Odorous Emissions During the Use of the Intermediate Fraction as an Additive to the Green Waste Composting Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Research Object
2.2. Methodology
- from the height of 1.5 m above the plateau of the pile;
- using a static chamber from the surface of the pile;
- from a depth of 10 cm.
2.3. Examined Variants
2.4. Gas Sampling
2.5. Odour Measurement
2.6. Measurement of Ammonia, Temperature and Humidity
2.7. Statistical Methods
3. Results
3.1. Comparison of Research Variants
3.2. Changes in the Studied Parameters During Each Week of the Process
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Weligama Thuppahige, R.T.; Gheewala, S.H.; Babel, S. Environmental Impact of Organic Fraction of Municipal Solid Waste Treatment by Composting in Sri Lanka. J. Mater. Cycles Waste Manag. 2022, 24, 189–199. [Google Scholar] [CrossRef]
- Behrooznia, L.; Sharifi, M.; Hosseinzadeh-Bandbafha, H. Comparative Life Cycle Environmental Impacts of Two Scenarios for Managing an Organic Fraction of Municipal Solid Waste in Rasht-Iran. J. Clean. Prod. 2020, 268, 122217. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Colón, J.; Gabarrell, X.; Font, X.; Sánchez, A.; Artola, A.; Rieradevall, J. The Use of Life Cycle Assessment for the Comparison of Biowaste Composting at Home and Full Scale. Waste Manag. 2010, 30, 983–994. [Google Scholar] [CrossRef] [PubMed]
- Vieira, V.H.; Matheus, D. Environmental Assessments of Biological Treatments of Biowaste in Life Cycle Perspective: A Critical Review. Waste Manag. Res. 2019, 37, 0734242X1987922. [Google Scholar] [CrossRef]
- Colón, J.; Alvarez, C.; Vinot, M.; Lafuente, F.J.; Ponsá, S.; Sánchez, A.; Gabriel, D. Characterization of Odorous Compounds and Odor Load in Indoor Air of Modern Complex MBT Facilities. Chem. Eng. J. 2017, 313, 1311–1319. [Google Scholar] [CrossRef]
- Vergara, S.E.; Silver, W.L. Greenhouse Gas Emissions from Windrow Composting of Organic Wastes: Patterns and Emissions Factors. Environ. Res. Lett. 2019, 14, 124027. [Google Scholar] [CrossRef]
- Nordahl, S.L.; Preble, C.V.; Kirchstetter, T.W.; Scown, C.D. Greenhouse Gas and Air Pollutant Emissions from Composting. Environ. Sci. Technol. 2023, 57, 2235–2247. [Google Scholar] [CrossRef]
- Zhu-Barker, X.; Bailey, S.K.; Paw U, K.T.; Burger, M.; Horwath, W.R. Greenhouse Gas Emissions from Green Waste Composting Windrow. Waste Manag. 2017, 59, 70–79. [Google Scholar] [CrossRef]
- Puyuelo, B.; Gea, T.; Sánchez, A. GHG Emissions during the High-Rate Production of Compost Using Standard and Advanced Aeration Strategies. Chemosphere 2014, 109, 64–70. [Google Scholar] [CrossRef]
- Sarkar, U.; Hobbs, S.E.; Longhurst, P. Dispersion of Odour: A Case Study with a Municipal Solid Waste Landfill Site in North London, United Kingdom. J. Environ. Manag. 2003, 68, 153–160. [Google Scholar] [CrossRef]
- Isidorov, V.; Jdanova, M. Volatile Organic Compounds from Leaves Litter. Chemosphere 2002, 48, 975–979. [Google Scholar] [CrossRef] [PubMed]
- Eitzer, B.D. Emissions of Volatile Organic Chemicals from Municipal Solid Waste Composting Facilities. Environ. Sci. Technol. 1995, 29, 896–902. [Google Scholar] [CrossRef] [PubMed]
- Smet, E.; Van Langenhove, H.; De Bo, I. The Emission of Volatile Compounds during the Aerobic and the Combined Anaerobic/Aerobic Composting of Biowaste. Atmos. Environ. 1999, 33, 1295–1303. [Google Scholar] [CrossRef]
- Clemens, J.; Cuhls, C. Greenhouse Gas Emissions from Mechanical and Biological Waste Treatment of Municipal Waste. Environ. Technol. 2003, 24, 745–754. [Google Scholar] [CrossRef]
- Defoer, N.; De Bo, I.; Van Langenhove, H.; Dewulf, J.; Van Elst, T. Gas Chromatography-Mass Spectrometry as a Tool for Estimating Odour Concentrations of Biofilter Effluents at Aerobic Composting and Rendering Plants. J. Chromatogr. A 2002, 970, 259–273. [Google Scholar] [CrossRef]
- Pierucci, P.; Porazzi, E.; Martinez, M.P.; Adani, F.; Carati, C.; Rubino, F.M.; Colombi, A.; Calcaterra, E.; Benfenati, E. Volatile Organic Compounds Produced during the Aerobic Biological Processing of Municipal Solid Waste in a Pilot Plant. Chemosphere 2005, 59, 423–430. [Google Scholar] [CrossRef]
- Delgado-Rodríguez, M.; Ruiz-Montoya, M.; Giraldez, I.; Cabeza, I.O.; López, R.; Díaz, M.J. Effect of Control Parameters on Emitted Volatile Compounds in Municipal Solid Waste and Pine Trimmings Composting. J. Environ. Sci. Health Part A 2010, 45, 855–862. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.; Mansour, M. A Review on Polycyclic Aromatic Hydrocarbons: Source, Environmental Impact, Effect on Human Health and Remediation. Egypt. J. Pet. 2015, 25, 107–123. [Google Scholar] [CrossRef]
- Sanchez-Monedero, M.A.; Stentiford, E.I.; Mondini, C. Biofiltration at Composting Facilities: Effectiveness for Bioaerosol Control. Environ. Sci. Technol. 2003, 37, 4299–4303. [Google Scholar] [CrossRef]
- Dat, N.-D.; Chang, M.B. Review on Characteristics of PAHs in Atmosphere, Anthropogenic Sources and Control Technologies. Sci. Total Environ. 2017, 609, 682–693. [Google Scholar] [CrossRef]
- Norouzian Baghani, A.; Bahmani, Z.; Sorooshian, A.; Farzadkia, M.; Nabizadeh, R.; Delikhoon, M.; Barkhordari, A.; Rezaei Kalantary, R.; Golbaz, S.; Kermani, M.; et al. Characterization of Polycyclic Aromatic Hydrocarbons Associated with PM10 Emitted from the Largest Composting Facility in the Middle East. Toxin. Rev. 2021, 40, 1481–1495. [Google Scholar] [CrossRef]
- Cappelleti, C.P.; Silva, K.T.S.; Rodrigues-Conrad, K.; Grams, K.C.; da Silva, I.K.; Frielink, A.P.; Abdallah, S.d.R.; Colet, C.d.F.; Bortolotto, J.W.; Bonfanti-Azzolin, G.; et al. Cytotoxic and Oxidative Changes in Individuals Occupationally Exposed to Recyclable Municipal Solid Waste. J. Toxicol. Environ. Health Part A 2023. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Xu, L.; Zhou, J. Role of Household Waste, Governance Quality, and Greener Energy for Public Health: Evidence from Developed Economies. Front. Public Health 2022, 10, 1005060. [Google Scholar] [CrossRef] [PubMed]
- Ibor, O.R.; Khan, E.A.; Arkuwe, A. A Bioanalytical Approach for Assessing the Effects of Soil Extracts from Solid Waste Dumpsite in Calabar (Nigeria) on Lipid and Estrogenic Signaling of Fish Poeciliopsis Lucida Hepatocellular Carcinoma-1 Cells in Vitro and in Vivo African Catfish (Clarias gariepinus). J. Toxicol. Environ. Health A 2023, 86, 774–789. [Google Scholar] [CrossRef]
- Abubakar, I.R.; Maniruzzaman, K.M.; Dano, U.L.; AlShihri, F.S.; AlShammari, M.S.; Ahmed, S.M.S.; Al-Gehlani, W.A.G.; Alrawaf, T.I. Environmental Sustainability Impacts of Solid Waste Management Practices in the Global South. Int. J. Environ. Res. Public Health 2022, 19, 12717. [Google Scholar] [CrossRef]
- Kim, J.-D.; Park, J.-S.; In, B.-H.; Kim, D.; Namkoong, W. Evaluation of Pilot-Scale in-Vessel Composting for Food Waste Treatment. J. Hazard. Mater. 2008, 154, 272–277. [Google Scholar] [CrossRef]
- Iyengar, S.R.; Bhave, P.P. In-Vessel Composting of Household Wastes. Waste Manag. 2006, 26, 1070–1080. [Google Scholar] [CrossRef]
- Bhave, P.P.; Joshi, Y.S. Accelerated In-Vessel Composting for Household Waste. J. Inst. Eng. Ser. A 2017, 98, 367–376. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Chakchouk, M.; Abdallah, N.; Nelles, M.; Hamdi, M. Potential of Windrow Food and Green Waste Composting in Tunisia. Environ. Sci. Pollut. Res. 2021, 28. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, L. Vermiculite and Humic Acid Improve the Quality of Green Waste Compost as a Growth Medium for Centaurea cyanus L. Environ. Technol. Innov. 2021, 24, 101945. [Google Scholar] [CrossRef]
- Petric, I.; Helić, A.; Papraćanin, E. Evolution of Process Parameters and Determination of Kinetics for Co-Composting of Organic Fraction of Municipal Solid Waste with Poultry Manure. Bioresour. Technol. 2012, 117, 107–116. [Google Scholar] [CrossRef] [PubMed]
- Paredes, C.; Bernal, M.P.; Cegarra, J.; Roig, A. Bio-Degradation of Olive Mill Wastewater Sludge by Its Co-Composting with Agricultural Wastes. Bioresour. Technol. 2002, 85, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Das, M.; Uppal, H.S.; Singh, R.; Beri, S.; Mohan, K.S.; Gupta, V.C.; Adholeya, A. Co-Composting of Physic Nut (Jatropha curcas) Deoiled Cake with Rice Straw and Different Animal Dung. Bioresour. Technol. 2011, 102, 6541–6546. [Google Scholar] [CrossRef] [PubMed]
- Malinowski, M.; Wolny-Koładka, K.; Vaverková, M.D. Effect of Biochar Addition on the OFMSW Composting Process under Real Conditions. Waste Manag. 2019, 84, 364–372. [Google Scholar] [CrossRef]
- Połomka, J.; Jędrczak, A. Potential of Mineral Fraction in Compost-Like-Output, Methods of Its Obtaining and the Possibility of Using It in the Context of Circular Economy. Materials 2020, 13, 3023. [Google Scholar] [CrossRef]
- SoSokač, T.; Valinger, D.; Benković, M.; Jurina, T.; Gajdoš Kljusurić, J.; Radojčić Redovniković, I.; Jurinjak Tušek, A. Application of Optimization and Modeling for the Composting Process Enhancement. Processes 2022, 10, 229. [Google Scholar] [CrossRef]
- Pezzolla, D.; Cucina, M.; Proietti, P.; Calisti, R.; Regni, L.; Gigliotti, G. The Use of New Parameters to Optimize the Composting Process of Different Organic Wastes. Agronomy 2021, 11, 2090. [Google Scholar] [CrossRef]
- Chen, W.; Liao, X.; Wu, Y.; Liang, J.B.; Mi, J.; Huang, J.; Zhang, H.; Wu, Y.; Qiao, Z.; Li, X.; et al. Effects of Different Types of Biochar on Methane and Ammonia Mitigation during Layer Manure Composting. Waste Manag. 2017, 61, 506–515. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M.; Kos, W. Application of Sensory Methods to Evaluate the Effectiveness of Solutions to Reduce the Exposure to Odour Nuisance and Ammonia Emissions from the Compost Heaps. Sensors 2024, 24, 4200. [Google Scholar] [CrossRef]
- Szyłak-Szydłowski, M. Validation of Odor Concentration from Mechanical-Biological Treatment Piles Using Static Chamber and Wind Tunnel with Different Wind Speed Values. J. Air Waste Manag. Assoc. 2017, 67, 1046–1054. [Google Scholar] [CrossRef]
- EN 13725: 2022; Stationary Source Emissions. Determination of Odour Concentration by Dynamic Olfactometry and Odour Emission Rate. Available online: https://standards.iteh.ai/catalog/standards/cen/67f31e88-f81d-4e78-bbf6-ce1dcb766eeb/en-13725-2022 (accessed on 21 January 2025).
- Kulig, A.; Szyłak-Szydłowski, M. Assessment of the Effects of Wastewater Treatment Plant Modernization by Means of the Field Olfactometry Method. Water 2019, 11, 2367. [Google Scholar] [CrossRef]
- ISO 13301:2018; Sensory Analysis—Methodology—General Guidance for Measuring Odour, Flavour and Taste Detection Thresholds by a Three-Alternative Forced-Choice (3-AFC) Procedure. Available online: https://standards.iteh.ai/catalog/standards/iso/5310d849-514e-4783-8882-1943f2dcdfad/iso-13301-2018 (accessed on 21 January 2025).
- Szyłak-Szydłowski, M.; Kulig, A. Deodorisation of Ventilated Air from a Fat-Processing Plant Using Different Types of Biofilter Fillings and Membranes. Sustainability 2024, 16, 1939. [Google Scholar] [CrossRef]
- Meena, A.L.; Karwal, M.; Dutta, D.; Mishra, R.P. Composting: Phases and Factors Responsible for Efficient and Improved Composting. 2021. Available online: https://www.researchgate.net/publication/348098151_composting_phases_and_factors_responsible_for_efficient_and_improved_composting (accessed on 10 December 2024).
- North Carolina State University. Applying Compost to Landfills Could Have Environmental Benefits. Science Daily. 14 December 2020. Available online: https://www.sciencedaily.com/releases/2020/12/201214104648.htm (accessed on 10 December 2024).
- Preble, C.V.; Chen, S.S.; Hotchi, T.; Sohn, M.D.; Maddalena, R.L.; Russell, M.L.; Brown, N.J.; Scown, C.D.; Kirchstetter, T.W. Air Pollutant Emission Rates for Dry Anaerobic Digestion and Composting of Organic Municipal Solid Waste. Environ. Sci. Technol. 2020, 54, 16097–16107. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Zheng, G.; Gao, D.; Chen, T.; Wu, F.; Niu, M.; Zou, K. Odor Composition Analysis and Odor Indicator Selection during Sewage Sludge Composting. J. Air Waste Manag. Assoc. 2016, 66, 930–940. [Google Scholar] [CrossRef]
- Büyüksönmez, F.; Rynk, R.; Yucel, A.; Cotton, M. Mitigation of Odor Causing Emissions—Bench-Scale Investigation. J. Air Waste Manag. Assoc. 2012, 62, 1423–1430. [Google Scholar] [CrossRef]
- Andersen, J.K.; Boldrin, A.; Samuelsson, J.; Christensen, T.H.; Scheutz, C. Quantification of Greenhouse Gas Emissions from Windrow Composting of Garden Waste. J. Environ. Qual. 2010, 39, 713–724. [Google Scholar] [CrossRef]
- Maulini-Duran, C.; Artola, A.; Font, X.; Sánchez, A. A Systematic Study of the Gaseous Emissions from Biosolids Composting: Raw Sludge versus Anaerobically Digested Sludge. Bioresour. Technol. 2013, 147, 43–51. [Google Scholar] [CrossRef]
- Zhang, B.; Fan, F.; Guo, C.; Yu, M.; Zhao, M.; Song, Y.; Li, Y. Evaluation of Maturity and Odor Emissions in the Process of Combined Composting of Kitchen Waste and Garden Waste. Appl. Sci. 2021, 11, 5500. [Google Scholar] [CrossRef]
- Zhao, S.; Yang, X.; Zhang, W.; Chang, J.; Wang, D. Volatile Sulfide Compounds (VSCs) and Ammonia Emission Characteristics and Odor Contribution in the Process of Municipal Sludge Composting. J. Air Waste Manag. Assoc. 2019, 69, 1368–1376. [Google Scholar] [CrossRef]
- Jönsson, H.; Ermolaev, E.; Sundberg, C.; Smårs, S.; Pell, M. Greenhouse Gases and Odour Emissions from Composting. Suom. Maatal. Seuran Tied. 2012, 1–6. [Google Scholar] [CrossRef]
- Sundberg, C.; Yu, D.; Franke-Whittle, I.; Kauppi, S.; Smårs, S.; Insam, H.; Romantschuk, M.; Jönsson, H. Effects of pH and Microbial Composition on Odour in Food Waste Composting. Waste Manag. 2013, 33, 204–211. [Google Scholar] [CrossRef] [PubMed]
- Fischer, G.; Albrecht, A.; Jäckel, U.; Kämpfer, P. Analysis of Airborne Microorganisms, MVOC and Odour in the Surrounding of Composting Facilities and Implications for Future Investigations. Int. J. Hyg. Environ. Health 2008, 211, 132–142. [Google Scholar] [CrossRef] [PubMed]
- Rincón, C.A.; De Guardia, A.; Couvert, A.; Soutrel, I.; Guezel, S.; Le Serrec, C. Odor Generation Patterns during Different Operational Composting Stages of Anaerobically Digested Sewage Sludge. Waste Manag. 2019, 95, 661–673. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Koziel, J.A.; Banik, C.; Ma, H.; Lee, M.; O’Brien, S.C.; Li, P.; Andersen, D.S.; Białowiec, A.; Brown, R.C. Mitigation of Gaseous Emissions from Stored Swine Manure with Biochar: Effect of Dose and Reapplication on a Pilot-Scale. Atmosphere 2021, 12, 96. [Google Scholar] [CrossRef]
- Neugebauer, M.; Sołowiej, P. The Use of Green Waste to Overcome the Difficulty in Small-Scale Composting of Organic Household Waste. J. Clean. Prod. 2017, 156, 865–875. [Google Scholar] [CrossRef]
- Wang, N.; Huang, D.; Shao, M.; Sun, R.; Xu, Q. Use of Activated Carbon to Reduce Ammonia Emissions and Accelerate Humification in Composting Digestate from Food Waste. Bioresour. Technol. 2022, 347, 126701. [Google Scholar] [CrossRef]
- Wang, Q.; Awasthi, M.K.; Ren, X.; Zhao, J.; Li, R.; Wang, Z.; Wang, M.; Chen, H.; Zhang, Z. Combining Biochar, Zeolite and Wood Vinegar for Composting of Pig Manure: The Effect on Greenhouse Gas Emission and Nitrogen Conservation. Waste Manag. 2018, 74, 221–230. [Google Scholar] [CrossRef]
- Viaene, J.; Peiren, N.; Vandamme, D.; Lataf, A.; Cuypers, A.; Jozefczak, M.; Vandecasteele, B. Biochar Amendment to Cattle Slurry Reduces NH3 Emissions during Storage without Risk of Higher NH3 Emissions after Soil Application of the Solid Fraction. Waste Manag. 2023, 167, 39–45. [Google Scholar] [CrossRef]
- Baral, K.R.; McIlroy, J.; Lyons, G.; Johnston, C. The Effect of Biochar and Acid Activated Biochar on Ammonia Emissions during Manure Storage. Environ. Pollut. 2023, 317, 120815. [Google Scholar] [CrossRef]
- Chen, B.; Koziel, J.A.; Bialowiec, A.; O’Brien, S.C. The Potential Role of Biochar in Mitigating Gaseous Emissions from Livestock Waste—A Mini-Review. J. Environ. Manag. 2024, 370, 122692. [Google Scholar] [CrossRef]
Variant | Preparation | Share of Wastes | Share of Addition | Kind of Addition |
IF0- | - | 100% (~565 m3) | - | - |
IF0+ | + | 100% (~565 m3) | - | - |
IF9- | - | 91% (~514 m3) | 9% (~51 m3) | IF |
IF9+ | + | 91% (~514 m3) | 9% (~51 m3) | IF |
IF20- | - | 80% (~452 m3) | 20% (~113 m3) | IF |
IF20+ | + | 80% (~452 m3) | 20% (~113 m3) | IF |
W4+ | + | 80% (~452 m3) | 20% (~113 m3) | 4-week green waste |
W8+ | + | 80% (~452 m3) | 20% (~113 m3) | 8-week green waste |
W13+ | + | 80% (~452 m3) | 20% (~113 m3) | 13-week green waste |
Variant | min | Mean | max | St. Deviation |
Ammonia (ppm) | ||||
IF0- | 14.00 | 43.35 | 99.00 | 22.71 |
IF0+ | 1.00 | 11.39 | 42.00 | 9.78 |
IF9- | 12.00 | 34.89 | 79.00 | 21.20 |
IF9+ | 3.00 | 18.04 | 90.00 | 19.09 |
IF20- | 7.00 | 37.57 | 99.00 | 30.02 |
IF20+ | 0.00 | 16.57 | 99.00 | 22.91 |
W4+ | 18.00 | 72.61 | 99.00 | 25.23 |
W8+ | 0.00 | 18.21 | 99.00 | 22.61 |
W13+ | 16.00 | 45.11 | 99.00 | 21.57 |
Odour concentration (ou/m3) | ||||
IF0- | 2500 | 18,251 | 35,000 | 9011 |
IF0+ | 2000 | 6625 | 23,500 | 4879 |
IF9- | 8000 | 14,125 | 27,000 | 6073 |
IF9+ | 2000 | 10,609 | 35,000 | 7424 |
IF20- | 6000 | 15,654 | 35,000 | 9631 |
IF20+ | 40 | 8086 | 35,000 | 8959 |
W4+ | 8500 | 28,810 | 35,000 | 8500 |
W8+ | 4500 | 10,857 | 35,000 | 7496 |
W13+ | 9000 | 20,661 | 35,000 | 10,416 |
Variant | F0- | F0+ | F9- | F9+ | F20- | F20+ | W4+ | W8+ | W13+ |
Ammonia concentration (ppm) | |||||||||
CV (%) | 54.1 | 83.9 | 61.9 | 105.4 | 77.4 | 134.5 | 33.2 | 120.4 | 48.1 |
SD (ppm) | 22.9 | 9.82 | 21.0 | 19.4 | 29.9 | 23.1 | 24.6 | 22.7 | 21.9 |
Odour concentration (ou/m3) | |||||||||
CV (%) | 50.5 | 71.9 | 43.9 | 70.7 | 60.1 | 107.2 | 24.1 | 67.9 | 50.1 |
SD (ppm) | 9033 | 4889 | 6186 | 7553 | 9623 | 8988 | 7021 | 7530 | 10,504 |
Variant | Summed Concentration (ppm) | Reduction (%) | Summed Concentration (ppm) | Reduction (%) |
Ammonia | Odour | |||
IF0- | 1127 | - | 474,550 | - |
IF9- | 977 | 13.3 | 395,500 | 16.7 |
IF9+ | 505 | 55.2 | 294,050 | 37.4 |
IF20- | 1052 | 6.7 | 438,320 | 7.6 |
IF20+ | 464 | 58.8 | 226,410 | 52.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szyłak-Szydłowski, M.; Kos, W. Odorous Emissions During the Use of the Intermediate Fraction as an Additive to the Green Waste Composting Process. Sustainability 2025, 17, 851. https://doi.org/10.3390/su17030851
Szyłak-Szydłowski M, Kos W. Odorous Emissions During the Use of the Intermediate Fraction as an Additive to the Green Waste Composting Process. Sustainability. 2025; 17(3):851. https://doi.org/10.3390/su17030851
Chicago/Turabian StyleSzyłak-Szydłowski, Mirosław, and Wojciech Kos. 2025. "Odorous Emissions During the Use of the Intermediate Fraction as an Additive to the Green Waste Composting Process" Sustainability 17, no. 3: 851. https://doi.org/10.3390/su17030851
APA StyleSzyłak-Szydłowski, M., & Kos, W. (2025). Odorous Emissions During the Use of the Intermediate Fraction as an Additive to the Green Waste Composting Process. Sustainability, 17(3), 851. https://doi.org/10.3390/su17030851