Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends
Abstract
:1. Introduction
2. Literature Review
2.1. Research on PVs in the Building Field
2.2. Research on PV Assessments
3. Methodology
3.1. Description
3.2. Variables
3.3. TOPSIS Entropy Method
3.4. Utility Calculation Based on CPT
4. Case Study
4.1. Attribute Identification and Calculation
4.2. Utility Calculation in TDSs
4.3. Utility Calculation in the TPS
4.4. Market Share Division and Integrative Analysis
5. Sensitivity Analysis and Hypothesis Tests
5.1. Sensitivity Analysis of the Risk-Aversion Coefficient
5.2. Comparison Analysis of Methods
5.3. Comparison of Weight Methods
5.4. Cost–Profit Space Analysis
6. Conclusions and Discussion
7. Summary and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Johnsson, F.; Kjärstad, J.; Rootzén, J. The threat to climate change mitigation posed by the abundance of fossil fuels. Clim. Policy 2019, 19, 258–274. [Google Scholar] [CrossRef]
- Hobday, A.J.; Burrows, M.T.; Filbee-Dexter, K.; Holbrook, N.J.; Gupta, A.S.; Smale, D.A.; Smith, K.E.; Thomsen, M.S.; Wernberg, T. With the arrival of El Niño, prepare for stronger marine heatwaves. Nature 2023, 621, 38–41. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Spirandelli, D.; Franklin, E.C.; Lynham, J.; Kantar, M.B.; Miles, W.; Smith, C.Z.; Freel, K.; Moy, J.; Louis, L.V.; et al. Broad threat to humanity from cumulative climate hazards intensified by greenhouse gas emissions. Nat. Clim. Chang. 2018, 19, 1062–1071. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, Y.; Yuan, X.; Liu, Y.; Xu, J.; Zhang, S.; He, B.-J. A comprehensive study of feasibility and applicability of building integrated photovoltaic (BIPV) systems in regions with high solar irradiance. J. Clean. Prod. 2021, 307, 127240. [Google Scholar] [CrossRef]
- Kannan, N.; Vakeesan, D. Solar energy for future world: A review. Renew. Sustain. Energy Rev. 2016, 62, 1092–1105. [Google Scholar] [CrossRef]
- Yu, G.; Yang, H.; Luo, D.; Cheng, X.; Ansah, M.K. A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds. Renew. Sustain. Energy Rev. 2021, 149, 111355. [Google Scholar] [CrossRef]
- Xu, K.; Wang, Y.; Li, Z.; Li, X.; Song, H. Voltage optimization control and risk assessment technology for high-proportion distributed photovoltaic access to distribution network. J. Phys. Conf. Ser. 2023, 2488, 012056. [Google Scholar] [CrossRef]
- Su, X.; Zhang, L.; Luo, Y.; Liu, Z. Energy performance of a reversible window integrated with photovoltaic blinds in Harbin. Build. Environ. 2022, 213, 108861. [Google Scholar] [CrossRef]
- Liu, M.; Liu, C.; Xie, H.; Zhao, Z.; Zhu, C.; Lu, Y.; Bu, C. Analysis of the Impact of Photovoltaic Curtain Walls Replacing Glass Curtain Walls on the Whole Life Cycle Carbon Emission of Public Buildings Based on BIM Modeling Study. Energies 2023, 16, 7030. [Google Scholar] [CrossRef]
- Basher, M.K.; Nur-E-Alam, M.; Rahman, M.M.; Alameh, K.; Hinckley, S. Aesthetically Appealing Building Integrated Photovoltaic Systems for Net-Zero Energy Buildings. Current Status, Challenges, and Future Developments—A Review. Buildings 2023, 13, 863. [Google Scholar] [CrossRef]
- Hachem-Vermette, C.; Guarino, F.; La Rocca, V.; Cellura, M. Towards achieving net-zero energy communities: Investigation of design strategies and seasonal solar collection and storage net-zero. Sol. Energy 2019, 192, 169–185. [Google Scholar] [CrossRef]
- Zomer, C.; Custódio, I.; Antoniolli, A.; Rüther, R. Performance assessment of partially shaded building-integrated photovoltaic (BIPV) systems in a positive-energy solar energy laboratory building: Architecture perspectives. Sol. Energy 2020, 211, 879–896. [Google Scholar] [CrossRef]
- Anand, A.; Verayiah, R.A.P.; Mansor, M.; Hasim, T.J.T.; Shukla, A.; Panchal, H.; Sharma, A.; Natrayan, L.; Kumar, A. A comprehensive analysis of small-scale building integrated photovoltaic system for residential buildings: Techno-economic benefits and greenhouse gas mitigation potential. J. Build. Eng. 2024, 82, 108232. [Google Scholar] [CrossRef]
- Yang, R.J.; Zou, P.X.W. Building integrated photovoltaics (BIPV): Costs, benefits, risks, barriers and improvement strategy. Int. J. Constr. Manag. 2015, 16, 39–53. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P.; Mamat, R. BIPV in Southeast Asian countries—Opportunities and challenges. Renew. Energy Focus 2017, 21, 25–32. [Google Scholar] [CrossRef]
- Kapsalis, V.; Maduta, C.; Skandalos, N.; D’Agostino, D.; Yang, R.J.; Udayraj; Parker, D.; Karamanis, D. Bottom-up energy transition through rooftop PV upscaling: Remaining issues and emerging upgrades towards NZEBs at different climatic conditions. Renew. Sustain. Energy Transit. 2024, 5, 100083. [Google Scholar] [CrossRef]
- Tabakovic, M.; Fechner, H.; van Sark, W.; Louwen, A.; Georghiou, G.; Makrides, G.; Loucaidou, E.; Ioannidou, M.; Weiss, I.; Arancon, S.; et al. Status and outlook for building integrated photovoltaics (BIPV) in relation to educational needs in the BIPV sector. Energy Procedia 2017, 111, 993–999. [Google Scholar] [CrossRef]
- Celadyn, W.; Filipek, P. Investigation of the Effective Use of Photovoltaic Modules in Architecture. Buildings 2020, 10, 145. [Google Scholar] [CrossRef]
- Bonomo, P.; Frontini, F. Building Integrated Photovoltaics (BIPV): Analysis of the Technological Transfer Process and Innovation Dynamics in the Swiss Building Sector. Buildings 2024, 14, 1510. [Google Scholar] [CrossRef]
- Akinoglu, B.G.; Tuncel, B.; Badescu, V. Beyond 3rd generation solar cells and the full spectrum project. Recent advances and new emerging solar cells. Sustain. Energy Technol. Assess. 2021, 46, 101287. [Google Scholar] [CrossRef]
- Sarkar, D.; Kumar, A.; Sadhu, P.K. A Survey on Development and Recent Trends of Renewable Energy Generation from BIPV Systems. IETE Tech. Rev. 2019, 37, 258–280. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, C.; Zhang, T. Evaluation of renewable power sources using a fuzzy MCDM based on cumulative prospect theory: A case in China. Energy 2018, 147, 1227–1239. [Google Scholar] [CrossRef]
- Cheng, J.; Feng, Y.; Lin, Z.; Liu, Z.; Tan, J. Anti-vibration optimization of the key components in a turbo-generator based on heterogeneous axiomatic design. J. Clean. Prod. 2017, 171, 1467–1477. [Google Scholar] [CrossRef]
- Kothiyal, A.; Spinu, V.; Wakker, P.P. An experimental test of prospect theory for predicting choice under ambiguity. J. Risk Uncertain. 2014, 48, 1–17. [Google Scholar] [CrossRef]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. J. Econom. 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Ying, C.-S.; Li, Y.-L.; Chin, K.-S.; Yang, H.-T.; Xu, J. A new product development concept selection approach based on cumulative prospect theory and hybrid-information MADM. Comput. Ind. Eng. 2018, 122, 251–261. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Chin, K.-S. Photovoltaic technology assessment based on cumulative prospect theory and hybrid information from sustainable perspective. Sustain. Energy Technol. Assess. 2022, 52, 102116. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. Exergetic assessment of BIPV module using parametric and photonic energy methods: A review. Energy Build. 2016, 119, 62–73. [Google Scholar] [CrossRef]
- Biyik, E.; Araz, M.; Hepbasli, A.; Shahrestani, M.; Yao, R.; Shao, L.; Essah, E.; Oliveira, A.C.; del Caño, T.; Rico, E.; et al. A key review of building integrated photovoltaic (BIPV) systems. Eng. Sci. Technol. 2017, 20, 833–858. [Google Scholar] [CrossRef]
- Shafique, M.; Luo, X.; Zuo, J. Photovoltaic-green roofs: A review of benefits, limitations, and trends. Sol. Energy 2020, 202, 485–497. [Google Scholar] [CrossRef]
- Pelle, M.; Lucchi, E.; Maturi, L.; Astigarraga, A.; Causone, F. Coloured BIPV Technologies: Methodological and Experimental Assessment for Architecturally Sensitive Areas. Energies 2020, 13, 4506. [Google Scholar] [CrossRef]
- Xu, L.; Ji, J.; Luo, K.; Li, Z.; Xu, R.; Huang, S. Annual analysis of a multi-functional BIPV solar wall system in typical cities of China. Energy 2020, 197, 117098. [Google Scholar] [CrossRef]
- Wang, H.; Lin, C.; Hu, Y.; Zhang, X.; Han, J.; Cheng, Y. Study on indoor adaptive thermal comfort evaluation method for buildings integrated with semi-transparent photovoltaic window. Build. Environ. 2023, 228, 109834. [Google Scholar] [CrossRef]
- Sun, C.; Lu, Y.; Ju, X. Experimental and numerical study to optimize building integrated photovoltaic (BIPV) roof structure. Energy Build. 2024, 309, 114070. [Google Scholar] [CrossRef]
- Azami, A.; Sevinç, H. The Energy Performance of Building Integrated Photovoltaics (BIPV) by Determination of Optimal Building Envelope. Build. Environ. 2021, 199, 107856. [Google Scholar] [CrossRef]
- Cibi, M.R.; Manikandan, S. Concise overview of BIPV systems and its future scope. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1130, 012033. [Google Scholar] [CrossRef]
- Van de Kaa, G.; Rezaei, J.; Kamp, L.; de Winter, A. Photovoltaic technology selection: A fuzzy MCDM approach. Renew. Sustain. Energy Rev. 2014, 32, 662–670. [Google Scholar] [CrossRef]
- Muhammad, S.; Mahmood, T.; Choudhry, M.A. Photovoltaic technology selection using analytical hierarchical process. J. Sol. Energy 2015, 137, 021018. [Google Scholar] [CrossRef]
- Long, S.; Geng, S. Decision framework of photovoltaic module selection under interval-valued intuitionistic fuzzy environment. Energy Convers. Manag. 2015, 106, 1242–1250. [Google Scholar] [CrossRef]
- Zdyb, A.; Gulkowski, S. Performance assessment of four different photovoltaic technologies in Poland. Energies 2020, 13, 196. [Google Scholar] [CrossRef]
- Fang, H.; Wang, X.; Song, W.Y. Technology selection for photovoltaic cell from sustainability perspective: An integrated approach. Renew. Energy 2020, 153, 1029–1041. [Google Scholar] [CrossRef]
- Zhang, X. New interval-valued intuitionistic fuzzy behavioral MADM method and its application in the selection of photovoltaic cells. Energies 2016, 9, 835. [Google Scholar] [CrossRef]
- Bahou, S. Techno-economic assessment of a hydrogen refuelling station powered by an on-grid photovoltaic solar system: A case study in Morocco. Int. J. Hydrogen Energy 2023, 48, 23363–23372. [Google Scholar] [CrossRef]
- Anoune, K.; Ghazi, M.; Bouya, M.; Laknizi, A.; Ghazouani, M.; Ben Abdellah, A.; Astito, A. Optimization and techno-economic analysis of photovoltaic-wind-battery based hybrid system. J. Energy Storage 2020, 32, 101878. [Google Scholar] [CrossRef]
- Ali, M.B.; Kazmi, S.A.A.; Altamimi, A.; Khan, Z.A.; Alghassab, M.A. Decarbonizing Telecommunication Sector: Techno-Economic Assessment and Optimization of PV Integration in Base Transceiver Stations in Telecom Sector Spreading across Various Geographically Regions. Energies 2023, 16, 3800. [Google Scholar] [CrossRef]
- Peng, C.; Huang, Y.; Wu, Z. Building-integrated photovoltaics (BIPV) in architectural design in China. Energy Build. 2011, 43, 3592–3598. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, M.; Yang, H. A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems. Energies 2018, 11, 3157. [Google Scholar] [CrossRef]
- Singh, D.; Chaudhary, R.; Karthick, A.; Patil, P.P.; Kaliappan, S. Economic and life cycle cost analysis of building-integrated photovoltaic system for composite climatic conditions. Environ. Sci. Pollut. Res. 2024, 31, 13392–13413. [Google Scholar] [CrossRef]
- Tversky, A.; Kahneman, D. Advances in prospect theory: Cumulative representation of uncertainty. J. Risk Uncertain. 1992, 5, 297–323. [Google Scholar] [CrossRef]
- Li, Y.-L.; Ying, C.-S.; Chin, K.-S.; Yang, H.-T.; Xu, J. Third-party reverse logistics provider selection approach based on hybrid-information MCDM and cumulative prospect theory. J. Clean. Prod. 2018, 195, 573–584. [Google Scholar] [CrossRef]
- Hwang, C.L.; Yoon, K. Multiple Attribute Decision Making: Methods and Applications; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef]
- Zhang, D.; Li, Y.; Li, Y.; Shen, Z. Service Failure Risk Assessment and Service Improvement of Self-Service Electric Vehicle. Sustainability 2022, 14, 3723. [Google Scholar] [CrossRef]
- Nascimento, L.R.; Braga, M.; Campos, R.A.; Naspolini, H.F.; Rüther, R. Performance assessment of solar photovoltaic technologies under different climatic conditions in Brazil. Renew. Energy 2020, 146, 1070–1082. [Google Scholar] [CrossRef]
- Ludin, N.A.; Mustafa, N.I.; Hanafiah, M.M.; Ibrahim, M.A.; Teridi, M.A.M.; Sepeai, S.; Zaharim, A.; Sopian, K. Prospects of life cycle assessment of renewable energy from solar photovoltaic technologies: A review. Renew. Sust. Energy Rev. 2018, 96, 11–28. [Google Scholar] [CrossRef]
- Kong, H.; Yu, Z.; Zhang, J.; Han, Y.; Wu, L.; Wang, H.; Wang, J. Perspective of CIGS-BIPV’s Product Competitiveness in China. Int. J. Photoenergy 2020, 2020, 5392594. [Google Scholar] [CrossRef]
- Jordan, D.C.; Kurtz, S.R. Photovoltaic Degradation Rates—An Analytical Review. Prog. Photovolt. Res. Appl. 2013, 21, 12–29. [Google Scholar] [CrossRef]
- Tian, X.; Wang, J.; Ji, J.; Wang, C.; Ke, W.; Yuan, S. A multifunctional curved CIGS photovoltaic/thermal roof system: A numerical and experimental investigation. Energy 2023, 273, 127259. [Google Scholar] [CrossRef]
- Elnosh, A.; Al-Ali, H.O.; John, J.J.; Alnuaimi, A.; Ubinas, E.R.; Stefancich, M.; Banda, P. Field study of factors influencing performance of PV modules in buildings (BIPV/BAPV) installed in UAE. In Proceedings of the 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion, Waikoloa, HI, USA, 10–15 June 2018; pp. 565–568. Available online: https://ieeexplore.ieee.org/abstract/document/8547298/ (accessed on 1 June 2024).
- Fan, Z.; Yang, Z.; Yang, L. Daylight performance assessment of atrium skylight with integrated semi-transparent photovoltaic for different climate zones in China. Build. Environ. 2021, 190, 107299. [Google Scholar] [CrossRef]
- Wu, Y.; Li, S.; Gao, X.; Fan, H. Daylighting Performance of CdTe Semi-Transparent Photovoltaic Skylights with Different Shapes for University Gymnasium Buildings. Buildings 2024, 14, 241. [Google Scholar] [CrossRef]
- Barman, S.; Chowdhury, A.; Mathur, S.; Mathur, J. Assessment of the efficiency of window integrated CdTe based semi-transparent photovoltaic module. Sustain. Cities Soc. 2018, 37, 250–262. [Google Scholar] [CrossRef]
- Lee, K.; Kim, N.; Kim, K.; Um, H.-D.; Jin, W.; Choi, D.; Park, J.; Park, K.J.; Lee, S.; Seo, K. Neutral-Colored Transparent Crystalline Silicon Photovoltaics. Joule 2020, 4, 235–246. [Google Scholar] [CrossRef]
- Block, A.B.; Palou, J.E.; Faes, A.; Virtuani, A.; Ballif, C. Accurate color characterization of solar photovoltaic modules for building integration. Sol. Energy 2024, 267, 112227. [Google Scholar] [CrossRef]
- Gastwirth, J.L. The Estimation of the Lorenz Curve and Gini Index. Rev. Econ. Stat. 1972, 54, 306–316. [Google Scholar] [CrossRef]
- Ecer, F.; Pamucar, D.; Mardani, A.; Alrasheedi, M. Assessment of renewable energy resources using new interval rough number extension of the level based weight assessment and combinative distance-based assessment. Renew. Energy 2021, 170, 1156–1177. [Google Scholar] [CrossRef]
- Nsafon, B.E.K.; Butu, H.M.; Owolabi, A.B.; Roh, J.W.; Suh, D.; Huh, J.-S. Integrating multi-criteria analysis with PDCA cycle for sustainable energy planning in Africa: Application to hybrid mini-grid system in Cameroon. Sustain. Energy Technol. Assess. 2020, 37, 100628. [Google Scholar] [CrossRef]
- Cerón, I.; Caamaño-Martín, E.; Neila, F.J. ‘State-of-the-art’ of building integrated photovoltaic products. Renew. Energy 2013, 58, 127–133. [Google Scholar] [CrossRef]
- Shukla, A.K.; Sudhakar, K.; Baredar, P. A comprehensive review on design of building integrated photovoltaic system. Energy Build. 2016, 128, 99–110. [Google Scholar] [CrossRef]
- Chen, L.; Sun, Y.; Zhang, N.; Yang, J.; Wang, D. Quantifying the benefits of BIPV windows in urban environment under climate change: A comparison of three Chinese cities. Renew. Energy 2024, 221, 119740. [Google Scholar] [CrossRef]
- Shakibi, H.; Afzal, S.; Shokri, A.; Sobhani, B. Utilization of a phase change material with metal foam for the performance improvement of the photovoltaic cells. J. Energy Storage 2022, 51, 104466. [Google Scholar] [CrossRef]
- Yang, T.; Athienitis, A. A review of research and developments of building-integrated photovoltaic-thermal (BIPVT) systems. Renew. Sustain. Energy Rev. 2016, 66, 886–912. [Google Scholar] [CrossRef]
Attribute | Distribution Characteristics |
---|---|
Gender | Male, 211, 44.14%; Female, 267, 55.86% |
Age | 18~20, 218, 45.61%; 21~30, 156, 32.64%; 31~40, 83, 17.36%; 41 and above, 21, 4.39% |
Consumption level (CNY) | 1001~2000, 184, 38.49%; 2001~3000, 62, 12.97%; 3001~5000, 65, 13.60%; 5001 and above, 71, 14.85% |
Educational background | High school or below, 15, 3.14%; College degree, 225, 47.07%; Bachelor degree, 89, 18.62; Postgraduate degree, 149, 31.17% |
Hometown | Urban, 220, 41.59%; Rural, 309, 58.41% |
Price | Conversion Rate | Operating Cost | Installation Cost | Aesthetics |
---|---|---|---|---|
4.8766 | 4.8326 | 4.7490 | 4.7155 | 4.4414 |
Parameters | M-Si (P1) | P-Si (P2) | CdTe (P3) | CIGS (P4) | A-Si (P5) |
---|---|---|---|---|---|
S1 (%) | 26.7 | 22.3 | 21 | 22.9 | 12.5 |
S2 (%) | 24.4 | 19.9 | 18.6 | 19.2 | 10.4 |
S3 (m2) | (7, 9) | (8, 9) | (11, 13) | (9, 11) | (13, 20) |
S4 (year) | (25, 30) | (25, 30) | 20 | 20 | 25 |
S5 (%/year) | (0.4, 0.6) | (0.5, 0.8) | (0.2, 0.9) | (0.5, 1.6) | (0.7, 1.35) |
S6 (%) | 2.1 | 0.5 | 4.1 | 3.2 | 7.8 |
S7 (USD/W) | (0.23, 0.28) | (0.20, 0.25) | (0.25, 0.33) | (0.26, 0.52) | (0.40, 0.65) |
S8 | (0.4, 0.7) | (0.3, 0.6) | (0.6, 0.9) | (0.6, 0.9) | (0.6, 0.9) |
Attributes | M-Si | P-Si | CdTe | CIGS | A-Si |
---|---|---|---|---|---|
D1 (%) | (0.233, 0.360) | (0.267, 0.360) | (0.550, 0.650) | (0.450, 0.550) | (0.520, 0.800) |
D2 (USD*Kw) | (7.667, 11.20) | (6.667, 10.00) | (12.50, 16.50) | (13.00, 26.00) | (16.00, 26.00) |
D3 (%) | (21.578, 22.288) | (17.092, 17.955) | (16.162, 17.321) | (15.584, 17.355) | (8.461, 9.156) |
D4 (%) | (2.1, 2.1) | (0.5, 0.5) | (4.1, 4.1) | (3.20, 3.20) | (7.8, 7.8) |
D5 | (0.400, 0.700) | (0.300, 0.600) | (0.600, 0.900) | (0.600, 0.900) | (0.600, 0.900) |
Parameters | M-Si | P-Si | CdTe | CIGS | A-Si |
---|---|---|---|---|---|
T10 (%, AVT ≈ 20%) | (12.2, 14) | (11.5, 12.2) | (6.04, 7.73) | (5.27, 6.86) | (5.57, 6.92) |
T11 (m2) | (14, 18) | (16, 18) | (27, 33) | (28.5, 34.8) | (25, 28) |
T12 | (0.3, 0.6) | (0.2, 0.5) | (0.6, 0.9) | (0.6, 0.9) | (0.7, 1) |
Attributes | M-Si | P-Si | CdTe | CIGS | A-Si |
---|---|---|---|---|---|
(%) | (0.467, 0.720) | (0.533, 0.720) | (1.350, 1.650) | (1.425, 1.740) | (1.000, 1.120) |
(%) | (10.789, 12.788) | (9.877, 11.007) | (5.248, 7.198) | (4.277, 6.201) | (4.532, 6.092) |
(0.300, 0.600) | (0.200, 0.500) | (0.600, 0.900) | (0.600, 0.900) | (0.600, 0.900) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di, J.; Liu, W.; Sun, J.; Zhang, D. Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends. Sustainability 2025, 17, 1060. https://doi.org/10.3390/su17031060
Di J, Liu W, Sun J, Zhang D. Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends. Sustainability. 2025; 17(3):1060. https://doi.org/10.3390/su17031060
Chicago/Turabian StyleDi, Jianguo, Wenge Liu, Jiaqi Sun, and Dianfeng Zhang. 2025. "Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends" Sustainability 17, no. 3: 1060. https://doi.org/10.3390/su17031060
APA StyleDi, J., Liu, W., Sun, J., & Zhang, D. (2025). Market Potential Evaluation of Photovoltaic Technologies in the Context of Future Architectural Trends. Sustainability, 17(3), 1060. https://doi.org/10.3390/su17031060