Simulated Multi-Scenario Analysis of Land Use and Carbon Stock Dynamics in the Yiluo River Basin Using the PLUS-InVEST Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area
2.2. Data Source
2.3. Research Method
2.3.1. PLUS Model
2.3.2. Land Use Scenario Settings
2.3.3. InVEST Model
3. Results
3.1. Land Use Change in the Yiluo River Basin from 1990 to 2020
3.2. Land Use Change Under Different Scenarios in 2030
3.2.1. Simulation Results and Accuracy of 2020
3.2.2. Contribution of Land Use Impact Factors
3.2.3. Simulated Land Use Changes Under Various Scenarios for 2030
3.3. Carbon Stock Changes in the Yiluo River Basin
3.3.1. Characterization of Carbon Stock Changes from 1990 to 2020
3.3.2. Characterization of Carbon Stock Changes Under Different Scenarios in 2030
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sarkodie, S.A.; Owusu, P.A.; Leirvik, T. Global effect of urban sprawl, industrialization, trade and economic development on carbon dioxide emissions. Environ. Res. Lett. 2020, 15, 034049. [Google Scholar] [CrossRef]
- Sokolov, Y.I. Risks of Global Climate Change. Issues Risk Anal. 2021, 18, 32–45. [Google Scholar] [CrossRef]
- Houghton, R.A.; House, J.I.; Pongratz, J.; van der Werf, G.R.; DeFries, R.S.; Hansen, M.C.; le Quéré, C.; Ramankutty, N. Carbon emissions from land use and land-cover change. Biogeosciences 2012, 9, 5125–5142. [Google Scholar] [CrossRef]
- Chen, N.; Xin, C.; Tang, D.; Zhang, L.; Xin, S. Multi-scenario land use optimization and carbon stock assessment in Northwest China. Environ. Sci. 2023, 44, 4655–4665, (In Chinese with English Abstract). [Google Scholar]
- Zhou, T.; Shi, P. Indirect effects of land use change on soil carbon stock changes in China. Adv. Earth Sci. 2006, 44, 138–143, (In Chinese with English Abstract). [Google Scholar]
- Yu, Z.; Li, M.; Qian, Y.; Peng, R.; Yang, G. Land use change and its ecological effects in Three Gorges Reservoir Area based on CA_Markov model with multiple scenario simulation. Res. Soil Water Conserv. 2024, 31, 363–372, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Wang, Y.; Yu, X.; He, K.; Li, Q.; Zhang, Y.; Song, S. Dynamic simulation of land use change in Jihe watershed based on CA-Markov model. Trans. Chin. Soc. Agric. 2011, 27, 330–336. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, H.; Luo, Z.; Zhang, J.; An, N. Response of runoff and sediment yields to land use change in Fu River watershed based on SWAT model. Res. Soil Water Conserv. 2024, 31, 79–89+100, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Luo, M.; Peng, S. Simulation of land use change in central Yunnan based on FLUS model. In Proceedings of the 2020 IEEE International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA), Chongqing, China, 6–8 November 2020; pp. 1375–1378. [Google Scholar]
- Hu, J.; Le, X.; Xu, Y. Estimating Terrestrial Eco-System Carbon Stock Changes Caused by Multi-Scenarios Land-Use Changes Basedon the FLUS Model-A Case Study of Pingxiang, Jiangxi. Res. Soil Water Conserv. 2024, 31, 299–309, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Li, H.; Chen, G.; Wang, S.; Zhang, Z.; Zhang, Z.; Jin, H. Suitability Evaluation of Cultivated Land in Naoli River Basin Based on CLUE—S Scenario Simulation. Trans. Chin. Soc. Agric. Mach. 2023, 54, 329–339, (In Chinese with English Abstract). [Google Scholar]
- Verburg, P.H.; Overmars, K.P. Dynamic Simulation of Land-Use Change Trajectories with the Clue–s Model. In Modelling Land-Use Change; Springer: Dordrecht, The Netherlands, 2007; pp. 321–335. [Google Scholar] [CrossRef]
- Zhou, Y.; Qin, T.; Pei, Y.; Gao, Y.; Guan, Y.; Kou, F. Land use simulation and multi-scenario prediction based on PLUS model and ground substrate. Geol. Rev. 2023, 70, 315–318, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Masera, O.R.; Garza-Caligaris, J.F.; Kanninen, M.; Karjalainen, T.; Liski, J.; Nabuurs, G.J.; Pussinen, A.; de Jong, B.H.J.; Mohren, G.M.J. Modeling carbon sequestration in afforestation, agroforestry and forest management projects: The CO2FIX V.2 approach. Ecol. Model. 2003, 164, 177–199. [Google Scholar] [CrossRef]
- Li, C.; Frolking, S.; Frolking, T.A. A model of nitrous oxide evolution from soil driven by rainfall events: 2. Model applications. J. Geophys. Res. Atmos. 1992, 97, 9777–9783. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.v.; Ojima, D.S. Analysis of Factors Controlling Soil Organic Matter Levels in Great Plains Grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Wang, H.; Zheng, W.; Gai, Z. Spatio-temporal differentiation of carbon storage in black soil region based on In VEST Model. Acta Sci. Circumstantiae 2024, 44, 473–481, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Babbar, D.; Areendran, G.; Sahana, M.; Sarma, K.; Raj, K.; Sivadas, A. Assessment and prediction of carbon sequestration using Markov chain and InVEST model in Sariska Tiger Reserve, India. J. Clean. Prod. 2021, 278, 123333. [Google Scholar] [CrossRef]
- Zheng, J.; Cai, Y.; Guo, X.; Wei, X.; Yang, Z.; Sun, J.; Liu, Z. Study on land use change and carbon stock in northern Shanxi Province based on InVEST model. Geol. Bull. China 2024, 43, 173–180, (In Chinese with English Abstract). [Google Scholar]
- Guo, Y.; Lu, X.; Ding, S. The classification of plant functional types based on the dominant herbaceousspecies in the riparian zone ecosystems in the Yiluo River. Acta Ecol. Sin. 2012, 32, 4434–4442. [Google Scholar]
- He, M.; Ma, S. Study on Soil and Water Conservation Zoning and Layout of Measures in Yilo River Basin. Henan Water Resour. South North 2016, 9, 8–9, (In Chinese with English Abstract). [Google Scholar]
- Zhang, Y.; Wang, W. Spatial Scale Transformation of Evapotranspiration Based on Remote Sensing in Yiluo River Basin. Acta Geod. Cartogr. Sin. 2013, 42, 906–912, (In Chinese with English Abstract). [Google Scholar]
- Fang, J.; Yang, Y.; Ma, W.; Muhammat, A.; Shen, H. Carbon pools and their changes in grassland ecosystems in China. Sci. Sin. (Vitae) 2010, 40, 566–576, (In Chinese with English Abstract). [Google Scholar]
- Duan, X.; Han, M.; Kong, X.; Sun, J.; Zhang, H. Spatiotemporal Evolution and Simulation Prediction of Ecosystem Carbon Storage in the Yellow River Basin Before and After the Grain for Green Project. Environ. Sci. 2024, 45, 5943–5956, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- He, X.; Xu, Y.; Fan, X.; Geng, Q.; Tian, Z. Temporal and spatial variation and prediction of regional carbon storage in Zhongyuan Urban Agglomeration. China Environ. Sci. 2022, 42, 2965–2976, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Alam, S.A.; Starr, M.; Clark, B.J.F. Tree biomass and soil organic carbon densities across the Sudanese woodland savannah: A regional carbon sequestration study. J. Arid Environ. 2013, 89, 67–76. [Google Scholar] [CrossRef]
- Chen, G.; Yang, Y.; Liu, L.; Li, X.; Zhao, Y.; Yuan, Y. Research Review on Total Below ground Carbon Allocation in Forest Ecosystems. J. Subtrop. Resour. Environ. 2007, 2, 34–42, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Lin, W.; Sun, Y.; Nijhuis, S.; Wang, Z. Scenario-based flood risk assessment for urbanizing deltas using future land-use simulation (FLUS): Guangzhou Metropolitan Area as a case study. Sci. Total Environ. 2020, 739, 139899. [Google Scholar] [CrossRef]
- Uthes, S.; Fricke, K.; König, H.; Zander, P.; van Ittersum, M.; Sieber, S.; Helming, K.; Piorr, A.; Müller, K. Policy relevance of three integrated assessment tools—A comparison with specific reference to agricultural policies. Ecol. Model. 2010, 221, 2136–2152. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Qian, X.; Yang, Y.; Cui, J.; You, J.; Bian, X. Dynamic Evolution of Eco-geologieal Pattern: Taking Danjiangyuan Area of Central Line Project of South-to-North Water Diversion. Northwestern Geol. 2023, 56, 129–140, (In Chinese with English Abstract). [Google Scholar]
- Yuan, J.; Liu, X.; Li, H.; Xing, L.; Luo, X.; Wang, R.; Wang, C.; Zhao, H. Spatial and Temporal Variability of Carbon Stocks in Different Land Use Types in the Yiluo River Basin in the Middle Part of the Yellow River from 1990 to 2050. Geoscience 2024, 38, 559–573, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, Y. Spatio-temporal pattern of land use change in Xinjiang based on DEM. South Cent. Agric. Sci. Technol. 2024, 45, 116–121+126, (In Chinese with English Abstract). [Google Scholar]
- Naikoo, M.W.; Rihan, M.; Ishtiaque, M.; Shahfahad. Analyses of land use land cover (LULC) change and built-up expansion in the suburb of a metropolitan city: Spatio-temporal analysis of Delhi NCR using landsat datasets. J. Urban Manag. 2020, 9, 347–359. [Google Scholar] [CrossRef]
- Zeng, Q.; Sun, C. Estimation and influencing factors of carbon storage in terrestrial ecosystems in the Yellow River Basin the Yellow River Basin. Acta Ecol. Sin. 2024, 44, 5476–5493, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Rutishauser, E.; Hérault, B.; Baraloto, C.; Blanc, L.; Descroix, L.; Sotta, E.D.; Ferreira, J.; Kanashiro, M.; Mazzei, L.; d’Oliveira, M.V.N.; et al. Rapid tree carbon stock recovery in managed Amazonian forests. Curr. Biol. 2015, 25, 2738. [Google Scholar] [CrossRef]
- Kong, R.; Zhang, Z.; Zhang, F.; Tian, J.; Zhu, B.; Zhu, M.; Wang, Y. Spatiotemporal Variation of Forest Carbon Storage in the Yangtze River Basin and Its Driving Factors Analysis. Soil Water Conserv. Res. 2020, 27, 60–66. [Google Scholar] [CrossRef]
- Junju, Z.; Yaru, Z.; Peng, H.; Xi, Z.; Wei, F.; Li, Q.; Xue, D.; Dou, J.; Shi, W.; Wei, W. Impacts of ecological restoration projects on the ecosystem carbon storage of inland river basin in arid area, China. Ecol. Indic. 2020, 118, 106803. [Google Scholar]
Data Type | Data Name | Data Accuracy | Data Source |
---|---|---|---|
Land use data | Land use data 1990–2020 | 30 m | Resource and Environmental Science Data Platform (http://www.resdc.cn) |
Natural factors | Elevation | 30 m | Geospatial Data Cloud (www.gscloud.cn) |
Slope | 30 m | Generated from DEM data | |
Soil type | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn) | |
mean annual Temperature | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn) | |
mean annual Precipitation | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn) | |
Distance to water bodies | 1 km | National Geographic Information Resources Catalog Service System (https://www.webmap.cn) | |
Social factors | Population density | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn) |
GDP | 1 km | Resource and Environmental Science Data Platform (http://www.resdc.cn) | |
Distance to highway | 1 km | National Geographic Information Resources Catalog Service System (https://www.webmap.cn) | |
Distance to Railroad | 1 km | National Geographic Information Resources Catalog Service System (https://www.webmap.cn) | |
Distance to residential areas | 1 km | National Geographic Information Resources Catalog Service System (https://www.webmap.cn) |
Kappa | 0–0.2 | 0.2–0.4 | 0.4–0.6 | 0.6–0.8 | 0.8–1 |
Simulation effect | Poor | Fair | Average | Good | Excellent |
Scenario | Land Use Change | Conversion Probability Adjustment |
---|---|---|
Natural Development | Land use conversion probabilities remain unchanged from 1990–2020 | Baseline transition probability |
Urban Development | Cultivated→Construction | +25% |
Woodland→Construction | +25% | |
Grassland→Construction | +25% | |
Unused→Construction | +25% | |
Construction→Woodland | −15% | |
Construction→Grassland | −15% | |
Ecological Protection | Unused→Woodland | +20% |
Unused→Grassland | +20% | |
Woodland →Construction | −30% | |
Grassland→Construction | −30% | |
Cultivated→Construction | −10% | |
Water Conservation | Unused→Water | +30% |
Cultivated→Water | +10% | |
Woodland→Water | +10% | |
Grassland→Water | +10% |
Land Use Type | C_above | C_below | C_soil | C_dead |
---|---|---|---|---|
Cultivated | 57.13 | 41.81 | 107.43 | 2.55 |
Woodland | 71.88 | 60.05 | 157.38 | 5.09 |
Grassland | 43.38 | 44.82 | 99.01 | 11.46 |
Water | 0.00 | 0.00 | 0.00 | 1.02 |
Construction | 14.75 | 0.00 | 77.31 | 0.00 |
Unused | 4.33 | 0.00 | 21.40 | 0.00 |
Land Use Type | 1990 | 2000 | 2010 | 2020 | ||||
---|---|---|---|---|---|---|---|---|
Area/km2 | Proportion | Area/km2 | Proportion | Area/km2 | Proportion | Area/km2 | Proportion | |
Cultivated | 10,399.12 | 0.46017 | 10,148.30 | 0.44908 | 9667.20 | 0.42779 | 9249.08 | 0.40928 |
Woodland | 9829.15 | 0.43495 | 10,036.90 | 0.44415 | 10,241.51 | 0.45320 | 10,916.99 | 0.48309 |
Grassland | 1720.38 | 0.07613 | 1429.70 | 0.06327 | 1374.68 | 0.06083 | 783.72 | 0.03468 |
Water | 81.54 | 0.00361 | 78.46 | 0.00347 | 105.56 | 0.00467 | 110.93 | 0.00491 |
Construction | 567.02 | 0.02509 | 903.96 | 0.04000 | 1208.33 | 0.05347 | 1536.28 | 0.06798 |
Unused | 0.99 | 0.00004 | 0.89 | 0.00004 | 0.93 | 0.00004 | 1.20 | 0.00005 |
Land Use Type | 2020 | 2030 | |||||||
---|---|---|---|---|---|---|---|---|---|
Natural Development | Change | Urban Development | Change | Ecological Protection | Change | Water Conservation | Change | ||
Cultivated | 9249.08 | 8946.39 | −302.69 | 8933.99 | −315.09 | 8997.88 | −251.21 | 3011.71 | −6237.37 |
Woodland | 10,916.99 | 11,189.88 | 272.89 | 11,130.04 | 213.04 | 11,387.14 | 470.15 | 11,119.66 | 202.67 |
Grassland | 783.72 | 499.97 | −283.75 | 498.57 | −285.14 | 610.89 | −172.83 | 499.87 | −283.85 |
Water | 110.93 | 118.83 | 7.90 | 110.95 | 0.01 | 112.21 | 1.28 | 123.99 | 13.06 |
Construction | 1536.28 | 1842.80 | 306.52 | 1924.28 | 388.00 | 1488.99 | −47.30 | 1842.63 | 306.35 |
Unused | 1.20 | 0.34 | −0.86 | 0.38 | −0.82 | 1.10 | −0.10 | 0.35 | −0.86 |
Land Use Type | 1990 | 2000 | 2010 | 2020 |
---|---|---|---|---|
Cultivated | 195.5326 | 190.8164 | 181.7705 | 173.9086 |
Woodland | 260.4332 | 265.9376 | 271.359 | 289.2566 |
Grassland | 30.76091 | 25.56343 | 24.57971 | 14.01306 |
Water | 0.007485 | 0.007203 | 0.00969 | 0.010184 |
Construction | 4.697971 | 7.489646 | 10.01151 | 12.7287 |
Unused | 0.001907 | 0.001722 | 0.001782 | 0.002313 |
Total | 491.4341 | 489.8159 | 487.7321 | 489.9195 |
Land Use Type | 2030 | |||
---|---|---|---|---|
Natural Development | Urban Development | Ecological Protection | Water Conservation | |
Cultivated | 168.217 | 167.984 | 169.185 | 169.445 |
Woodland | 296.487 | 294.901 | 301.714 | 294.627 |
Grassland | 8.940 | 8.915 | 10.923 | 8.938 |
Water | 0.011 | 0.010 | 0.010 | 0.011 |
Construction | 15.268 | 15.943 | 12.337 | 15.267 |
Unused | 0.001 | 0.001 | 0.002 | 0.001 |
Total | 488.924 | 487.754 | 494.171 | 488.289 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, N.; Gao, F.; Qin, L.; Sang, C.; Yao, Z.; Liu, B.; Zhang, M. Simulated Multi-Scenario Analysis of Land Use and Carbon Stock Dynamics in the Yiluo River Basin Using the PLUS-InVEST Model. Sustainability 2025, 17, 1233. https://doi.org/10.3390/su17031233
Zhao N, Gao F, Qin L, Sang C, Yao Z, Liu B, Zhang M. Simulated Multi-Scenario Analysis of Land Use and Carbon Stock Dynamics in the Yiluo River Basin Using the PLUS-InVEST Model. Sustainability. 2025; 17(3):1233. https://doi.org/10.3390/su17031233
Chicago/Turabian StyleZhao, Na, Feilong Gao, Long Qin, Chenxi Sang, Zhijun Yao, Binglei Liu, and Minglei Zhang. 2025. "Simulated Multi-Scenario Analysis of Land Use and Carbon Stock Dynamics in the Yiluo River Basin Using the PLUS-InVEST Model" Sustainability 17, no. 3: 1233. https://doi.org/10.3390/su17031233
APA StyleZhao, N., Gao, F., Qin, L., Sang, C., Yao, Z., Liu, B., & Zhang, M. (2025). Simulated Multi-Scenario Analysis of Land Use and Carbon Stock Dynamics in the Yiluo River Basin Using the PLUS-InVEST Model. Sustainability, 17(3), 1233. https://doi.org/10.3390/su17031233