Is Happening and It Already Has Major Consequences. J. Energy Nat. Resour. Law 2018, 36, 463–481. [Google Scholar] [CrossRef]
- Escultura, E. Is Human Activity Linked to Climate Change. Appl. Categ. Struct. 2014, 2014, 305–316. [Google Scholar] [CrossRef]
- Luo, C.-R. Climate Change—The Causes, Influence and Conceptual Management. Int. J. Appl. Eng. Technol. 2020, 10, 15–25. [Google Scholar]
- Riedy, C. Climate Change. In Blackwell Encyclopedia of Sociology; George, R., Ed.; Blackwell Publishing: Hoboken, NJ, USA, 2016; pp. 1–15. [Google Scholar]
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barret, K.; Blanco, G.; et al. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023; pp. 1–34. [Google Scholar]
- Schneider, S.H.; Lane, J. An Overview of ‘Dangerous’ Climate Change; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- WMO. State of the Global Climate 2020; WMO Publication No. 1264; WMO: Geneva, Switzerland, 2020. [Google Scholar]
- Arnell, N.W. Thresholds and Response to Climate Change Forcing: The Water Sector. Clim. Change 2000, 46, 305–336. [Google Scholar] [CrossRef]
- Arnell, N.W.; Livermore, M.J.L.; Kovats, S.; Levy, P.E.; Nicholls, R.; Parry, M.L.; Gaffin, S.R. Climate and Socio-Economic Scenarios for Global-Scale Climate Change Impacts Assessments: Characterising the SRES Storylines. Glob. Environ. Change 2004, 14, 3–20. [Google Scholar] [CrossRef]
- Parry, M.; Arnell, N.; McMichael, T.; Nicholls, R.; Martens, P.; Kovats, S.; Livermore, M.; Rosenzweig, C.; Iglesias, A.; Fischer, G. Millions at Risk: Defining Critical Climate Change Threats and Targets. Glob. Environ. Change 2001, 11, 181–183. [Google Scholar] [CrossRef]
- Sobczak Pawełand Grochowicz, J.; Łusiak, P.; Żukiewicz-Sobczak, W.; Sobczak, P.; Grochowicz, J.; Łusiak, P.; Żukiewicz-Sobczak, W. Development of Alternative Protein Sources in Terms of a Sustainable System. Sustainability 2023, 15, 12111. [Google Scholar] [CrossRef]
- Tuomisto, H.L.; de Mattos, M.J.T. Environmental Impacts of Cultured Meat Production. Environ. Sci. Technol. 2011, 45, 6117–6123. [Google Scholar] [CrossRef]
- Leiserowitz, A. Climate Change Risk Perception and Policy Preferences: The Role of Affect, Imagery, and Values. Clim. Change 2006, 77, 45–72. [Google Scholar] [CrossRef]
- Lujala, P.; Lein, H.; Rød, J.K. Climate Change, Natural Hazards, and Risk Perception: The Role of Proximity and Personal Experience. Local Environ. 2015, 20, 489–509. [Google Scholar] [CrossRef]
- van der Linden, S. Determinants and Measurement of Climate Change Risk Perception, Worry, and Concern. In The Oxford Encyclopedia of Climate Change Communication; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Bradley, G.L.; Babutsidze, Z.; Chai, A.; Reser, J.P. The Role of Climate Change Risk Perception, Response Efficacy, and Psychological Adaptation in pro-Environmental Behavior: A Two Nation Study. J. Environ. Psychol. 2020, 68, 101410. [Google Scholar] [CrossRef]
- Wang, C.; Geng, L.; Rodríguez-Casallas, J.D. How and When Higher Climate Change Risk Perception Promotes Less Climate Change Inaction. J. Clean. Prod. 2021, 321, 128952. [Google Scholar] [CrossRef]
- Xie, B.; Brewer, M.B.; Hayes, B.K.; McDonald, R.I.; Newell, B.R. Predicting Climate Change Risk Perception and Willingness to Act. J. Environ. Psychol. 2019, 65, 101331. [Google Scholar] [CrossRef]
- Zobeidi, T.; Yazdanpanah, M.; Bakhshi, A. Climate Change Risk Perception among Agriculture Students: The Role of Knowledge, Environmental Attitude, and Belief in Happening. J. Agric. Sci. Technol. 2020, 22, 43–55. [Google Scholar]
- Çıtak, B.; Yilmaz, E.G. The Effect of the Gastronomy and Cookery Students’ Neophobic and Neophilic Tendencies on Their Attitudes toward the Street Flavors. An. Bras. Estud. Turísticos 2023, 13, 1–12. [Google Scholar] [CrossRef]
- Faccio, E.; Guiotto Nai Fovino, L. Food Neophobia or Distrust of Novelties? Exploring Consumers’ Attitudes toward GMOs, Insects and Cultured Meat. Appl. Sci. 2019, 9, 4440. [Google Scholar] [CrossRef]
- Karaağaç, Y.; Bellikci-Koyu, E.; Karaağaç, Y.; Bellikci-Koyu, E. A Narrative Review on Food Neophobia throughout the Lifespan: Relationships with Dietary Behaviours and Interventions to Reduce It. Br. J. Nutr. 2023, 130, 793–826. [Google Scholar] [CrossRef]
- Tan, H.S.G.; Fischer, A.R.H.; van Trijp, H.C.M.; Stieger, M. Tasty but Nasty? Exploring the Role of Sensory-Liking and Food Appropriateness in the Willingness to Eat Unusual Novel Foods like Insects. Food Qual. Prefer. 2016, 48, 293–302. [Google Scholar] [CrossRef]
- Alley, T.R. Conceptualization and Measurement of Human Food Neophobia. In Food Neophobia; Elsevier: Amsterdam, The Netherlands, 2018; pp. 169–192. ISBN 9780081019313. [Google Scholar]
- Valoppi, F.; Agustin, M.; Abik, F.; Morais de Carvalho, D.; Sithole, J.; Bhattarai, M.; Varis, J.J.; Arzami, A.N.A.B.; Pulkkinen, E.; Mikkonen, K.S. Insight on Current Advances in Food Science and Technology for Feeding the World Population. Front. Sustain. Food Syst. 2021, 5, 626227. [Google Scholar] [CrossRef]
- Kouřimská, L.; Adámková, A. Nutritional and Sensory Quality of Edible Insects. NFS J. 2016, 4, 22–26. [Google Scholar] [CrossRef]
- Imathiu, S. Benefits and Food Safety Concerns Associated with Consumption of Edible Insects. NFS J. 2020, 18, 1–11. [Google Scholar] [CrossRef]
- Halloran, A.; Flore, R.; Vantomme, P.; Roos, N. (Eds.) Edible Insects in Sustainable Food Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 83–91. ISBN 978-3-319-74011-9. [Google Scholar]
- FAO. Edible Insects: Future Prospects for Food and Feed Security. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/c7851ad8-1b4b-4917-b1a1-104f07ab830d/content (accessed on 20 September 2024).
- Halloran, A.; Vantomme, P.; Hanboonsong, Y.; Ekesi, S. Regulating Edible Insects: The Challenge of Addressing Food Security, Nature Conservation, and the Erosion of Traditional Food Culture. Food Secur. 2015, 7, 739–746. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.; Sandoval-Cañas, G.; Landines-Vera, E.F.; Criollo-Feijoo, J.; Casa-López, F. Sustainability and Economic Aspects of Insect Farming and Consumption. In Insects as Food and Food Ingredients; Elsevier: Amsterdam, The Netherlands, 2024; pp. 47–63. [Google Scholar]
- Gahukar, R.T. Entomophagy and Human Food Security. Int. J. Trop. Insect Sci. 2011, 31, 129–144. [Google Scholar] [CrossRef]
- Tobler, C.; Visschers, V.H.M.; Siegrist, M. Eating Green. Consumers’ Willingness to Adopt Ecological Food Consumption Behaviors. Appetite 2011, 57, 674–682. [Google Scholar] [CrossRef] [PubMed]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- FAO. Livestock’s Long Shadow Environmental Issues and Options. Available online: https://www.fao.org/4/a0701e/a0701e.pdf (accessed on 1 July 2024).
- Weinrich, R.; Strack, M.; Neugebauer, F. Consumer Acceptance of Cultured Meat in Germany. Meat Sci. 2020, 162, 107924. [Google Scholar] [CrossRef] [PubMed]
- Chriki, S.; Hocquette, J.-F. The Myth of Cultured Meat: A Review. Front. Nutr. 2020, 7, 7. [Google Scholar] [CrossRef]
- Gwenzi, W.; Skirmuntt, E.C.; Musvuugwa, T.; Teta, C.; Halabowski, D.; Rzymski, P. Grappling with (Re)-Emerging Infectious Zoonoses: Risk Assessment, Mitigation Framework, and Future Directions. Int. J. Disaster Risk Reduct. 2022, 82, 103350. [Google Scholar] [CrossRef]
- Bryant, C.J. Culture, Meat, and Cultured Meat. J. Anim. Sci. 2020, 98, skaa172. [Google Scholar] [CrossRef]
- Dupont, J.; Fiebelkorn, F. Attitudes and Acceptance of Young People toward the Consumption of Insects and Cultured Meat in Germany. Food Qual. Prefer. 2020, 85, 103983. [Google Scholar] [CrossRef]
- Ede, G.; Yalçin, H. Attitudes of Nutrition and Dietetics Students towards Artificial Meat Consumption. Akad. Gıda 2023, 21, 80–89. [Google Scholar] [CrossRef]
- Hocquette, J.-F. Is in Vitro Meat the Solution for the Future? Meat Sci. 2016, 120, 167–176. [Google Scholar] [CrossRef]
- Schaefer, G.O.; Savulescu, J. The Ethics of Producing in Vitro Meat. J. Appl. Philos. 2014, 31, 188–202. [Google Scholar] [CrossRef] [PubMed]
- Bryant, C.J.; Barnett, J.C. What’s in a Name? Consumer Perceptions of in Vitro Meat under Different Names. Appetite 2019, 137, 104–113. [Google Scholar] [CrossRef]
- Rosenfeld, D.L.; Tomiyama, A.J. Toward Consumer Acceptance of Cultured Meat. Trends Cogn. Sci. 2023, 27, 689–691. [Google Scholar] [CrossRef]
- Siegrist, M.; Hartmann, C. Perceived Naturalness, Disgust, Trust and Food Neophobia as Predictors of Cultured Meat Acceptance in Ten Countries. Appetite 2020, 155, 104814. [Google Scholar] [CrossRef]
- Verbeke, W.; Sans, P.; Van Loo, E.J. Challenges and Prospects for Consumer Acceptance of Cultured Meat. J. Integr. Agric. 2015, 14, 285–294. [Google Scholar] [CrossRef]
- Wilks, M.; Phillips, C.J.C. Attitudes to in Vitro Meat: A Survey of Potential Consumers in the United States. PLoS ONE 2017, 12, e0171904. [Google Scholar] [CrossRef] [PubMed]
- Frondel, M.; Simora, M.; Sommer, S. Risk Perception of Climate Change: Empirical Evidence for Germany. Ecol. Econ. 2017, 137, 173–183. [Google Scholar] [CrossRef]
- Lee, T.M.; Markowitz, E.M.; Howe, P.D.; Ko, C.-Y.; Leiserowitz, A.A. Predictors of Public Climate Change Awareness and Risk Perception around the World. Nat. Clim. Change 2015, 5, 1014–1020. [Google Scholar] [CrossRef]
- Faria, A.A.; Kang, J. It’s Not Just about the Food: Motivators of Food Patterns and Their Link with Sustainable Food Neophobia. Appetite 2022, 174, 106008. [Google Scholar] [CrossRef]
- Giacalone, D.; Jaeger, S.R. Consumer Acceptance of Novel Sustainable Food Technologies: A Multi-Country Survey. J. Clean. Prod. 2023, 408, 137119. [Google Scholar] [CrossRef]
- Hamlin, R.P.; McNeill, L.S.; Sim, J. Food Neophobia, Food Choice and the Details of Cultured Meat Acceptance. Meat Sci. 2022, 194, 108964. [Google Scholar] [CrossRef] [PubMed]
- Hartmann, C.; Shi, J.; Giusto, A.; Siegrist, M. The Psychology of Eating Insects: A Cross-Cultural Comparison between Germany and China. Food Qual. Prefer. 2015, 44, 148–156. [Google Scholar] [CrossRef]
- Hopkins, I.; Farahnaky, A.; Gill, H.; Danaher, J.; Newman, L.P. Food Neophobia and Sustainability Consciousness on Willingness to Eat Insects as Food. Proc. Nutr. Soc. 2023, 82, E121. [Google Scholar] [CrossRef]
- La Barbera, F.; Verneau, F.; Amato, M.; Grunert, K. Understanding Westerners’ Disgust for the Eating of Insects: The Role of Food Neophobia and Implicit Associations. Food Qual. Prefer. 2018, 64, 120–125. [Google Scholar] [CrossRef]
- Verbeke, W. Profiling Consumers Who Are Ready to Adopt Insects as a Meat Substitute in a Western Society. Food Qual. Prefer. 2015, 39, 147–155. [Google Scholar] [CrossRef]
- Piha, S.; Pohjanheimo, T.; Lähteenmäki-Uutela, A.; Křečková, Z.; Otterbring, T. The Effects of Consumer Knowledge on the Willingness to Buy Insect Food: An Exploratory Cross-Regional Study in Northern and Central Europe. Food Qual. Prefer. 2018, 70, 1–10. [Google Scholar] [CrossRef]
- Kirdi, İ. Iklim Değişikliği Ve Konya Ilindeki Fen Bilimleri Öğretmenlerinin Iklim Değişikliği Ve Farkindaliği Hakkindaki Görüşleri. Int. J. Soc. Humanit. Sci. Res. 2023, 10, 404–417. [Google Scholar] [CrossRef]
- Sülük, K.; Tosun, I.İ.; Ekinci, K. Elma İşleme Atıklarının Özelliklerinin Belirlenmesi ve Bertaraf Yöntemlerinin İncelenmesi. Bilge Int. J. Sci. Technol. Res. 2018, 2, 98–108. [Google Scholar] [CrossRef]
- Ustaoglu, B.; Uzun, A. Determination of Suitable Land for Special Cimate Requirements of Agricultural Products in Mediterranean Region (Turkey) by Weighted Overlay Analysis: Akdeniz. J. Hum. Sci. 2018, 15, 2433–2453. [Google Scholar]
- Ustaoğlu, B.; Tunçat, K.A.; Koç, D.E. Impacts of Climate Change on Precipitation and Temperature Climatology in Türkiye from Present to Future Perspective. In Urban Commons, Future Smart Cities and Sustainability; Chatterjee, U., Bandyopadhyay, N., Setiawati, M.D., Sarkar, S., Eds.; Springer International Publishing: Cham, Switzerland, 2023; pp. 403–426. ISBN 978-3-031-24767-5. [Google Scholar]
- Gumus, B.; Oruc, S.; Yucel, I.; Yilmaz, M.T. Impacts of Climate Change on Extreme Climate Indices in Türkiye Driven by High-Resolution Downscaled CMIP6 Climate Models. Sustainability 2023, 15, 7202. [Google Scholar] [CrossRef]
- Türkes, M. Türkiye’de Gözlenen ve Öngörülen Iklim Değişikliği, Kuraklık ve Çölleşme. Ank. Üniv. Çevrebilimleri Derg. 2012, 4, 1–32. [Google Scholar]
- Pliner, P.; Hobden, K. Development of a Scale to Measure the Trait of Food Neophobia in Humans. Appetite 1992, 19, 105–120. [Google Scholar] [CrossRef]
- Israel, G.D. Determining Sample Size, 1st ed.; University of Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences: Gainesville, FL, USA, 1992. [Google Scholar]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 5th ed.; Guilford Publications: New York, NY, USA, 2023. [Google Scholar]
- Yağar, F.; Dökme, S. Niteliksel Araştirmalarin Planlanmasi: Araştirma Sorulari, Örneklem Seçimi, Geçerlik ve Güvenirlik. Gazi Sağlık Bilim. Derg. 2018, 3, 1–9. [Google Scholar]
- Hair, J.F.; Black, W.C.; Babin, B.J.; Anderson, R.E. Multivariate Data Analysis: Pearson New International Edition; Pearson Education Limited: London, UK, 2013. [Google Scholar]
- Baş, T. Anket; Seçkin Yayıncılık: Ankara, Turkey, 2001. [Google Scholar]
- Baştürk, S.; Taştepe, M. Evren ve Örneklem. In Bilimsel Araştırma Yöntemleri; Baştürk, S., Ed.; Vize Yayıncılık: Ankara, Turkey, 2013; pp. 129–159. [Google Scholar]
- Byrne, B.M. Structural Equation Modeling with AMOS: Basic Concepts, Applications, and Programming, 2nd ed.; Taylor & Francis Group: New York, NY, USA, 2010. [Google Scholar]
- Çokluk, Ö.; Şekercioğlu, G.; Büyüköztürk, Ş. Sosyal Bilimler İçin Çok Değişkenli İstatistik SPSS ve LISREL Uygulamaları; Pegem Akademi: Ankara, Turkey, 2016; Volume 5, ISBN 9786055885670. [Google Scholar]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Schermelleh-Engel, K.; Moosbrugger, H.; Müller, H. Evaluating the Fit of Structural Equation Models: Tests of Significance and Descriptive Goodness-of-Fit Measures. Methods Psychol. Res. Online 2003, 8, 23–74. [Google Scholar]
- Marsh, H.W.; Hau, K.-T. Assessing Goodness of Fit: Is Parsimony Always Desirable? J. Exp. Educ. 1996, 64, 364–390. [Google Scholar] [CrossRef]
- Mulaik, S.A.; James, L.R.; Van Alstine, J.; Bennett, N.; Lind, S.; Stilwell, C.D. Evaluation of Goodness-of-Fit Indices for Structural Equation Models. Psychol. Bull. 1989, 105, 430–445. [Google Scholar] [CrossRef]
- Hu, L.-T.; Bentler, P.M. Structural Equation Modeling: A Multidisciplinary Journal Cutoff Criteria for Fit Indexes in Covariance Structure Analysis: Conventional Criteria versus New Alternatives. Multidiscip. J. 1999, 6, 1–55. [Google Scholar] [CrossRef]
- Marsh, H.W.; Balla, J.R.; McDonald, R.P. Goodness-of-Fit Indices In Confirmatory Factor Analysis: The Effect of Sample Size. Psychol. Bull. 1988, 103, 391–410. [Google Scholar] [CrossRef]
- Doll, W.J.; Xia, W.; Torkzadeh, G. A Confirmatory Factor Analysis of the End-User Computing Satisfaction Instrument. MIS Q. 1994, 18, 453–461. [Google Scholar] [CrossRef]
- Wang, Y.; Wen, Z.; Li, W.; Fang, J. Methodological Research and Model Development on Structural Equation Models in China’s Mainland from 2001 to 2020. Adv. Psychol. Sci. 2022, 30, 1715–1733. [Google Scholar] [CrossRef]
- Kline, R.B. Principles and Practice of Structural Equation Modeling, 3rd ed.; The Guliford Press: New York, NY, USA, 2010. [Google Scholar]
- Preacher, K.J.; Hayes, A.F. Asymptotic and Resampling Strategies for Assessing and Comparing Indirect Effects in Multiple Mediator Models. Behav. Res. Methods 2008, 40, 879–891. [Google Scholar] [CrossRef] [PubMed]
- Hayes, A.F. Beyond Baron and Kenny: Statistical Mediation Analysis in the New Millennium. Commun. Monogr. 2009, 76, 408–420. [Google Scholar] [CrossRef]
- Cheung, G.W.; Lau, R.S. Testing Mediation and Suppression Effects of Latent Variables: Bootstrapping with Structural Equation Models. Organ. Res. Methods 2008, 11, 296–325. [Google Scholar] [CrossRef]
- Zhao, X.; Lynch, J.G.; Chen, Q. Reconsidering Baron and Kenny: Myths and Truths about Mediation Analysis. J. Consum. Res. 2010, 37, 197–206. [Google Scholar] [CrossRef]
- Lynch, J.; Pierrehumbert, R. Climate Impacts of Cultured Meat and Beef Cattle. Front. Sustain. Food Syst. 2019, 3, 421491. [Google Scholar] [CrossRef] [PubMed]
- Hashem, N.M. Case Studies on Impacts of Climate Change on Smallholder Livestock Production in Egypt and Spain. Sustainability 2023, 15, 13975. [Google Scholar] [CrossRef]
- McMichael, A.J.; Powles, J.W.; Butler, C.D.; Uauy, R. Food, Livestock Production, Energy, Climate Change, and Health. Lancet 2007, 370, 1253–1263. [Google Scholar] [CrossRef] [PubMed]
- Stoll-Kleemann, S.; Schmidt, U.J. Reducing Meat Consumption in Developed and Transition Countries to Counter Climate Change and Biodiversity Loss: A Review of Influence Factors. Reg. Environ. Change 2017, 17, 1261–1277. [Google Scholar] [CrossRef]
- Thamer, P. Pledging After Nudging Improves Uptake of Plant-Based Diets: A Field Experiment in a German University Cafeteria. Environ. Res. Commun. 2024, 6, 21003. [Google Scholar] [CrossRef]
- Pierre, S.R.S.; Rajasekharan, D.; Darwin, E.; Linka, K.; Levenston, M.E.; Kuhl, E. Discovering the Mechanics of Artificial and Real Meat. Comput. Methods Appl. Mech. Eng. 2023, 415, 116236. [Google Scholar] [CrossRef]
- Hunter, E.; Röös, E. Fear of Climate Change Consequences and Predictors of Intentions to Alter Meat Consumption. Food Policy 2016, 62, 151–160. [Google Scholar] [CrossRef]
- Sánchez-Sabaté, R.; Sabaté, J. Consumer Attitudes Towards Environmental Concerns of Meat Consumption: A Systematic Review. Int. J. Environ. Res. Public Health 2019, 16, 1220. [Google Scholar] [CrossRef]
- Springmann, M.; Mason-D’Croz, D.; Robinson, S.; Garnett, T.; Godfray, H.C.J.; Gollin, D.; Rayner, M.; Ballon, P.; Scarborough, P. Global and Regional Health Effects of Future Food Production under Climate Change: A Modelling Study. Lancet 2016, 387, 1937–1946. [Google Scholar] [CrossRef]
- Ros-Baro, M.; Casas-Agustench, P.; Díaz-Rizzolo, D.A.; Batlle-Bayer, L.; Adria-Acosta, F.; Aguilar-Martinez, A.; Medina, F.-X.; Pujola, M.; Bach-Faig, A. Edible Insect Consumption for Human and Planetary Health: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 11653. [Google Scholar] [CrossRef]
- Ordoñez-Araque, R.; Quishpillo-Miranda, N.; Ramos-Guerrero, L. Edible Insects for Humans and Animals: Nutritional Composition and an Option for Mitigating Environmental Damage. Insects 2022, 13, 944. [Google Scholar] [CrossRef]
- Hazarika, A.K.; Kalita, U. Human Consumption of Insects. Science 2023, 379, 140–141. [Google Scholar] [CrossRef] [PubMed]
- Oonincx, D.G.A.B.; Van Itterbeeck, J.; Heetkamp, M.J.W.; Van Den Brand, H.; Van Loon, J.J.A.; Van Huis, A. An Exploration on Greenhouse Gas and Ammonia Production by Insect Species Suitable for Animal or Human Consumption. PLoS ONE 2010, 5, e14445. [Google Scholar] [CrossRef]
- D’Antonio, V.; Battista, N.; Sacchetti, G.; Mattia, C.D.; Serafini, M. Functional Properties of Edible Insects: A Systematic Review. Nutr. Res. Rev. 2021, 36, 98–119. [Google Scholar] [CrossRef]
- Huis, A.v.; Oonincx, D.G.A.B. The Environmental Sustainability of Insects as Food and Feed. A Review. Agron. Sustain. Dev. 2017, 37, 43. [Google Scholar] [CrossRef]
- Onat, G.; Guneren, E. The Mediator Role of Customer Satisfaction in the Effect of Gastronomic Image on Behavioral Intention. Tour. Manag. Stud. 2024, 20, 39–54. [Google Scholar] [CrossRef]
- Güney, S. Foods Spreading from Turkish Cuisine to the World. J. Multidiscip. Acad. Tour. 2023, 8, 159–169. [Google Scholar] [CrossRef]
Demographic Variables | F | % |
---|---|---|
Gender | ||
Female | 229 | 51.6 |
Male | 115 | 48.4 |
Total | 444 | 100 |
Age | ||
20 and below | 84 | 18.9 |
21–30 | 126 | 28.4 |
31–40 | 146 | 32.9 |
41–50 | 52 | 11.7 |
51–60 | 24 | 5.4 |
61 and above | 12 | 2.7 |
Total | 444 | 100 |
Variables | Items | Kurtosis | Skewness |
---|---|---|---|
Climate change risk perception | The standard of living of many people around the world will fall. (CCRP1) | 0.661 | −0.991 |
There will be water shortages worldwide. (CCRP2) | 1.811 | −1.222 | |
There will be an increase in serious diseases worldwide. (CCRP3) | 1.527 | −1.014 | |
My standard of living will fall. (CCRP4) | −0.309 | −0.548 | |
My chances of becoming seriously ill will increase. (CCRP5) | −0.546 | −0.230 | |
Artificial meat diffusion optimism | It will be cheaper to meet global protein demand with artificial meat rather than conventionally produced meat. (AMDO1) | −0.985 | 0.444 |
Future consumption of artificial meat could solve world hunger. (AMDO2) | −0.704 | 0.427 | |
Future consumption of artificial meat will reduce the impact of global warming caused by emissions from livestock. (AMDO3) | −0.787 | 0.332 | |
In the future, artificial meat consumption will be a viable alternative to traditional protein. (AMDO4) | −1.115 | 0.348 | |
Edible insects diffusion optimism | It will be cheaper to meet global protein demand with edible insects rather than conventionally produced meat. (EIDO1) | 0.047 | 1.067 |
Future consumption of edible insects could solve world hunger. (EIDO2) | 0.071 | 0.942 | |
Future consumption of edible insects will reduce the impact of global warming caused by emissions released by livestock. (EIDO3) | −0.716 | 0.490 | |
In the future, edible insects will be a viable alternative to traditional protein. (EIDO4) | −0.565 | 0.686 | |
Food neophobia | I am constantly trying new and different foods. (FN1) | 0.342 | −1.123 |
I am very picky about the food I eat. (FN2) | 0.904 | −1.187 | |
I do not eat ethnic food because it looks strange to me. (FN3) | 0.334 | −0.944 | |
I like going to restaurants that serve food from different cultures. (FN4) | 1.019 | −1.106 | |
I try new foods at social events. (FN5) | 0.077 | −0.758 | |
I do not choose food; I eat everything. (FN6) | 0.837 | −1.269 | |
I do not try food I do not know. (FN7) | −0.383 | −0.620 | |
I do not trust new foods. (FN8) | −0.374 | −0.553 | |
I like food from different cultures. (FN9) | −0.694 | −0.303 | |
I am afraid of eating food I have not eaten before. (FN10) | 0.574 | −1.014 |
Dimensions | Items | Mean | Std. Factor Load | t Values | CR | AVE | Cronbach’s Alpha | Correlation (Correlation Squares) |
---|---|---|---|---|---|---|---|---|
Climate change risk perception | CCRP1 | 4.09 | 0.622 | 11.816 | 0.84 | 0.52 | 0.852 | Artificial meat diffusion optimism 0.261 (0.068) |
CCRP2 | 4.27 | 0.855 | 15.176 | Edible insects diffusion optimism 0.131 (0.017) | ||||
CCRP3 | 4.22 | 0.842 | 15.073 | Food neophobia −0.007 (−0.014) | ||||
CCRP4 | 3.74 | 0.569 | 14.073 | |||||
CCRP5 | 3.59 | 0.677 | Fixed * | |||||
Artificial meat diffusion optimism | AMDO1 | 2.32 | 0.832 | Fixed * | 0.92 | 0.74 | 0.916 | Edible insects diffusion optimism 0.800 (0.64) |
AMDO2 | 2.19 | 0.839 | 21.248 | Food neophobia −0.073 (−0.146) | ||||
AMDO3 | 2.29 | 0.897 | 20.478 | |||||
AMDO4 | 2.31 | 0.873 | 22.500 | |||||
Edible insects diffusion optimism | EI1 | 1.89 | 0.739 | Fixed * | 0.87 | 0.63 | 0.882 | Food neophobia −0.045 (−0.09) |
EIDO2 | 1.91 | 0.807 | 17.004 | |||||
EIDO3 | 2.08 | 0.747 | 15.678 | |||||
EIDO4 | 2.05 | 0.879 | 18.452 | |||||
Food neophobia | FN1 | 4.20 | 0.839 | Fixed * | 0.89 | 0.51 | 0.907 | |
FN2 | 4.20 | 0.724 | 16.749 | |||||
FN3 | 4.05 | 0.731 | 16.953 | |||||
FN4 | 4.18 | 0.735 | 17.193 | |||||
FN5 | 4.07 | 0.642 | 14.381 | |||||
FN6 | 4.14 | 0.776 | 18.515 | |||||
FN8 | 3.87 | 0.593 | 13.108 | |||||
FN10 | 4.08 | 0.635 | 14.276 |
Fitness Criteria | Good Fit | Acceptable Fit | References |
---|---|---|---|
Overall Model Fit | |||
χ2 | 0 ≤ χ2 ≤ 3 df | - | Byrne, 2010 [94] |
χ2/df | 0 ≤ χ2/df ≤ 2 | 2 < χ2/df ≤ 5 | |
p-value | 0.05 < p ≤ 1.00 | 0.01 ≤ p ≤ 0.05 | |
Comparative Fit Indices | |||
RMSEA | 0 ≤ RMSEA ≤ 0.05 | 0.05 < RMSEA ≤ 0.08 | Schermelleh-Engel et al., 2003 [97] Marsh & Hau, 1996 [98] Byrne, 2010 [94]; Hair, Black, Babin & Anderson, 2013 [91] Mulaik et al., 1989 [99]; Hu & Bentler, 1999 [100] |
RMSEA (<0.05) | 0.10 < p ≤ 1.00 | 0.05 ≤ p ≤ 0.10 | |
NFI | 0.95 ≤ NFI ≤ 1.00 | 0.90 ≤ NFI < 0.95 | |
NNFI | 0.95 ≤ NNFI ≤ 1.00 | 0.90 ≤ NNFI < 0.95 | |
CFI | 0.95 ≤ CFI ≤ 1.00 | 0.90 ≤ CFI < 0.95 | |
Absolute Fit Indices | |||
GFI | 0.90 ≤ GFI ≤ 1.00 | 0.80 ≤ GFI ≤ 0.89 | Marsh, Balla & McDonald, 1988 [101] Doll, Xia & Torkzadeh, 1994 [102] |
SRMR | 0 ≤ SRMR ≤ 0.05 | 0.05 < SRMR ≤ 0.08 | |
RMR | 0 ≤ RMR ≤ 0.05 | 0.05 < RMR ≤ 0.08 |
Mean | Standard Deviation | 1 | 2 | 3 | 4 | |
---|---|---|---|---|---|---|
1. Climate change risk perception | 3.982 | 0.715 | ||||
2. Artificial meat diffusion optimism | 2.278 | 1.001 | 0.243 ** | |||
3. Edible insects diffusion optimism | 1.984 | 0.921 | 0.137 ** | 0.733 ** | ||
4. Food neophobia | 4.099 | 0.744 | −0.027 NS | −0.068 NS | −0.030 NS |
Hypotheses | Relationships | Std. Factor Load (β) | t Values | p-Value | Results | Power of Influence (a1) |
---|---|---|---|---|---|---|
H1 | CCRP → AMDO | 0.305 ** | 5.977 | <0.001 | supported | Near high medium |
H2 | CCRP → EIDO | 0.147 ** | 3.348 | <0.001 | supported | Near low medium |
H3 | CCRP → FN | −0.022 NS | −0.493 | 0.622 | rejected | Low |
H4 | FN → AMDO | −0.082 NS | −1.365 | 0.172 | rejected | Low |
H5 | FN → EIDO | −0.030 NS | −0.578 | 0.563 | rejected | Low |
FN | Relation | Specific Indirect Effect | p | Confidence Intervals | Confidence Intervals | Direct Effect | p | Type of Mediation | Support | |
---|---|---|---|---|---|---|---|---|---|---|
Lower | Upper | |||||||||
H6 | CCRP → FN → AMDO | 0.002 | 0.455 | −0.003 | 0.017 | CCRP → AMDO | 0.297 | 0.025 | Direct only (Non-mediation) | No |
H7 | CCRP → FN → EIDO | 0.001 | 0.475 | −0.002 | 0.012 | CCRP → EIDO | 0.174 | 0.026 | Direct only (Non-mediation) | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karakuş, Y.; Onat, G.; Sarıgül Yılmaz, D. Modeling the Effect of Climate Change on Sustainable Food Consumption Behaviors: A Study on Artificial Meat and Edible Insects. Sustainability 2025, 17, 924. https://doi.org/10.3390/su17030924
Karakuş Y, Onat G, Sarıgül Yılmaz D. Modeling the Effect of Climate Change on Sustainable Food Consumption Behaviors: A Study on Artificial Meat and Edible Insects. Sustainability. 2025; 17(3):924. https://doi.org/10.3390/su17030924
Chicago/Turabian StyleKarakuş, Yusuf, Gökhan Onat, and Dila Sarıgül Yılmaz. 2025. "Modeling the Effect of Climate Change on Sustainable Food Consumption Behaviors: A Study on Artificial Meat and Edible Insects" Sustainability 17, no. 3: 924. https://doi.org/10.3390/su17030924
APA StyleKarakuş, Y., Onat, G., & Sarıgül Yılmaz, D. (2025). Modeling the Effect of Climate Change on Sustainable Food Consumption Behaviors: A Study on Artificial Meat and Edible Insects. Sustainability, 17(3), 924. https://doi.org/10.3390/su17030924