Advancing Sustainability Through Machine Learning: Modeling and Forecasting Renewable Energy Consumption
Abstract
:1. Introduction
2. Materials and Methods
2.1. Machine Learning Models
2.1.1. Random Forest (RF)
2.1.2. Support Vector Regression (SVR)
2.1.3. eXtreme Gradient Boosting (XGBoost)
2.1.4. Least Absolute Shrinkage and Selection Operator (LASSO)
2.1.5. Light Gradient-Boosting Machine (LightGBM)
2.1.6. Multilayer Perceptron (MLP)
2.2. Model Evaluation
2.3. Model Training
2.4. Data
3. Results
4. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alqaralleh, H.S.; Al-Saraireh, A.; Canepa, A. Energy market risk management under uncertainty: A VAR based on wavelet approach. Int. J. Energy Econ. Policy 2021, 11, 130–137. [Google Scholar] [CrossRef]
- Abisoye, B.O.; Sun, Y.; Zenghui, W. A survey of artificial intelligence methods for renewable energy forecasting: Methodologies and insights. Renew. Energy Focus 2024, 48, 100529. [Google Scholar] [CrossRef]
- Ahmad, T.; Zhang, H.; Yan, B. A review on renewable energy and electricity requirement forecasting models for smart grid and buildings. Sustain. Cities Soc. 2020, 55, 102052. [Google Scholar] [CrossRef]
- Eddaoudi, Z.; Aarab, Z.; Boudmen, K.; Elghazi, A.; Rahmani, M.D. A Brief Review of Energy Consumption Forecasting Using Machine Learning Models. Procedia Comput. Sci. 2024, 236, 33–40. [Google Scholar] [CrossRef]
- Talwariya, A.; Singh, P.; Jobanputra, J.H.; Kolhe, M.L. Machine learning based renewable energy generation and energy consumption forecasting. Energy Sources Part A Recovery Util. Environ. Eff. 2023, 45, 3266–3278. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.; Srinivasan, D.; Wang, Z. Wind Power Curve Modeling and Wind Power Forecasting With Inconsistent Data. IEEE Trans. Sustain. Energy 2019, 10, 16–25. [Google Scholar] [CrossRef]
- Agrawal, H.; Talwariya, A.; Gill, A.; Singh, A.; Alyami, H.; Alosaimi, W.; Ortega-Mansilla, A. A Fuzzy-Genetic-Based Integration of Renewable Energy Sources and E-Vehicles. Energies 2022, 15, 3300. [Google Scholar] [CrossRef]
- Mathew, M.S.; Kolhe, M.L. Performance Modelling of Renewable Energy Systems Using kNN Algorithm for Smart Grid Applications. In Proceedings of the 7th International Conference on Smart and Sustainable Technologies (SpliTech), Bol, Croatia, 5–8 July 2022; pp. 1–4. [Google Scholar] [CrossRef]
- Singh, P.; Talwariya, A.; Kolhe, M. Demand Response Management in the Presence of Renewable Energy Sources using Stackelberg Game Theory. IOP Conf. Ser. Mater. Sci. Eng. 2019, 605, 12004. [Google Scholar] [CrossRef]
- Salisu, A.A.; Ogbonna, A.E.; Gupta, R.; Bouri, E. Energy-related uncertainty and international stock market volatility. Q. Rev. Econ. Financ. 2024, 95, 280–293. [Google Scholar] [CrossRef]
- Wang, H.; Lei, Z.; Zhang, X.; Zhou, B.; Peng, J. A review of deep learning for renewable energy forecasting. Energy Convers. Manag. 2019, 198, 111799. [Google Scholar] [CrossRef]
- Bloch, H.; Rafiq, S.; Salim, R. Economic growth with coal, oil and renewable energy consumption in China: Prospects for fuel substitution. Econ. Model. 2015, 44, 104–115. [Google Scholar] [CrossRef]
- Cai, Y.; Wu, Y. Time-varying interactions between geopolitical risks and renewable energy consumption. Int. Rev. Econ. Financ. 2021, 74, 116–137. [Google Scholar] [CrossRef]
- Rajaguru, G.; Khan, S.U. Causality between Energy Consumption and Economic Growth in the Presence of Growth Volatility: Multi-Country Evidence. J. Risk Financ. Manag. 2021, 14, 471. [Google Scholar] [CrossRef]
- Salim, R.A.; Shafiei, S. Urbanization and renewable and non-renewable energy consumption in OECD countries: An empirical analysis. Econ. Model. 2014, 38, 581–591. [Google Scholar] [CrossRef]
- Mystakidis, A.; Koukaras, P.; Tsalikidis, N.; Ioannidis, D.; Tjortjis, C. Energy Forecasting: A Comprehensive Review of Techniques and Technologies. Energies 2024, 17, 1662. [Google Scholar] [CrossRef]
- Wazirali, R.; Yaghoubi, E.; Abujazar, M.S.S.; Ahmad, R.; Vakili, A.H. State-of-the-art review on energy and load forecasting in microgrids using artificial neural networks, machine learning, and deep learning techniques. Electr. Power Syst. Res. 2023, 225, 109792. [Google Scholar] [CrossRef]
- Shapi, M.K.M.; Ramli, N.A.; Awalin, L.J. Energy consumption prediction by using machine learning for smart building: Case study in Malaysia. Dev. Built Environ. 2021, 5, 100037. [Google Scholar] [CrossRef]
- Elhabyb, K.; Baina, A.; Bellafkih, M.; Deifalla, A.F. Machine Learning Algorithms for Predicting Energy Consumption in Educational Buildings. Int. J. Energy Res. 2024, 2024, 6812425. [Google Scholar] [CrossRef]
- Qureshi, M.; Arbab, M.A.; Rehman, S.U. Deep learning-based forecasting of electricity consumption. Sci. Rep. 2024, 14, 6489. [Google Scholar] [CrossRef]
- Zhen, H.; Niu, D.; Yu, M.; Wang, K.; Liang, Y.; Xu, X. A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction. Sustainability 2020, 12, 9490. [Google Scholar] [CrossRef]
- Casolaro, A.; Capone, V.; Iannuzzo, G.; Camastra, F. Deep Learning for Time Series Forecasting: Advances and Open Problems. Information 2023, 14, 598. [Google Scholar] [CrossRef]
- Mustaqeem Ishaq, M.; Kwon, S. Short-Term Energy Forecasting Framework Using an Ensemble Deep Learning Approach. IEEE Access 2021, 9, 94262–94271. [Google Scholar] [CrossRef]
- Wang, J.-N.; Vigne, S.A.; Liu, H.-C.; Hsu, Y.-T. Divergent jump characteristics in brown and green cryptocurrencies: The role of energy-related uncertainty. Energy Econ. 2024, 138, 107847. [Google Scholar] [CrossRef]
- Işık, C.; Kuziboev, B.; Ongan, S.; Saidmamatov, O.; Mirkhoshimova, M.; Rajabov, A. The volatility of global energy uncertainty: Renewable alternatives. Energy 2024, 297, 131250. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Chen, J.; Lin, H.; Yu, P. Evaluating the Predictive Power of the Energy-Related Uncertainty Index on Bitcoin Volatility. Eur. Acad. J. II China 2024, 1, 1. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Smola, A.J.; Schölkopf, B. A tutorial on support vector regression. Stat. Comput. 2004, 14, 199–222. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA, 13–17 August 2016. [Google Scholar]
- Tibshirani, R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 1996, 58, 267–288. [Google Scholar] [CrossRef]
- Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.Y. LightGBM: A highly efficient gradient boosting decision tree. Adv. Neural Inf. Process. Syst. 2017, 30, 3149–3157. [Google Scholar]
- Hornik, K.; Stinchcombe, M.; White, H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989, 2, 359–366. [Google Scholar] [CrossRef]
- Botchkarev, A. A new typology design of performance metrics to measure errors in machine learning regression algorithms. Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 045–076. [Google Scholar] [CrossRef] [PubMed]
- Hyndman, R.J.; Koehler, A.B. Another look at measures of forecast accuracy. Int. J. Forecast. 2006, 22, 679–688. [Google Scholar] [CrossRef]
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 2nd ed.; OTexts: Clayton, Australia, 2018; Available online: https://otexts.org/fpp2/ (accessed on 25 October 2024).
- Hansen, P.R.; Lunde, A.; Nason, J.M. The Model Confidence Set. Econometrica 2011, 79, 453–497. [Google Scholar] [CrossRef]
Model | Hyperparameters |
---|---|
Random Forest | Number of trees: 500; variables per split: 2 |
Support Vector Regression (SVR) | Radial basis kernel; default cost parameter |
XGBoost | Learning rate: 0.2; max depth: 2; boosting rounds: 150 |
LASSO | Regularization parameter: default |
LightGBM | Leaf growth strategy; Learning rate: 0.1; nrounds: 100 |
Multilayer Perceptron (MLP) | Hidden layers: 2 (10, 5 neurons); learning rate: 0.1; max iterations: 100 |
Energy Uncertainty Index | Renewable Energy Consumption IS | |
---|---|---|
Mean | 3.0151 | 5.191 |
Median | 3.0555 | 5.261 |
Maximum | 4.4191 | 5.457 |
Minimum | −0.8769 | 4.833 |
Std. Dev. | 0.6807 | 0.1474 |
Skewness | −1.5346 | −0.5035 |
Kurtosis | 8.4809 | 1.8862 |
J-B | 429.14 *** | 24.516 *** |
J-B Prob. | [0.0000] | [0.0000] |
Obs | 261 | 261 |
Model | MAE | RMSE | MAPE |
---|---|---|---|
Panel A | Rolling-window length = 6 months | ||
RF | 0.04162 | 0.05748 | 1.99008 |
XGB | 0.04194 | 0.05421 * | 1.44260 |
SVR | 0.04228 | 0.05502 | 1.41802 |
LASSO | 0.04222 | 0.05413 | 1.04176 |
LightGBM | 0.03604 | 0.04586 * | 1.14589 |
MLP | 0.04276 | 0.05509 | 1.18905 |
Panel B | Rolling-window length = 12 months | ||
RF | 0.04199 | 0.05826 | 2.05499 |
XGB | 0.04227 | 0.05580 * | 1.18909 |
SVR | 0.04229 | 0.05501 * | 1.41919 |
LASSO | 0.04224 | 0.05417 | 1.04183 |
LightGBM | 0.03613 | 0.04592 * | 1.14626 |
MLP | 0.04278 | 0.05501 | 1.18057 |
Panel C | Rolling-window length = 18 months | ||
RF | 0.04218 | 0.05834 | 2.10393 |
XGB | 0.04255 | 0.05478 * | 1.16166 |
SVR | 0.04211 | 0.05527 | 1.42190 |
LASSO | 0.04227 | 0.05419 | 1.04187 |
LightGBM | 0.03701 | 0.04602 * | 1.14731 |
MLP | 0.04281 | 0.05511 | 1.18872 |
Panel D | Rolling-window length = 24 months | ||
RF | 0.04181 | 0.05777 | 2.03870 |
XGB | 0.04231 | 0.05445 * | 1.26256 |
SVR | 0.04230 | 0.05514 | 1.42803 |
LASSO | 0.04228 | 0.05423 | 1.04199 |
LightGBM | 0.03704 | 0.04626 * | 1.14739 |
MLP | 0.04282 | 0.05514 | 1.18372 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zournatzidou, G. Advancing Sustainability Through Machine Learning: Modeling and Forecasting Renewable Energy Consumption. Sustainability 2025, 17, 1304. https://doi.org/10.3390/su17031304
Zournatzidou G. Advancing Sustainability Through Machine Learning: Modeling and Forecasting Renewable Energy Consumption. Sustainability. 2025; 17(3):1304. https://doi.org/10.3390/su17031304
Chicago/Turabian StyleZournatzidou, Georgia. 2025. "Advancing Sustainability Through Machine Learning: Modeling and Forecasting Renewable Energy Consumption" Sustainability 17, no. 3: 1304. https://doi.org/10.3390/su17031304
APA StyleZournatzidou, G. (2025). Advancing Sustainability Through Machine Learning: Modeling and Forecasting Renewable Energy Consumption. Sustainability, 17(3), 1304. https://doi.org/10.3390/su17031304