Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis
Abstract
:1. Introduction
- RQ1:
- What are the most relevant factors influencing the adoption of CE-CDW strategies in the SMRC?
- RQ2:
- Which factors inhibit or enable CE-CDW adoption?
- RQ3:
- How can identifying these factors inform current and future CE-CDW strategies?
2. Methods
2.1. Selection of Expert Participants
- A systematic review of LinkedIn profiles using the keyword “circular economy”.
- Outreach to experts featured on the “Economy Becomes Circular” podcast on Spotify.
- Recommendations from existing panel members.
- Identification of contributors to the CE-CDW report [11].
2.2. The Delphi Process
- Factor importance: Experts rated each factor’s importance using Likert-scale questions [50] on a 5-point scale, where 1 indicated “not important”, 2 “somewhat important”, 3 “moderately important”, 4 “very important”, and 5 “extremely important”, addressing RQ1.
- Factor influence: Experts identified each factor as “enabling”, “neutral”, or “inhibiting” CE-CDW adoption, addressing RQ2.
- Open-ended questions allowed participants to justify their ratings, suggest additional factors, and provide insights into the anticipated evolution of CE-CDW practices between 2025 and 2035.
3. Results
4. Discussion
4.1. Socio-Environmental Dimension
4.2. Technical Dimension
4.3. Financial Dimension
4.4. Strategic-Regulatory Dimension
4.5. Study Limitations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Canu, M.E. Circular Economy and Sustainability: New Approaches to Value Creation; CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2017. [Google Scholar]
- Lakatos, E.S.; Yong, G.; Szilagyi, A.; Clinci, D.S.; Georgescu, L.; Iticescu, C.; Cioca, L.-I. Conceptualizing Core Aspects on Circular Economy in Cities. Sustainability 2021, 13, 7549. [Google Scholar] [CrossRef]
- López Ruiz, L.A.; Roca Ramón, X.; Gassó Domingo, S. The circular economy in the construction and demolition waste sector—A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar] [CrossRef]
- European Commission. Circular Economy Action Plan. 2020. Available online: https://environment.ec.europa.eu/strategy/circular-economy-action-plan_en (accessed on 18 January 2025).
- Merli, R.; Preziosi, M.; Acampora, A. How do scholars approach the circular economy? A systematic literature review. J. Clean. Prod. 2018, 178, 703–722. [Google Scholar] [CrossRef]
- Wang, J.; Wu, H.; Tam, V.W.Y.; Zuo, J. Considering life-cycle environmental impacts and society’s willingness for optimizing construction and demolition waste management fee: An empirical study of China. J. Clean. Prod. 2019, 206, 1004–1014. [Google Scholar] [CrossRef]
- Boonkanit, P.; Suthiluck, K. Developing a Decision-Making Support System for a Smart Construction and Demolition Waste Transition to a Circular Economy. Sustainability 2023, 15, 9672. [Google Scholar] [CrossRef]
- Nadazdi, A.; Naunovic, Z.; Ivanisevic, N. Circular Economy in Construction and Demolition Waste Management in the Western Balkans: A Sustainability Assessment Framework. Sustainability 2022, 14, 871. [Google Scholar] [CrossRef]
- Lima, L.; Trindade, E.; Alencar, L.; Alencar, M.; Silva, L. Sustainability in the construction industry: A systematic review of the literature. J. Clean. Prod. 2021, 289, 125730. [Google Scholar] [CrossRef]
- Papastamoulis, V.; London, K.; Feng, Y.; Zhang, P.; Crocker, R.; Patias, P. Conceptualising the Circular Economy Potential of Construction and Demolition Waste: An Integrative Literature Review. Recycling 2021, 6, 61. [Google Scholar] [CrossRef]
- ME. Roadmap for Circular Economy Adoption in Construction and Demolition Waste by 2025 in Chile. 2020. Available online: https://construye2025.cl/rcd/wp-content/uploads/2020/08/HDR-PAGINA_RCD_200825.pdf (accessed on 18 January 2025).
- Ossio, F.; Faundez, J. National Diagnosis of Illegal Waste Disposal Sites. School of Civil Construction, Pontifical Catholic University of Chile. 2021. Available online: https://www.researchgate.net/profile/Felipe-Ossio/publication/348443724_Diagnostico_Nacional_de_Sitios_de_Disposicion_Ilegal_de_Residuos/links/5fffa59f45851553a04182a1/Diagnostico-Nacional-de-Sitios-de-Disposicion-Ilegal-de-Residuos.pdf (accessed on 18 January 2025).
- Papamichael, I.; Voukkali, I.; Loizia, P.; Zorpas, A.A. Construction and demolition waste framework of circular economy: A mini review. Waste Manag. Res. 2023, 41, 1728–1740. [Google Scholar] [CrossRef]
- Zhang, C.; Hu, M.; Di Maio, F.; Sprecher, B.; Yang, X.; Tukker, A. An overview of the waste hierarchy framework for analyzing the circularity in construction and demolition waste management in Europe. Sci. Total Environ. 2022, 803, 149892. [Google Scholar] [CrossRef]
- Mahpour, A. Prioritizing barriers to adopt circular economy in construction and demolition waste management. Resour. Conserv. Recycl. 2018, 134, 216–227. [Google Scholar] [CrossRef]
- Véliz, K.D.; Walters, J.P.; Busco, C.; Vargas, M. Modeling barriers to a circular economy for construction demolition waste in the Aysén region of Chile. Resour. Conserv. Recycl. Adv. 2023, 18, 200145. [Google Scholar] [CrossRef]
- Walters, J.P.; Véliz, K.; Vargas, M.; Busco, C. A systems-focused assessment of policies for circular economy in construction demolition waste management in the Aysén region of Chile. Sustain. Futures 2024, 7, 100186. [Google Scholar] [CrossRef]
- Colorado, H.A.; Muñoz, A.; Neves Monteiro, S. Circular Economy of Construction and Demolition Waste: A Case Study of Colombia. Sustainability 2022, 14, 7225. [Google Scholar] [CrossRef]
- Durdyev, S.; Koc, K.; Tleuken, A.; Budayan, C.; Ekmekcioğlu, Ö.; Karaca, F. Barriers to circular economy implementation in the construction industry: Causal assessment model. Environ. Dev. Sustain. 2023, 1–37. [Google Scholar] [CrossRef]
- González, M.D.; Plaza Caballero, P.; Fernández, D.B.; Jordán Vidal, M.M.; Del Bosque, I.F.S.; Medina Martínez, C. The Design and Development of Recycled Concretes in a Circular Economy Using Mixed Construction and Demolition Waste. Materials 2021, 14, 4762. [Google Scholar] [CrossRef]
- Joseph, H.S.; Pachiappan, T.; Avudaiappan, S.; Flores, E.I.S. A Study on Mechanical and Microstructural Characteristics of Concrete Using Recycled Aggregate. Materials 2022, 15, 7535. [Google Scholar] [CrossRef]
- MIPS Ministry of the Interior and Public Security. Intendencia Region Metropolitana de Santiago de Chile. Geographic Information. 2024. Available online: http://www.intendenciametropolitana.gov.cl/informacion-geografica/ (accessed on 18 January 2025).
- Dalkey, N.; Helmer, O. An Experimental Application of the Delphi Method to the Use of Experts. The Rand Corporation. 1963. Available online: https://pages.ucsd.edu/~aronatas/project/academic/delphi%20method%20of%20convergence.pdf (accessed on 18 January 2025).
- Linstone, H.A. (Ed.) The Delphi Method: Techniques and Applications; 3. pr. Reading; Addison-Wesley: Boston, MA, USA, 1979. [Google Scholar]
- Cole, Z.D.; Donohoe, H.M.; Stellefson, M.L. Internet-Based Delphi Research: Case Based Discussion. Environ. Manag. 2013, 51, 511–523. [Google Scholar] [CrossRef]
- Von Der Gracht, H.A. Consensus measurement in Delphi studies. Technol. Forecast. Social Chang. 2012, 79, 1525–1536. [Google Scholar] [CrossRef]
- Hallowell, M.R.; Gambatese, J.A. Qualitative Research: Application of the Delphi Method to CEM Research. J. Constr. Eng. Manag. 2010, 136, 99–107. [Google Scholar] [CrossRef]
- Nelson-Nuñez, J.; Walters, J.P.; Charpentier, D. Exploring the challenges to sustainable rural drinking water services in Chile. Water Policy 2019, 21, 1251–1265. [Google Scholar] [CrossRef]
- Keeney, S.; Hasson, F.; McKenna, H.P. A critical review of the Delphi technique as a research methodology for nursing. Int. J. Nurs. Stud. 2001, 38, 195–200. [Google Scholar] [CrossRef] [PubMed]
- Kabirifar, K.; Mojtahedi, M.; Changxin Wang, C.; Tam, V.W.Y. Effective construction and demolition waste management assessment through waste management hierarchy; a case of Australian large construction companies. J. Clean. Prod. 2021, 312, 127790. [Google Scholar] [CrossRef]
- Tam, V.; Lu, W. Construction Waste Management Profiles, Practices, and Performance: A Cross-Jurisdictional Analysis in Four Countries. Sustainability 2016, 8, 190. [Google Scholar] [CrossRef]
- Abarca-Guerrero, L.; Maas, G.; Van Twillert, H. Barriers and Motivations for Construction Waste Reduction Practices in Costa Rica. Resources 2017, 6, 69. [Google Scholar] [CrossRef]
- Blaisi, N.I. Construction and demolition waste management in Saudi Arabia: Current practice and roadmap for sustainable management. J. Clean. Prod. 2019, 221, 167–175. [Google Scholar] [CrossRef]
- Chen, X.; Lu, W. Identifying factors influencing demolition waste generation in Hong Kong. J. Clean. Prod. 2017, 141, 799–811. [Google Scholar] [CrossRef]
- Hart, J.; Adams, K.; Giesekam, J.; Tingley, D.D.; Pomponi, F. Barriers and drivers in a circular economy: The case of the built environment. Procedia CIRP 2019, 80, 619–624. [Google Scholar] [CrossRef]
- Menegaki, M.; Damigos, D. A review on current situation and challenges of construction and demolition waste management. Curr. Opin. Green Sustain. Chem. 2018, 13, 8–15. [Google Scholar] [CrossRef]
- Wu, H.; Duan, H.; Zheng, L.; Wang, J.; Niu, Y.; Zhang, G. Demolition waste generation and recycling potentials in a rapidly developing flagship megacity of South China: Prospective scenarios and implications. Constr. Build. Mater. 2016, 113, 1007–1016. [Google Scholar] [CrossRef]
- Scatolini, F.; Bandeira, R.A.D.M. Desastres como oportunidade de implementação de políticas de gerenciamento de resíduos de construção e demolição no Brasil: Chuvas de Nova Friburgo (RJ). Eng. Sanit. Ambient. 2020, 25, 739–752. [Google Scholar] [CrossRef]
- Ajayi, S.O.; Oyedele, L.O.; Bilal, M.; Akinade, O.O.; Alaka, H.A.; Owolabi, H.A. Critical management practices influencing on-site waste minimization in construction projects. Waste Manag. 2017, 59, 330–339. [Google Scholar] [CrossRef] [PubMed]
- Aldana, J.C.; Serpell, A. Methodology for the preparation of construction project waste management plans based on innovation and productive thinking processes: A case study in Chile. Constr. Mag. 2016, 15, 32–41. [Google Scholar] [CrossRef]
- Chen, J.; Su, Y.; Si, H.; Chen, J. Managerial Areas of Construction and Demolition Waste: A Scientometric Review. Int. J. Environ. Res. Public Health 2018, 15, 2350. [Google Scholar] [CrossRef]
- Huang, B.; Wang, X.; Kua, H.; Geng, Y.; Bleischwitz, R.; Ren, J. Construction and demolition waste management in China through the 3R principle. Resour. Conserv. Recycl. 2018, 129, 36–44. [Google Scholar] [CrossRef]
- Oliveira Neto, R.; Gastineau, P.; Cazacliu, B.G.; Le Guen, L.; Paranhos, R.S.; Petter, C.O. An economic analysis of the processing technologies in CDW recycling platforms. Waste Manag. 2017, 60, 277–289. [Google Scholar] [CrossRef]
- Zhang, A.; Venkatesh, V.G.; Liu, Y.; Wan, M.; Qu, T.; Huisingh, D. Barriers to smart waste management for a circular economy in China. J. Clean. Prod. 2019, 240, 118198. [Google Scholar] [CrossRef]
- Yuan, H. Barriers and countermeasures for managing construction and demolition waste: A case of Shenzhen in China. J. Clean. Prod. 2017, 157, 84–93. [Google Scholar] [CrossRef]
- Díaz-López, C.; Bonoli, A.; Martín-Morales, M.; Zamorano, M. Analysis of the Scientific Evolution of the Circular Economy Applied to Construction and Demolition Waste. Sustainability 2021, 13, 9416. [Google Scholar] [CrossRef]
- Black, N.; Murphy, M.; Lamping, D.; McKee, M.; Sanderson, C.; Askham, J.; Marteau, T. Consensus Development Methods: A Review of Best Practice in Creating Clinical Guidelines. J. Health Serv. Res. Policy 1999, 4, 236–248. [Google Scholar] [CrossRef]
- Steurer, J. The Delphi method: An efficient procedure to generate knowledge. Skelet. Radiol. 2011, 40, 959–961. [Google Scholar] [CrossRef] [PubMed]
- Version [2023] of Qualtrics. Copyright © Qualtrics. Qualtrics and All Other Qualtrics Product or Service Names Are Registered Trademarks or Trademarks of Qualtrics, Provo, UT, USA. Available online: https://www.qualtrics.com (accessed on 18 January 2025).
- Taylor, E. We Agree, Don’t We? The Delphi Method for Health Environments Research. Health Environ. Res. Des. J. 2020, 13, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Busco, C.; González, F.; Aránguiz, M. Factors that favor or hinder the acquisition of a digital culture in large organizations in Chile. Front. Psychol. 2023, 14, 115303. [Google Scholar] [CrossRef]
- Gordon, T.J. Energy forecasts using a “Roundless” approach to running a Delphi study. Foresight 2007, 9, 27–35. [Google Scholar] [CrossRef]
- Del Grande, C.; Kaczorowski, J. Rating versus ranking in a Delphi survey: A randomized controlled trial. Trials 2023, 24, 543. [Google Scholar] [CrossRef]
- Ramos, M.; Martinho, G.; Vasconcelos, L.; Ferreira, F. Local scale dynamics to promote the sustainable management of construction and demolition waste. Resour. Conserv. Recycl. Adv. 2023, 17, 200135. [Google Scholar] [CrossRef]
- Sukiennik, M.; Zybała, K.; Fuksa, D.; Kęsek, M. The Role of Universities in Sustainable Development and Circular Economy Strategies. Energies 2021, 14, 5365. [Google Scholar] [CrossRef]
- Tiippana-Usvasalo, M.; Pajunen, N.; Maria, H. The role of education in promoting circular economy. Int. J. Sustain. Eng. 2023, 16, 92–103. [Google Scholar] [CrossRef]
- Bianchini, F.; Hewage, K. Probabilistic social cost-benefit analysis for green roofs: A lifecycle approach. Build. Environ. 2012, 58, 152–162. [Google Scholar] [CrossRef]
- Coelho, A.; De Brito, J. Economic viability analysis of a construction and demolition waste recycling plant in Portugal—Part I: Location, materials, technology and economic analysis. J. Clean. Prod. 2013, 39, 338–352. [Google Scholar] [CrossRef]
- Brown, C.; Milke, M. Recycling disaster waste: Feasibility, method and effectiveness. Resour. Conserv. Recycl. 2016, 106, 21–32. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, Z.; Liu, J. Exploring spatial heterogeneity and factors influencing construction and demolition waste in China. Environ. Sci. Pollut. Res. 2022, 29, 53269–53292. [Google Scholar] [CrossRef] [PubMed]
- Shooshtarian, S.; Caldera, S.; Maqsood, T.; Ryley, T. Using Recycled Construction and Demolition Waste Products: A Review of Stakeholders’ Perceptions, Decisions, and Motivations. Recycling 2020, 5, 31. [Google Scholar] [CrossRef]
- Arulrajah, A.; Yaghoubi, E.; Wong, Y.C.; Horpibulsuk, S. Recycled plastic granules and demolition wastes as construction materials: Resilient moduli and strength characteristics. Constr. Build. Mater. 2017, 147, 639–647. [Google Scholar] [CrossRef]
- Boateng, S.B.; Banawi, A.A.; Asa, E.; Yu, Y.; Ahiable, C. Environmental and economic outlook of construction and demolition waste management practices in a mid-sized city. J. Mater. Cycles Waste Manag. 2023, 25, 2526–2542. [Google Scholar] [CrossRef]
- Silva, R.V.; De Brito, J.; Dhir, R.K. Availability and processing of recycled aggregates within the construction and demolition supply chain: A review. J. Clean. Prod. 2017, 143, 598–614. [Google Scholar] [CrossRef]
- Keith, D.A.; Ferrer-Paris, J.R.; Nicholson, E.; Bishop, M.J.; Polidoro, B.A.; Ramirez-Llodra, E.; Tozer, M.G.; Nel, J.L.; Mac Nally, R.; Gregr, E.J.; et al. A function-based typology for Earth’s ecosystems. Nature 2022, 610, 513–588. [Google Scholar] [CrossRef]
- Ferronato, N.; Fuentes Sirpa, R.C.; Guisbert Lizarazu, E.G.; Conti, F.; Torretta, V. Construction and demolition waste recycling in developing cities: Management and cost analysis. Environ. Sci. Pollut. Res. 2022, 30, 24377–24397. [Google Scholar] [CrossRef]
- Mehmood, A.; Ahmed, S.; Viza, E.; Bogush, A.; Ayyub, R.M. Drivers and barriers towards circular economy in AGRI-FOOD supply chain: A review. Bus. Strat. Dev. 2021, 4, 465–481. [Google Scholar] [CrossRef]
- Aranda-Usón, A.; Portillo-Tarragona, P.; Marín-Vinuesa, L.; Scarpellini, S. Financial Resources for the Circular Economy: A Perspective from Businesses. Sustainability 2019, 11, 888. [Google Scholar] [CrossRef]
- Saarinen, A.; Aarikka-Stenroos, L. Financing-Related Drivers and Barriers for Circular Economy Business: Developing a Conceptual Model from a Field Study. Circ. Econ. Sustain. 2023, 3, 1187–1211. [Google Scholar] [CrossRef]
- Doan, D.T.; Chinda, T. Modeling Construction and Demolition Waste Recycling Program in Bangkok: Benefit and Cost Analysis. J. Constr. Eng. Manag. 2016, 142, 05016015. [Google Scholar] [CrossRef]
- Chatterjee, A.K. Water Supply, Waste Disposal and Environmental Engineering, 8th ed.; Khanna Publishers: New Delhi, India, 2010. [Google Scholar]
- Geels, F.W. Socio-technical transitions to sustainability: A review of criticisms and elaborations of the Multi-Level Perspective. Curr. Opin. Environ. Sustain. 2019, 39, 187–201. [Google Scholar] [CrossRef]
- Véliz, K.D.; Ramírez-Rodríguez, G.; Ossio, F. Willingness to pay for construction and demolition waste from buildings in Chile. Waste Manag. 2022, 137, 222–230. [Google Scholar] [CrossRef]
- Hentges, T.I.; Machado Da Motta, E.A.; Valentin De Lima Fantin, T.; Moraes, D.; Fretta, M.A.; Pinto, M.F.; Böes, J.S. Circular economy in Brazilian construction industry: Current scenario, challenges and opportunities. Waste Manag. Res. 2022, 40, 642–653. [Google Scholar] [CrossRef]
- Hu, Y.; He, X.; Poustie, M. Can Legislation Promote a Circular Economy? A Material Flow-Based Evaluation of the Circular Degree of the Chinese Economy. Sustainability 2018, 10, 990. [Google Scholar] [CrossRef]
- Almeida, F.; Vieira, C.S.; Carneiro, J.R.; Lopes, M.D.L. Drawing a Path towards Circular Construction: An Approach to Engage Stakeholders. Sustainability 2022, 14, 5314. [Google Scholar] [CrossRef]
- Alite, M.; Abu-Omar, H.; Agurcia, M.T.; Jácome, M.; Kenney, J.; Tapia, A.; Siebel, M. Construction and demolition waste management in Kosovo: A survey of challenges and opportunities on the road to circular economy. J. Mater. Cycles Waste Manag. 2023, 25, 1191–1203. [Google Scholar] [CrossRef]
- Su, P.; Peng, Y.; Hu, Q.; Tan, R. Incentive Mechanism and Subsidy Design for Construction and Demolition Waste Recycling under Information Asymmetry with Reciprocal Behaviors. Int. J. Environ. Res. Public Health 2020, 17, 4346. [Google Scholar] [CrossRef]
- Hoang, N.H.; Ishigaki, T.; Kubota, R.; Tong, T.K.; Nguyen, T.T.; Nguyen, H.G.; Yamada, M.; Kawamoto, K. Waste generation, composition, and handling in building-related construction and demolition in Hanoi, Vietnam. Waste Manag. 2020, 117, 32–41. [Google Scholar] [CrossRef]
- Kamsook, S.; Phongphiphat, A.; Towprayoon, S.; Vinitnantharat, S. Investigation of plastic waste management in Thailand using material flow analysis. Waste Manag. Res. 2023, 41, 924–935. [Google Scholar] [CrossRef] [PubMed]
- Landeta, J. The Delphi Method: A Forecasting Technique for Uncertainty, 1st ed.; Editorial Ariel: Barcelona, Spain, 1999. [Google Scholar]
Dimension | Factor | Definition |
---|---|---|
Socio-Environmental | Awareness, Knowledge, and Sustainable Actions | Level of awareness of CDW recycling and environmental protection [30,31]. |
Short-Term Interest | Construction companies prioritize short-term monetary savings over environmental care, thus preferring the use of illegal landfills and unauthorized personnel to manage their CDW [32,33,34]. | |
Population Density and Urbanization | Population growth pressures companies to build, prioritizing rapid construction instead of sustainable CDW management [30,31,34,35,36,37]. | |
Risks and Natural Disasters | Lack of assignment of responsibility in the management of CDW in the face of natural disasters [36,38]. | |
Technical | Infrastructure, Technology, and Processes | Lack of adequate infrastructure, technology, and processes that allow classification, transport, and recovery of CDW [32,33,39,40,41]. |
Technological Knowledge | Stakeholders have inadequate technological knowledge and information along with a lack of experience in CE, which translates into traditional CDW management [30,35,36,40,41,42,43,44]. | |
Project Design and Execution | Presentation and implementation of initiatives, integrating sustainable CDW principles [45]. | |
Certification of Recycled Materials | Lack of technical certification of waste quality, leading to a low preference for recovered materials [15,42]. | |
Financial | Capital Investment Budget | Difficulty and lack of budget for capital investment given its high value [30,32]. |
Expected Return on Investment | Estimation of financial benefits [44]. | |
Willingness to Pay for Recycled Materials | Willingness to pay for recycled materials below their market price, leading to substitution of new materials [36,39,43]. | |
Cost of Production of Recycled Materials | The production cost of recovered materials is greater than the market price, discouraging new supply of these materials [36,42]. | |
Strategic-Regulatory | Political–Strategic Vision | Political priorities and state agents are not focused on strategic CE objectives for CDW, which increases uncertainty and demotivation for sustainable waste management [30,35,46]. |
Specific Legislation and Regulations | Specific laws and regulations established by the government that regulate and promote sustainable practices [30,34,36]. | |
Incentives for CE | Lack of incentives and supervision to recognize those who recirculate CDW and penalize those who manage CDW in non-authorized sites [32,33,34,40,41]. | |
Stakeholder Collaboration and Coordination | Collaboration that maximizes social benefit between interest groups is hindered by asymmetries and lack of coordination systems at central and local levels, due to lack of information [30,33,35,36,44]. |
Dimension | Factor | Min | Max | Med | Average Range | Abs. Deviation | IQR | Consensus |
---|---|---|---|---|---|---|---|---|
Socio-Environmental | Awareness, Knowledge, and Sustainable Actions | 2 | 5 | 5 | 5.87 | 0.84 | 0.0 | Yes |
Short-Term Interest | 1 | 5 | 4 | 3.34 | 1.10 | 1.0 | No | |
Population Density and Urbanization | 1 | 5 | 3 | 2.89 | 1.31 | 1.0 | No | |
Risks and Natural Disasters | 1 | 5 | 4 | 3.34 | 1.10 | 1.0 | No | |
Technique | Infrastructure, Technology, and Processes | 3 | 5 | 5 | 5.32 | 89 | 1.0 | Yes |
Technological Knowledge | 3 | 5 | 4 | 4.24 | 1.00 | 1.0 | Yes | |
Project Design and Execution | 3 | 5 | 5 | 5.42 | 0.89 | 0.5 | Yes | |
Certification of Recycled Materials | 3 | 5 | 5 | 4.84 | 0.94 | 1.0 | Yes | |
Financial | Capital Investment Budget | 1 | 5 | 5 | 4.39 | 1.42 | 1.5 | No |
Expected Return on Investment | 2 | 5 | 4 | 4.55 | 1.10 | 1.5 | No | |
Willingness to Pay for Recycled Materials | 1 | 5 | 5 | 4.50 | 1.15 | 2.0 | No | |
Cost of Production of Recycled Materials | 2 | 5 | 4 | 3.58 | 0.73 | 1.0 | Yes | |
Strategic-Regulatory | Political–Strategic Vision | 3 | 5 | 5 | 4.97 | 1.05 | 1.0 | No |
Specific Legislation and Regulations | 4 | 5 | 5 | 5.71 | 0.63 | 0.5 | Yes | |
Incentives for CE | 4 | 5 | 5 | 4.82 | 0.89 | 1.0 | Yes | |
Stakeholder Collaboration and Coordination | 3 | 5 | 5 | 5.21 | 0.89 | 1.0 | Yes |
Dimension | Factor | [1: Enables+] | [2: Does Not Contribute] | [3: Inhibits−] |
---|---|---|---|---|
Socio-Environmental | Awareness, Knowledge, and Sustainable Actions | 68 | 16 | 16 |
Short-Term Interest | 37 | 11 | 52 | |
Population Density and Urbanization | 26 | 26 | 48 | |
Risks and Natural Disasters | 57 | 11 | 32 | |
Technique | Infrastructure, Technology, and Processes | 79 | 0 | 21 |
Technological Knowledge | 78 | 11 | 11 | |
Project Design and Execution | 84 | 5 | 11 | |
Certification of Recycled Materials | 79 | 5 | 16 | |
Financial | Capital Investment Budget | 58 | 11 | 31 |
Expected Return on Investment | 32 | 16 | 52 | |
Willingness to Pay for Recycled Materials | 37 | 16 | 47 | |
Cost of Production of Recycled Materials | 21 | 26 | 53 | |
Strategic-Regulatory | Political–Strategic Vision | 74 | 21 | 5 |
Specific Legislation and Regulations | 63 | 16 | 21 | |
Incentives for CE | 90 | 5 | 5 | |
Stakeholder Collaboration and Coordination | 79 | 5 | 16 |
Dimension | Factor | Min. | Max | Med | Average Range | Abs. Deviation | IQR | Consensus |
---|---|---|---|---|---|---|---|---|
Socio-Environmental | Short-Term Interest | 3 | 5 | 4 | 2.27 | 0.38 | 0.0 | Yes |
Population Density and Urbanization | 2 | 5 | 4 | 1.31 | 1.07 | 2.0 | No | |
Risks and Natural Disasters | 1 | 5 | 4 | 2.19 | 0.76 | 1.0 | Yes | |
Financial | Capital Investment Budget | 2 | 5 | 5 | 3.27 | 0.61 | 1.0 | Yes |
Expected Return on Investment | 4 | 5 | 5 | 3,58 | 0.30 | 1.0 | Yes | |
Willingness to Pay for Recycled Materials | 3 | 5 | 5 | 1.69 | 0.76 | 2.0 | No | |
Political–Strategic Vision | 4 | 5 | 5 | 3.69 | 0.23 | 0.0 | Yes |
Dimension | Factor | [1: Enables +] | [2: Does Not Contribute] | [3: Inhibits −] |
---|---|---|---|---|
Socio-Environmental | Short-Term Interest | 46 | 0 | 54 |
Population Density and Urbanization | 62 | 15 | 23 | |
Risks and Natural Disasters | 46 | 15 | 38 | |
Financial | Capital Investment Budget | 54 | 0 | 46 |
Expected Return on Investment | 46 | 0 | 54 | |
Willingness to Pay for Recycled Materials | 46 | 23 | 31 |
Factors | Ranking (R) | Average Range | Influence Type | Consensus Round |
---|---|---|---|---|
Awareness, Knowledge, and Sustainable Actions | R1 | 5.87 | Enables | 1 |
Specific Legislation and Regulations | R2 | 5.71 | Enables | 1 |
Project Design and Execution | R3 | 5.42 | Enables | 1 |
Infrastructure, Technology, and Processes | R4 | 5.32 | Enables | 1 |
Stakeholder Collaboration and Coordination | R5 | 5.21 | Enables | 1 |
Certification of Recycled Materials | R6 | 4.84 | Enables | 1 |
Incentives for CE | R7 | 4.82 | Enables | 1 |
Technological Knowledge | R8 | 4.24 | Enables | 1 |
Cost of Production of Recycled Materials | R9 | 3.58 | Inhibits | 1 |
Political–Strategic Vision | R10 | 3.69 | Enables | 2 |
Expected Return on Investment | R11 | 3.58 | Non-consensus | 2 |
Capital Investment Budget | R12 | 3.27 | Non-consensus | 2 |
Short-Term Interest | R13 | 2.27 | Non-consensus | 2 |
Risks and Natural Disasters | R14 | 2.19 | Non-consensus | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Véliz, K.D.; Busco, C.; Walters, J.P.; Esparza, C. Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis. Sustainability 2025, 17, 1057. https://doi.org/10.3390/su17031057
Véliz KD, Busco C, Walters JP, Esparza C. Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis. Sustainability. 2025; 17(3):1057. https://doi.org/10.3390/su17031057
Chicago/Turabian StyleVéliz, Karina D., Carolina Busco, Jeffrey P. Walters, and Catalina Esparza. 2025. "Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis" Sustainability 17, no. 3: 1057. https://doi.org/10.3390/su17031057
APA StyleVéliz, K. D., Busco, C., Walters, J. P., & Esparza, C. (2025). Circular Economy for Construction and Demolition Waste in the Santiago Metropolitan Region of Chile: A Delphi Analysis. Sustainability, 17(3), 1057. https://doi.org/10.3390/su17031057