The Intertwined Threads of Blue Economy, Inclusive Growth, and Environmental Sustainability in Transition Economies
Abstract
:1. Introduction
2. Theoretical Framework
3. Description of Variables, Data Sources, and Model Specification
4. Econometric Methods
4.1. Prerequisite Diagnostic Tests
4.1.1. Cross-Sectional Dependence (CD) Test
4.1.2. Slope Heterogeneity
4.1.3. Autocorrelation
4.1.4. Multicollinearity
4.1.5. Heteroscedasticity
4.2. CIPS Panel Unit Root Tests
4.3. Westerlund Panel Cointegration Tests
4.4. Regression Analysis
4.4.1. Driscoll–Kraay Standard Error Approach
4.4.2. Panel-Corrected Standard Error (PCSE) Approach
5. Results
6. Discussion
7. Conclusions
8. Policy Implication
9. Research Limitations
9.1. Data Limitations
9.2. Methodological Limitation
9.3. Generalizability
9.4. Temporal Scope
10. Future Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yasin, I.; Aslam, A.; Siddik, A.B.; Abbass, K.; Murshed, M. Offshoring the scarring causes and effects of environmental challenges faced by the advanced world: An empirical evidence. Environ. Sci. Pollut. Res. 2023, 30, 79335–79345. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Yasin, I. Greening the BRICS: How Green Innovation Mitigates Ecological Footprints in Energy-Hungry Economies. Sustainability 2024, 16, 3980. [Google Scholar] [CrossRef]
- Pace, L.A.; Saritas, O.; Deidun, A. Exploring future research and innovation directions for a sustainable blue economy. Mar. Policy 2023, 148, 105433. [Google Scholar] [CrossRef]
- Keen, M.R.; Schwarz, A.-M.; Wini-Simeon, L. Towards defining the Blue Economy: Practical lessons from pacific ocean governance. Mar. Policy 2018, 88, 333–341. [Google Scholar] [CrossRef]
- Bennett, N.J.; Blythe, J.; White, C.S.; Campero, C. Blue growth and blue justice: Ten risks and solutions for the ocean economy. Mar. Policy 2021, 125, 104387. [Google Scholar] [CrossRef]
- Wu, Y.; Naqvi, S.M.M.A.; Yasin, I. Dynamic Relationship between Social Factors and Poverty: A Panel Data Analysis of 23 Selected Developing Countries. J. Knowl. Econ. 2024, 1–25. [Google Scholar] [CrossRef]
- Kou, Y.; Yasin, I. Navigating poverty in developing nations: Unraveling the impact of political dynamics on sustainable well-being. Humanit. Soc. Sci. Commun. 2024, 11, 1–12. [Google Scholar] [CrossRef]
- Garland, M.; Axon, S.; Graziano, M.; Morrissey, J.; Heidkamp, C.P. The blue economy: Identifying geographic concepts and sensitivities. Geogr. Compass 2019, 13, e12445. [Google Scholar] [CrossRef]
- Issifu, I.; Dahmouni, I.; Deffor, E.W.; Sumaila, U.R. Diversity, equity, and inclusion in the Blue Economy: Why they matter and how do we achieve them? Front. Political Sci. 2023, 4, 1067481. [Google Scholar] [CrossRef]
- Bennett, N.J.; Villasante, S.; Espinosa-Romero, M.J.; Lopes, P.F.; Selim, S.A.; Allison, E.H. Social sustainability and equity in the blue economy. One Earth 2022, 5, 964–968. [Google Scholar] [CrossRef]
- Kamah, M.; Riti, J.S.; Bin, P. Inclusive growth and environmental sustainability: The role of institutional quality in sub-Saharan Africa. Environ. Sci. Pollut. Res. 2021, 28, 34885–34901. [Google Scholar] [CrossRef] [PubMed]
- Yasin, I.; Ahmad, N.; Chaudhary, M.A. Catechizing the Environmental-Impression of Urbanization, Financial Development, and Political Institutions: A Circumstance of Ecological Footprints in 110 Developed and Less-Developed Countries. Soc. Indic. Res. 2020, 147, 621–649. [Google Scholar] [CrossRef]
- Yasin, I.; Ahmad, N.; Chaudhary, M.A. The impact of financial development, political institutions, and urbanization on environmental degradation: Evidence from 59 less-developed economies. Environ. Dev. Sustain. 2021, 23, 6698–6721. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Economic Growth and the Environment; National Bureau of Economic Research: Cambridge, MA, USA, 1994. [Google Scholar]
- Chang, G.; Yasin, I.; Naqvi, S.M.M.A. Environmental Sustainability in OECD Nations: The Moderating Impact of Green Innovation on Urbanization and Green Growth. Sustainability 2024, 16, 7047. [Google Scholar] [CrossRef]
- Yasin, I.; Ahmad, N.; Amin, S.; Sattar, N.; Hashmat, A. Does agriculture, forests, and energy consumption foster the carbon emissions and ecological footprint? fresh evidence from BRICS economies. Environ. Dev. Sustain. 2024, 1–21. [Google Scholar] [CrossRef]
- Hashmi, N.I.; Alam, N.; Jahanger, A.; Yasin, I.; Murshed, M.; Khudoykulov, K. Can financial globalization and good governance help turning emerging economies carbon neutral? Evidence from members of the BRICS-T. Environ. Sci. Pollut. Res. 2023, 30, 39826–39841. [Google Scholar] [CrossRef]
- Yilanci, V.; Yasin, I.; Ursavaş, N. The convergence in ecological footprint intensity across ECOWAS countries: Evidence from a novel approach. Environ. Dev. Sustain. 2024, 1–23. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Ebrahim, N.; Schuhbauer, A.; Skerritt, D.; Li, Y.; Kim, H.S.; Mallory, T.G.; Lam, V.W.; Pauly, D. Updated estimates and analysis of global fisheries subsidies. Mar. Policy 2019, 109, 103695. [Google Scholar] [CrossRef]
- El-Ramady, H.; Brevik, E.C.; Bayoumi, Y.; Shalaby, T.A.; El-Mahrouk, M.E.; Taha, N.; Elbasiouny, H.; Elbehiry, F.; Amer, M.; Abdalla, N.; et al. An overview of agro-waste management in light of the water-energy-waste nexus. Sustainability 2022, 14, 15717. [Google Scholar] [CrossRef]
- Barrett, C.B. Overcoming global food security challenges through science and solidarity. Am. J. Agric. Econ. 2021, 103, 422–447. [Google Scholar] [CrossRef]
- Muraca, B.; Neuber, F. Viable and convivial technologies: Considerations on Climate Engineering from a degrowth perspective. J. Clean. Prod. 2018, 197, 1810–1822. [Google Scholar] [CrossRef]
- Meckling, J.; Allan, B.B. The evolution of ideas in global climate policy. Nat. Clim. Change 2020, 10, 434–438. [Google Scholar] [CrossRef]
- Sovacool, B.K.; Hook, A.; Martiskainen, M.; Brock, A.; Turnheim, B. The decarbonisation divide: Contextualizing landscapes of low-carbon exploitation and toxicity in Africa. Glob. Environ. Change 2020, 60, 102028. [Google Scholar] [CrossRef]
- Arulkumar, A.; Paramithiotis, S.; Paramasivam, S. Biogenic amines in fresh fish and fishery products and emerging control. Aquac. Fish. 2023, 8, 431–450. [Google Scholar] [CrossRef]
- Oboh, A. Diversification of farmed fish species: A means to increase aquaculture production in Nigeria. Rev. Aquac. 2022, 14, 2089–2098. [Google Scholar] [CrossRef]
- Fan, L.; Usman, M.; Haseeb, M.; Kamal, M. The impact of financial development and energy consumption on ecological footprint in economic complexity-based EKC framework: New evidence from BRICS-T region. In Natural Resources Forum; Blackwell Publishing Ltd.: Oxford, UK; Wiley Online Library: Hoboken, NJ, USA, 2024. [Google Scholar]
- Wackernagel, M.; Schulz, N.B.; Deumling, D.; Linares, A.C.; Jenkins, M.; Kapos, V.; Monfreda, C.; Loh, J.; Myers, N.; Norgaard, R.; et al. Tracking the ecological overshoot of the human economy. Proc. Natl. Acad. Sci. USA 2002, 99, 9266–9271. [Google Scholar] [CrossRef]
- Hoekstra, A.Y.; Mekonnen, M.M. The water footprint of humanity. Proc. Natl. Acad. Sci. USA 2012, 109, 3232–3237. [Google Scholar] [CrossRef]
- Laurance, W.F.; Sayer, J.; Cassman, K.G. Agricultural expansion and its impacts on tropical nature. Trends Ecol. Evol. 2014, 29, 107–116. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef]
- Adopted, I. Climate Change 2014 Synthesis Report; IPCC: Geneva, Szwitzerland, 2014; pp. 1059–1072. [Google Scholar]
- He, Y.; Wang, S.; Chen, N. Mineral rents, natural resources depletion, and ecological footprint nexus in high emitting countries: Panel GLM analysis. Resour. Policy 2024, 89, 104472. [Google Scholar] [CrossRef]
- Kautsky, N.; Berg, H.; Folke, C.; Larsson, J.; Troell, M. Ecological footprint for assessment of resource use and development limitations in shrimp and tilapia aquaculture. Aquac. Res. 1997, 28, 753–766. [Google Scholar] [CrossRef]
- Zahid, K.; Ali, Q.; Iqbal, Z.; Saghir, S.; Khan, M.T.I. Dynamics between economic activities, eco-friendly energy and ecological footprints: A fresh evidence from BRICS countries. Kybernetes 2023. [Google Scholar] [CrossRef]
- Saqib, N.; Usman, M.; Ozturk, I.; Sharif, A. Harnessing the synergistic impacts of environmental innovations, financial development, green growth, and ecological footprint through the lens of SDGs policies for countries exhibiting high ecological footprints. Energy Policy 2024, 184, 113863. [Google Scholar] [CrossRef]
- Xia, A.; Liu, Q. Modelling the asymmetric impact of fintech, natural resources, and environmental regulations on ecological footprint in G7 countries. Resour. Policy 2024, 89, 104552. [Google Scholar] [CrossRef]
- Guillen, J.; Natale, F.; Carvalho, N.; Casey, J.; Hofherr, J.; Druon, J.-N.; Fiore, G.; Gibin, M.; Zanzi, A.; Martinsohn, J.T. Global seafood consumption footprint. AMBIO 2019, 48, 111–122. [Google Scholar] [CrossRef]
- Cashion, T.; Tyedmers, P.; Parker, R.W. Global reduction fisheries and their products in the context of sustainable limits. Fish Fish. 2017, 18, 1026–1037. [Google Scholar] [CrossRef]
- Ke, H.; Dai, S.; Yu, H. Effect of green innovation efficiency on ecological footprint in 283 Chinese Cities from 2008 to 2018. Environ. Dev. Sustain. 2022, 24, 2841–2860. [Google Scholar] [CrossRef]
- Wicki, S.; Hansen, E.G. Green technology innovation: Anatomy of exploration processes from a learning perspective. Bus. Strategy Environ. 2019, 28, 970–988. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Azam, A.; Bhatti, M.A. Natural resources depletion and economic growth: Evidence from ASEAN countries. Pak. J. Econ. Stud. PJES 2019, 2, 155–172. [Google Scholar]
- Yi, S.; Abbasi, K.R.; Hussain, K.; Albaker, A.; Alvarado, R. Environmental concerns in the United States: Can renewable energy, fossil fuel energy, and natural resources depletion help? Gondwana Res. 2023, 117, 41–55. [Google Scholar] [CrossRef]
- Gössling, S.; Hansson, C.B.; Hörstmeier, O.; Saggel, S. Ecological footprint analysis as a tool to assess tourism sustainability. Ecol. Econ. 2002, 43, 199–211. [Google Scholar] [CrossRef]
- Chapman, L.J.; Husberg, B. Agriculture, forestry, and fishing sector. J. Saf. Res. 2008, 39, 171–173. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D. The ecological consequences of changes in biodiversity: A search for general principles. Ecology 1999, 80, 1455–1474. [Google Scholar] [CrossRef]
- Li, R.; Wang, X.; Wang, Q. Does renewable energy reduce ecological footprint at the expense of economic growth? An empirical analysis of 120 countries. J. Clean. Prod. 2022, 346, 131207. [Google Scholar] [CrossRef]
- Sahoo, M.; Sethi, N. The intermittent effects of renewable energy on ecological footprint: Evidence from developing countries. Environ. Sci. Pollut. Res. 2021, 28, 56401–56417. [Google Scholar] [CrossRef]
- Geng, B.; Wu, D.; Zhang, C.; Xie, W.; Mahmood, M.A.; Ali, Q. How Can the Blue Economy Contribute to Inclusive Growth and Ecosystem Resources in Asia? A Comparative Analysis. Sustainability 2024, 16, 429. [Google Scholar] [CrossRef]
- Raitzer, D.; Wong, L.C.; Samson, J.N. Myanmar’s agriculture sector: Unlocking the potential for inclusive growth. Asian Dev. Bank Econ. Work. Pap. Ser. 2015, 470, 1–31. [Google Scholar] [CrossRef]
- Zepeda, C.; Jones, J.; Zagmutt, F. Compartmentalisation in aquaculture production systems. Rev. Sci. Tech. Off. Int. Epiz. 2008, 27, 229–241. [Google Scholar] [CrossRef]
- Usman, M.; Hammar, N. Dynamic relationship between technological innovations, financial development, renewable energy, and ecological footprint: Fresh insights based on the STIRPAT model for Asia Pacific Economic Cooperation countries. Environ. Sci. Pollut. Res. 2021, 28, 15519–15536. [Google Scholar] [CrossRef]
- Destek, M.A.; Sinha, A. Renewable, non-renewable energy consumption, economic growth, trade openness and ecological footprint: Evidence from organisation for economic Co-operation and development countries. J. Clean. Prod. 2020, 242, 118537. [Google Scholar] [CrossRef]
- Sun, Y.; Bao, Q.; Siao-Yun, W.; Islam, M.U.; Razzaq, A. Renewable energy transition and environmental sustainability through economic complexity in BRICS countries: Fresh insights from novel Method of Moments Quantile regression. Renew. Energy 2022, 184, 1165–1176. [Google Scholar] [CrossRef]
- Ahmad, M.; Jiang, P.; Majeed, A.; Umar, M.; Khan, Z.; Muhammad, S. The dynamic impact of natural resources, technological innovations and economic growth on ecological footprint: An advanced panel data estimation. Resour. Policy 2020, 69, 101817. [Google Scholar] [CrossRef]
- Rahman, M.M.; Velayutham, E. Renewable and non-renewable energy consumption-economic growth nexus: New evidence from South Asia. Renew. Energy 2020, 147, 399–408. [Google Scholar] [CrossRef]
- Destek, M.A.; Aslan, A. Renewable and non-renewable energy consumption and economic growth in emerging economies: Evidence from bootstrap panel causality. Renew. Energy 2017, 111, 757–763. [Google Scholar] [CrossRef]
- Tugcu, C.T. Panel data analysis in the energy-growth nexus (EGN). In The Economics and Econometrics of the Energy-Growth Nexus; Elsevier: Amsterdam, The Netherlands, 2018; pp. 255–271. [Google Scholar]
- Ali, Q.; Raza, A.; Narjis, S.; Saeed, S.; Khan, M.T.I. Potential of renewable energy, agriculture, and financial sector for the economic growth: Evidence from politically free, partly free and not free countries. Renew. Energy 2020, 162, 934–947. [Google Scholar] [CrossRef]
- Breusch, T.S.; Pagan, A.R. The Lagrange multiplier test and its applications to model specification in econometrics. Rev. Econ. Stud. 1980, 47, 239–253. [Google Scholar] [CrossRef]
- Pesaran, M.H. General diagnostic tests for cross section dependence in panels. Cambridge Working Papers. Economics 2004, 1240, 1. [Google Scholar]
- Pesaran, M.H.; Ullah, A.; Yamagata, T. A bias-adjusted LM test of error cross-section independence. Econom. J. 2008, 11, 105–127. [Google Scholar] [CrossRef]
- Chou, M.C. Does tourism development promote economic growth in transition countries? A panel data analysis. Econ. Model. 2013, 33, 226–232. [Google Scholar] [CrossRef]
- Khan, M.T.I.; Yaseen, M.R.; Ali, Q. Nexus between financial development, tourism, renewable energy, and greenhouse gas emission in high-income countries: A continent-wise analysis. Energy Econ. 2019, 83, 293–310. [Google Scholar] [CrossRef]
- Swamy, P.A. Efficient inference in a random coefficient regression model. Econom. J. Econom. Soc. 1970, 38, 311–323. [Google Scholar] [CrossRef]
- Xu, T. Investigating environmental Kuznets curve in China–aggregation bias and policy implications. Energy Policy 2018, 114, 315–322. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Yamagata, T. Testing slope homogeneity in large panels. J. Econom. 2008, 142, 50–93. [Google Scholar] [CrossRef]
- Chang, T.; Chu, H.-P.; Chen, W.-Y. Energy consumption and economic growth in 12 Asian countries: Panel data analysis. Appl. Econ. Lett. 2013, 20, 282–287. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric Analysis of Cross Section and Panel Data; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Drukker, D.M. Testing for serial correlation in linear panel-data models. Stata J. 2003, 3, 168–177. [Google Scholar] [CrossRef]
- Frisch, R. Statistical Confluence Analysis by Means of Complete Regression Systems; Klara Civiltryckeri: Oslo, Norway, 1934. [Google Scholar]
- Kalnins, A. Multicollinearity: How common factors cause Type 1 errors in multivariate regression. Strateg. Manag. J. 2018, 39, 2362–2385. [Google Scholar] [CrossRef]
- Alabi, O.O.; Ayinde, K.; Babalola, O.E.; Bello, H.A.; Okon, E.C. Effects of multicollinearity on type i error of some methods of detecting heteroscedasticity in linear regression model. Open J. Stat. 2020, 10, 664–677. [Google Scholar] [CrossRef]
- Baum, C.F. Residual diagnostics for cross-section time series regression models. Stata J. 2001, 1, 101–104. [Google Scholar] [CrossRef]
- Banerjee, A.; Cockerell, L.; Russell, B. An I (2) analysis of inflation and the markup. J. Appl. Econom. 2001, 16, 221–240. [Google Scholar] [CrossRef]
- Pesaran, M.H. A simple panel unit root test in the presence of cross-section dependence. J. Appl. Econom. 2007, 22, 265–312. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for unit roots in heterogeneous panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Ali, Q.; Yaseen, M.R.; Khan, M.T.I. The impact of temperature, rainfall, and health worker density index on road traffic fatalities in Pakistan. Environ. Sci. Pollut. Res. 2020, 27, 19510–19529. [Google Scholar] [CrossRef] [PubMed]
- Yaseen, M.R.; Ali, Q.; Khan, M.T.I. General dependencies and causality analysis of road traffic fatalities in OECD countries. Environ. Sci. Pollut. Res. 2018, 25, 19612–19627. [Google Scholar] [CrossRef]
- Westerlund, J. New simple tests for panel cointegration. Econom. Rev. 2005, 24, 297–316. [Google Scholar] [CrossRef]
- Zhu, H.; Li, Z.; Guo, P. The impact of income, economic openness and interest rates on housing prices in China: Evidence from dynamic panel quantile regression. Appl. Econ. 2018, 50, 4086–4098. [Google Scholar] [CrossRef]
- Pedroni, P. Panel cointegration: Asymptotic and finite sample properties of pooled time series tests with an application to the PPP hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Driscoll, J.C.; Kraay, A.C. Consistent covariance matrix estimation with spatially dependent panel data. Rev. Econ. Stat. 1998, 80, 549–560. [Google Scholar] [CrossRef]
- Lin, Y.; Mahmood, M.A.; Meng, W.; Ali, Q. Green economy transition in Asia Pacific: A holistic assessment of renewable energy production. J. Clean. Prod. 2024, 437, 140648. [Google Scholar] [CrossRef]
- Opoku-Mensah, E.; Chun, W.; Ofori, E.K.; Ampofo, S.A.; Chen, W.; Appiah-Otoo, I. Revisiting the role of ICT and green institutional governance in environmental sustainability and proposing an ecological footprint mitigation pathway using a volatility-driven model. J. Clean. Prod. 2024, 434, 139824. [Google Scholar] [CrossRef]
- Khan, A.; Idrees, A.S. Environmental impact of multidimensional eco-innovation adoption: An empirical evidence from European Union. J. Environ. Econ. Policy 2024, 13, 17–33. [Google Scholar] [CrossRef]
- Karimli, T.; Mirzaliyev, N.; Guliyev, H. The Globalization and Ecological Footprint in European Countries: Correlation or Causation? Res. Glob. 2024, 8, 100208. [Google Scholar] [CrossRef]
- Jalil, A. Energy–growth conundrum in energy exporting and importing countries: Evidence from heterogeneous panel methods robust to cross-sectional dependence. Energy Econ. 2014, 44, 314–324. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Sarkodie, S.A.; Strezov, V. Effect of foreign direct investments, economic development and energy consumption on greenhouse gas emissions in developing countries. Sci. Total Environ. 2019, 646, 862–871. [Google Scholar] [CrossRef] [PubMed]
- Doku, J.N.; Kpekpena, F.A.; Boateng, P.Y. Capital structure and bank performance: Empirical evidence from Ghana. Afr. Dev. Rev. 2019, 31, 15–27. [Google Scholar] [CrossRef]
- Nsanyan Sandow, J.; Duodu, E.; Oteng-Abayie, E.F. Regulatory capital requirements and bank performance in Ghana: Evidence from panel corrected standard error. Cogent Econ. Financ. 2021, 9, 2003503. [Google Scholar] [CrossRef]
- Beck, N.; Katz, J.N. What to do (and not to do) with time-series cross-section data. Am. Political Sci. Rev. 1995, 89, 634–647. [Google Scholar] [CrossRef]
- Famanta, M.; Randhawa, A.A.; Yajing, J. The impact of green FDI on environmental quality in less developed countries: A case study of load capacity factor based on PCSE and FGLS techniques. Heliyon 2024, 10, e28217. [Google Scholar] [CrossRef]
- Wang, E.; Padhan, H.; Pruseth, S.K.; Ma, J. Government efficiency, green technology, and ecological footprint: Strategic framework for natural resource management efficiency targets. Resour. Policy 2024, 91, 104826. [Google Scholar] [CrossRef]
- Magazzino, C. Ecological footprint, electricity consumption, and economic growth in China: Geopolitical risk and natural resources governance. Empir. Econ. 2024, 66, 1–25. [Google Scholar] [CrossRef]
- Dos, S.T. The structure of dependence. Am. Econ. Rev. 1970, 60, 231. [Google Scholar]
- Balcilar, M.; Kutan, A.M.; Yaya, M.E. Testing the dependency theory on small island economies: The case of Cyprus. Econ. Model. 2017, 61, 1–11. [Google Scholar] [CrossRef]
- Hassan, S.T.; Baloch, M.A.; Mahmood, N.; Zhang, J. Linking economic growth and ecological footprint through human capital and biocapacity. Sustain. Cities Soc. 2019, 47, 101516. [Google Scholar]
- Zeraibi, A.; Balsalobre-Lorente, D.; Murshed, M. The influences of renewable electricity generation, technological innovation, financial development, and economic growth on ecological footprints in ASEAN-5 countries. Environ. Sci. Pollut. Res. 2021, 28, 51003–51021. [Google Scholar] [CrossRef]
- Usman, M.; Balsalobre-Lorente, D.; Jahanger, A.; Ahmad, P. Are Mercosur economies going green or going away? An empirical investigation of the association between technological innovations, energy use, natural resources and GHG emissions. Gondwana Res. 2023, 113, 53–70. [Google Scholar] [CrossRef]
- Almond, R.; Grooten, M.; Petersen, T. Living planet report 2020-bending the curve of biodiversity loss. Nat. Resour. Environ. 2021, 35, 62. [Google Scholar]
- Solarin, S.A.; Kundu, P.; Sahu, P.K.; Law, J.Y. The impact of aggregated and disaggregated fisheries production and licensed fishermen on fishing grounds footprint: A time series analysis. Mar. Pollut. Bull. 2024, 203, 116423. [Google Scholar] [CrossRef]
- Yilanci, V.; Cutcu, I.; Cayir, B. Is the environmental Kuznets curve related to the fishing footprint? Evidence from China. Fish. Res. 2022, 254, 106392. [Google Scholar] [CrossRef]
- Muriithi, L.N. Adoption of Selected Climate Smart Agriculture Technologies Among Smallholder Farmers in Lower Eastern Kenya. Ph.D. Thesis, University of Embu, Embu, Kenya, 2021. [Google Scholar]
- Tsakiridis, A.; O’Donoghue, C.; Hynes, S.; Kilcline, K. A comparison of environmental and economic sustainability across seafood and livestock product value chains. Mar. Policy 2020, 117, 103968. [Google Scholar] [CrossRef]
- Yoshida, Y.; Lee, H.S.; Trung, B.H.; Tran, H.-D.; Lall, M.K.; Kakar, K.; Xuan, T.D. Impacts of mainstream hydropower dams on fisheries and agriculture in lower Mekong Basin. Sustainability 2020, 12, 2408. [Google Scholar] [CrossRef]
- Ozcan, B.; Apergis, N. The impact of internet use on air pollution: Evidence from emerging countries. Environ. Sci. Pollut. Res. 2018, 25, 4174–4189. [Google Scholar] [CrossRef] [PubMed]
- Usman, M.; Radulescu, M. Examining the role of nuclear and renewable energy in reducing carbon footprint: Does the role of technological innovation really create some difference? Sci. Total Environ. 2022, 841, 156662. [Google Scholar] [CrossRef] [PubMed]
- Saqib, N.; Ozturk, I.; Usman, M.; Sharif, A.; Razzaq, A. Pollution haven or halo? How European countries leverage FDI, energy, and human capital to alleviate their ecological footprint. Gondwana Res. 2023, 116, 136–148. [Google Scholar] [CrossRef]
- Alvarado, R.; Tillaguango, B.; Dagar, V.; Ahmad, M.; Işık, C.; Méndez, P.; Toledo, E. Ecological footprint, economic complexity and natural resources rents in Latin America: Empirical evidence using quantile regressions. J. Clean. Prod. 2021, 318, 128585. [Google Scholar] [CrossRef]
- Huang, S.-Z.; Sadiq, M.; Chien, F. The impact of natural resource rent, financial development, and urbanization on carbon emission. Environ. Sci. Pollut. Res. 2021, 1–13. [Google Scholar] [CrossRef]
- Balsalobre-Lorente, D.; Shahbaz, M.; Roubaud, D.; Farhani, S. How economic growth, renewable electricity and natural resources contribute to CO2 emissions? Energy Policy 2018, 113, 356–367. [Google Scholar] [CrossRef]
Authors | Variables | Methodology | Conclusions |
---|---|---|---|
Kautsky, Berg [34] | Aquaculture production | Case studies | Colombia’s coastal environment is already being used almost entirely for shrimp aquaculture. On the other hand, a tilapia farm fed by domestic, agricultural, and fishery waste depends relatively little on different ecosystems. |
Zahid, Ali [35] | Inclusive growth, renewable energy | Dynamic ordinary least square (DOLS) | IG is positively associated with EF. RE negatively associated with EF. |
Saqib, Usman [36] | Renewable energy, green growth | Second generation | RE and GG have two-way causality with EF. |
Xia and Liu [37] | Natural resource, Inclusive growth | Methods of moment quantile regression (MMQR) | NR and IG are positively associated with EF. |
Guillen, Natale [38] | Fishery production system, aquaculture production | MRIO model | The seafood consumption footprint shows how much of the world’s seafood is consumed by all countries, and growing seafood consumption across the globe fuels overfishing, which destroys marine biodiversity and ecosystems. |
Cashion, Tyedmers [39] | Production of fishmeal and fish oil (FMFO), carbon footprint, marine footprint | Mix methods | FMFO inputs can significantly influence fish feeds and fed aquaculture regarding ecological sustainability. |
Ke, Dai [40] | Green innovative efficiency | The Hensen threshold regression model | GIE is positively associated with EF. |
Wicki and Hansen [41] | Green technology innovation | Case study | Innovations in green technology frequently result in more sustainable and clean activities. In contrast, when implementing green technologies, significant initial expenditures may be associated with research, development, and infrastructure. |
Nawaz, Azam [42] | Natural resource depletion | CIPS unit root, Granger causality | Rapid economic growth promotes NRD, which puts more of a burden on the ecosystem. |
Yi, Abbasi [43] | Natural resource depletion, renewable energy | ARDL and Kernel-based regularized the least square | NRD surges the environmental footprint. Further, an increase in RE and a reduction in the use of fossil fuels are helpful for a sustainable environment. |
Gössling, Hansson [44] | Ecological footprints | Statistical analysis | The study describes a technique for estimating the ecological footprint of Seychelles leisure travel, emphasizing the effects of air travel on the environment. It highlights the importance of sustainable tourism practices and calls into question the place of long-distance travel in biodiversity conservation. |
Chapman and Husberg [45] | Agriculture, forestry, and fishing | Case studies | The poor enforcement of regulations and lax enforcement of existing ones result in insufficient worker protection in the agricultural, forestry, and fisheries (AFF) industry. Immigration laws and past legal “exceptionalism,” which excluded certain industry-specific regulatory protections, increase the vulnerability of AFF workers. |
Variables | Symbol | Definitions | Sources |
---|---|---|---|
Ecological Footprint | EF | Ecological Footprint vs. Biocapacity (gha per person) | Global Footprint Network (GFN) |
Green Technological Innovations | GTI | All Technologies (total patents) | OECD |
Inclusive Growth | IG | GDP per person employed (constant 2017 USD) | WDI |
Total Fishery Production | TFP | Total Fishery Production (metric tons) | WDI |
Aquaculture Production | AP | Aquaculture Production (metric tons) | WDI |
Agriculture, Forestry, and Fishing | AFF | Agriculture, Forestry, and Fishing, value added (Constant 2015 USD) | WDI |
Renewable Energy Consumption | REC | Renewable Energy Consumption (% of total final energy consumption) | WDI |
Natural Resource Depletion | NRD | Adjusted Savings: natural resources depletion (% of GNI) | WDI |
Indicator | Mean | Std. Dev. | Min. | Max. | Data Source |
---|---|---|---|---|---|
Total Ecological Footprint (EF) (gha) | 3.124 | 2.534 | 0.084 | 13.859 | GFN (2022) |
Inclusive Growth (IG) (0–100) | 50,333.58 | 41,049.85 | 5154.55 | 179,303.3 | WDI (2022) |
Green Technological Innovation (GTI) | 47,156.22 | 229,573.9 | −7872 | 1,993,799 | WDI (2022) |
Total Fishery Production (TFP) | 5,218,167 | 1.58 × 107 | 5141 | 8.80 × 107 | |
Agriculture, Forestry, and Fishing (AFF) | 8.98 × 1010 | 2.02 × 1011 | 7.94 × 107 | 1.22 × 1012 | WGI (2022) |
Renewable Energy Consumption (REC) | 21.52985 | 22.48479 | 0.01 | 82.87 | OECD (2022) |
Aquaculture Production (AP) | 3,456,502 | 1.25 × 107 | 0 | 7.48 × 107 | WDI (2022) |
Econometric Issues | Diagnostic Tests | Test-Stat. | Prob. |
---|---|---|---|
CD | Breusch and Pagan LM | 1983.00 *** | 0.000 |
Pesaran CD | 4.312 *** | 0.003 | |
Pesaran LM adj | 0.6062 | 0.234 | |
Slope heterogeneity | Swamy’s | 48888.08 *** | 0.000 |
3.532 *** | 0.004 | ||
4.665 *** | 0.000 | ||
Autocorrelation | Wooldridge | 32.223 *** | 0.000 |
Heteroskedasticity | Modified Wald | 7035.28 *** | 0.000 |
Breusch–Pagan/Cook–Weisberg | 16.06 *** | 0.000 | |
Multicollinearity | Mean VIF | 4.03 | 0.000 |
Variables | At Level (Intercept and Trend) | At First Difference (Only with Intercept) |
---|---|---|
LnEF | −3.222 *** | −4.233 *** |
LnIG | −4.336 *** | −3.667 *** |
lnGTI | −0.889 | −3.027 *** |
lnTFP | −4.222 *** | −5.333 *** |
LnAFF | −4.223 *** | −4.245 *** |
LnREC | −5.888 *** | −6.55 *** |
LnAP | 3.567 *** | −4.234 *** |
Panel | Variance Ratio | |
---|---|---|
Westerlund (2005) Test | Statis. | Prob. |
−3.987 *** | 0.0004 |
Variables | D/K Regression | PCSE | |||
---|---|---|---|---|---|
Coff. | Std. Er. | Prob. | Coff. | Prob. | |
LnIG | −0.785 *** | 0.0417 | 0.000 | −0.571 ** | 0.000 |
lnGTI | −0.245 *** | 0.023 | 0.000 | −0.386 * | 0.001 |
lnTFP | 0.233 *** | 0.0505 | 0.000 | 0.339 *** | 0.000 |
LnAP | −0.046 * | 0.0038 | 0.000 | −0.596 *** | 0.001 |
lnREC | −0.182 *** | 0.045 | 0.000 | −0.393 ** | 0.031 |
lnNRD | 0.044 *** | 0.183 | 0.000 | 0.356 *** | 0.001 |
LnAFF | 0.589 * | 1.105 | 0.006 | 0.740 * | 0.000 |
F-Stat. | 14908.490 *** (0.000) | --- | |||
R2 | 0.846 | --- |
Variables | D/K Regression | ||
---|---|---|---|
Coff. | Std. Er. | Prob. | |
LnIG | −0.762 ** | 0.081 | 0.002 |
lnGTI | −0.446 *** | 0.018 | 0.004 |
lnTFP | 1.134 *** | 0.135 | 0.000 |
LnAP | −0.044 | 0.201 | 0.522 |
lnREC | −0.383 *** | 0.151 | 0.003 |
lnNRD | 0.055 *** | 0.005 | 0.003 |
LnAFF | 0.423 *** | 0.282 | 0.000 |
F-Stat. | 1884.65.81 *** (0.000) | ||
R2 | 0.973 *** (0.000) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Kamaruddin, B.H.B.; Shi, X. The Intertwined Threads of Blue Economy, Inclusive Growth, and Environmental Sustainability in Transition Economies. Sustainability 2025, 17, 1054. https://doi.org/10.3390/su17031054
Han S, Kamaruddin BHB, Shi X. The Intertwined Threads of Blue Economy, Inclusive Growth, and Environmental Sustainability in Transition Economies. Sustainability. 2025; 17(3):1054. https://doi.org/10.3390/su17031054
Chicago/Turabian StyleHan, Shengmiao, Badrul Hisham Bin Kamaruddin, and Xing Shi. 2025. "The Intertwined Threads of Blue Economy, Inclusive Growth, and Environmental Sustainability in Transition Economies" Sustainability 17, no. 3: 1054. https://doi.org/10.3390/su17031054
APA StyleHan, S., Kamaruddin, B. H. B., & Shi, X. (2025). The Intertwined Threads of Blue Economy, Inclusive Growth, and Environmental Sustainability in Transition Economies. Sustainability, 17(3), 1054. https://doi.org/10.3390/su17031054