Digital Innovation Networks for Regional Sustainability: An Analysis of Evolutionary Characteristics and Driving Mechanisms in China
Abstract
1. Introduction
2. Literature Review
2.1. Conceptualization of Digital Innovation
2.2. Measuring Digital Innovation
2.3. Impacts of Digital Innovation
2.4. Research Gap
3. Research Design
3.1. Construction of an Interprovincial Digital Innovation Indicator System
3.2. Research Methodology
3.2.1. Entropy Weighting Method
3.2.2. Modified Gravity Model
3.2.3. Social Network Analysis
3.2.4. Temporal Exponential Random Graph Model
3.3. Sample Selection and Data Sources
4. Empirical Results
4.1. Spatial Characteristics of Digital Innovation Levels
4.1.1. Spatial Distribution of Digital Innovation Levels
4.1.2. Spatiotemporal Evolution of Spatial Association in Digital Innovation
4.2. Structural Characteristics of the Digital Innovation Network
4.2.1. Overall Network Structural Characteristics
4.2.2. Individual Network Structural Characteristics
4.2.3. Block Model Analysis
4.2.4. Motif Structural Characteristics
4.3. Evolutionary Mechanisms of the Digital Innovation Network
4.3.1. Empirical Results of the TERGM
4.3.2. Model Diagnostics
- (1)
- Robustness Checks
- (2)
- Goodness-of-fit test
5. Discussion
6. Conclusions and Policy Suggestions
6.1. Conclusions
6.2. Policy Suggestions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hodapp, D.; Hanelt, A. Interoperability in the era of digital innovation: An information systems research agenda. J. Inf. Technol. 2022, 37, 407–427. [Google Scholar] [CrossRef]
- Yoo, Y.; Henfridsson, O.; Kallinikos, J.; Gregory, R.; Burtch, G.; Chatterjee, S.; Sarker, S. The next frontiers of digital innovation research. Inf. Syst. Res. 2024, 35, 1507–1523. [Google Scholar] [CrossRef]
- Yaqub, M.Z.; Alsabban, A. Industry-4.0-enabled digital transformation: Prospects, instruments, challenges, and implications for business strategies. Sustainability 2023, 15, 8553. [Google Scholar] [CrossRef]
- Chan, C.M.; Teoh, S.Y.; Yeow, A.; Pan, G. Agility in responding to disruptive digital innovation: Case study of an SME. Inf. Syst. J. 2019, 29, 436–455. [Google Scholar] [CrossRef]
- Qi, Y.; Chen, Q.; Yang, M.; Sun, Y. Ambidextrous knowledge accumulation, dynamic capability and manufacturing digital transformation in China. J. Knowl. Manag. 2024, 28, 2275–2305. [Google Scholar] [CrossRef]
- Leifeld, P.; Cranmer, S.J.; Desmarais, B.A. Temporal exponential random graph models with btergm: Estimation and bootstrap confidence intervals. J. Stat. Softw. 2018, 83, 1–36. [Google Scholar] [CrossRef]
- Teng, T.E.; Shi, L.; Bao, H.; Cao, X.; Wang, S.; Lu, L. Comparative study on evolution of digital technology patent innovation network in three urban agglomerations. Econ. Geogr. 2024, 44, 100–109. [Google Scholar]
- Luo, S.; Yimamu, N.; Li, Y.; Wu, H.; Irfan, M.; Hao, Y. Digitalization and sustainable development: How could digital economy development improve green innovation in China? Bus. Strateg. Environ. 2023, 32, 1847–1871. [Google Scholar] [CrossRef]
- Huang, D.; Huang, C. The Impact of Digital Economy Development on Improving the Ecological Environment—An Empirical Analysis Based on Data from 30 Provinces in China from 2012 to 2021. Sustainability 2024, 16, 7176. [Google Scholar] [CrossRef]
- He, T. East Asian authoritarian developmentalism in the digital era: China’s techno-developmental state and the new infrastructure initiative amid great power competition. Asian Surv. 2024, 64, 942–972. [Google Scholar] [CrossRef]
- Bathelt, H.; Malmberg, A.; Maskell, P. Clusters and knowledge: Local buzz, global pipelines and the process of knowledge creation. Prog. Hum. Geogr. 2004, 28, 31–56. [Google Scholar] [CrossRef]
- Coe, N.M. Geographies of production II: A global production network A–Z. Prog. Hum. Geogr. 2012, 36, 389–402. [Google Scholar] [CrossRef]
- Shen, C.; Yang, Z.; Lam, F.; Tam, S.W.; Yang, W.; Li, Y. Scientific and technological innovation cooperation network of the Greater Bay Area in South China: A social network analysis. PLoS ONE 2025, 20, e0326515. [Google Scholar] [CrossRef]
- Fichman, R.G.; Dos Santos, B.L.; Zheng, Z. Digital innovation as a fundamental and powerful concept in the information systems curriculum. MIS Q. 2014, 38, 329–354. [Google Scholar] [CrossRef]
- Abrell, T.; Pihlajamaa, M.; Kanto, L.; Brocke, J.; Uebernickel, F. The role of users and customers in digital innovation: Insights from B2B manufacturing firms. Inf. Manag. 2016, 53, 324–335. [Google Scholar] [CrossRef]
- Yoo, Y.; Henfridsson, O.; Lyytinen, K. The new organizing logic of digital innovation: An agenda for information systems research. Inf. Syst. Res. 2010, 21, 724–735. [Google Scholar] [CrossRef]
- Jahanmir, S.F.; Cavadas, J. Factors affecting late adoption of digital innovations. J. Bus. Res. 2018, 88, 337–343. [Google Scholar] [CrossRef]
- Pershina, R.; Soppe, B.; Thune, T.M. Bridging analog and digital expertise: Cross-domain collaboration and boundary-spanning tools in the creation of digital innovation. Res. Policy 2019, 48, 103819. [Google Scholar] [CrossRef]
- Nambisan, S.; Lyytinen, K.; Majchrzak, A.; Song, M. Digital innovation management: Reinventing innovation management research in a digital world. MIS Q. 2017, 41, 223–238. [Google Scholar] [CrossRef]
- Chen, W.; Luo, Y.; Rao, M.; Zhang, P. Too much teamwork? The effect of corporate collaboration culture on breakthrough innovation. Financ. Res. Lett. 2025, 78, 106913. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, N.; Huo, Y. Impact of digital technology innovation on carbon emission reduction and energy rebound: Evidence from the Chinese firm level. Energy 2025, 320, 135187. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, T. The spatiotemporal evolution of digital technology innovation and multidimensional mechanism of digitalization. Appl. Geogr. 2025, 182, 103714. [Google Scholar] [CrossRef]
- Guo, S.; Wen, L.; Wu, Y.; Perera, S.C. How does digital technology reshape the boundaries of intercity innovation collaboration? Evidence from China. J. Reg. Sci. 2025, 65, 1379–1400. [Google Scholar] [CrossRef]
- Gregori, P.; Holzmann, P. Digital sustainable entrepreneurship: A business model perspective on embedding digital technologies for social and environmental value creation. J. Clean. Prod. 2020, 272, 122817. [Google Scholar] [CrossRef]
- Aloini, D.; Latronico, L.; Pellegrini, L. The impact of digital technologies on business models: Insights from the space industry. Meas. Bus. Excell. 2022, 26, 64–80. [Google Scholar] [CrossRef]
- Khanin, D.; Rosenfield, R.; Mahto, R.V.; Singhal, C. Barriers to entrepreneurship: Opportunity recognition vs. opportunity pursuit. Rev. Manag. Sci. 2022, 16, 1147–1167. [Google Scholar] [CrossRef]
- Richter, C.; Kraus, S.; Syrjä, P. The shareconomy as a precursor for digital entrepreneurship business models. Int. J. Entrep. Small Bus. 2015, 25, 18–35. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Zhong, Y.; Lai, H.; Zhang, L.; Guo, L.; Lai, X. Does public data openness accelerate new quality productive forces? Evidence from China. Econ. Anal. Policy 2025, 85, 1409–1427. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J. Exploring regional innovation growth through a network approach: A case study of the Yangtze River Delta region, China. Chin. Geogr. Sci. 2022, 32, 16–30. [Google Scholar] [CrossRef]
- Urbinati, A.; Manelli, L.; Frattini, F.; Bogers, M.L. The digital transformation of the innovation process: Orchestration mechanisms and future research directions. Innovation 2022, 24, 65–85. [Google Scholar] [CrossRef]
- Hund, A.; Wagner, H.T.; Beimborn, D.; Weitzel, T. Digital innovation: Review and novel perspective. J. Strateg. Inf. Syst. 2021, 30, 101695. [Google Scholar] [CrossRef]
- Zinilli, A.; Gao, Y.; Scherngell, T. Structural dynamics of inter-city innovation networks in China: A perspective from TERGM. Netw. Spat. Econ. 2024, 24, 707–741. [Google Scholar] [CrossRef]
- Can, Z.; Gang, Z.; Yongmin, S. Progress and prospect of research on innovation networks: A perspective from evolutionary economic geography. Econ. Geogr. 2019, 39, 27–36. [Google Scholar] [CrossRef]
- Bican, P.M.; Brem, A. Managing innovation performance: Results from an industry-spanning explorative study on R&D key measures. Creat. Innov. Manag. 2020, 29, 268–291. [Google Scholar] [CrossRef]
- Del Vecchio, P.; Passiante, G.; Barberio, G.; Innella, C. Digital innovation ecosystems for circular economy: The case of ICESP, the Italian circular economy stakeholder platform. Int. J. Innov. Technol. Manag. 2021, 18, 2050053. [Google Scholar] [CrossRef]
- Yang, C.; Huang, C. Quantitative mapping of the evolution of AI policy distribution, targets and focuses over three decades in China. Technol. Forecast. Soc. Change 2022, 174, 121188. [Google Scholar] [CrossRef]
- Liu, Q.; Yuan, F.; Wu, F.; Yu, S. Digital transformation and management earnings forecast. Int. Rev. Econ. Financ. 2024, 96, 103570. [Google Scholar] [CrossRef]
- Zhang, P.; Zhang, T.; Feng, Y.; Liu, Y.; Ye, X. Spatial correlation networks characteristics and influence mechanisms of the resilience of Beijing–Tianjin–Hebei urban agglomeration: A complex network perspective. Humanit. Soc. Sci. Commun. 2025, 12, 1434. [Google Scholar] [CrossRef]
- Wasserman, S.; Faust, K. Social Network Analysis: Methods and Applications; Cambridge University Press: Cambridge, UK, 1994. [Google Scholar]
- Yu, X.; Zeng, S. Evolution of the Spatial Network Structure of the Global Service Value Chain and Its Influencing Factors—An Empirical Study Based on the TERGM. Sustainability 2025, 17, 9130. [Google Scholar] [CrossRef]
- Yang, L.; Wang, S. Do fintech applications promote regional innovation efficiency? Empirical evidence from China. Socio-Econ. Plan. Sci. 2022, 83, 101258. [Google Scholar] [CrossRef]
- Li, J.; Zhou, M. Spatiotemporal pattern evolution and multidimensional driving mechanism of digital innovation in China: Evidence from digital economy patent applications. Econ. Geogr. 2024, 44, 106–116. [Google Scholar]
- Milo, R.; Shen-Orr, S.; Itzkovitz, S.; Kashtan, N.; Chklovskii, D.; Alon, U. Network motifs: Simple building blocks of complex networks. Science 2002, 298, 824–827. [Google Scholar] [CrossRef]
- Dai, J.; Ding, Z.; Cao, Z.; Wu, K.; Wang, R. Evolution characteristics and driving forces of urban collaborative innovation networks in the Yangtze River Delta. Resour. Sci. 2023, 45, 1006–1019. [Google Scholar]
- Du, Y.; Wang, Q.; Song, Y.; Xin, Y. How cross-regional collaborative innovation networks affect regional economic resilience: Evidence from 283 cities in China. Technol. Forecast. Soc. Change 2025, 215, 124057. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, K.; Yan, T.; Cao, X. The impact of digital infrastructure on regional green innovation efficiency through industrial agglomeration and diversification. Humanit. Soc. Sci. Commun. 2025, 12, 1–15. [Google Scholar] [CrossRef]
- Ma, H.; Xu, X.; Li, X.; Liu, J. Towards innovation resilience through urban networks of co-invention: A case study of cities in China. Front. Earth Sci. 2022, 10, 974219. [Google Scholar] [CrossRef]
- Caimo, A.; Gollini, I. A multilayer exponential random graph modelling approach for weighted networks. Comput. Stat. Data Anal. 2020, 142, 106825. [Google Scholar] [CrossRef]
- Xu, G.; Hu, W.; Qiao, Y.; Zhou, Y. Mapping an innovation ecosystem using network clustering and community identification: A multi-layered framework. Scientometrics 2020, 124, 2057–2081. [Google Scholar] [CrossRef]




| Criterion Level | Element Level | Indicator Level | Weight |
|---|---|---|---|
| Innovation Subjects | Government | Number of National-Level Science and Technology Business Incubators | 0.0159 |
| Number of National Big Data Comprehensive Pilot Zones | 0.0639 | ||
| Enterprises | Number of Digital Industry Enterprises | 0.0357 | |
| Number of Digital Industry Enterprises Engaged in R&D Activities | 0.0389 | ||
| Research Institutes | Number of Higher Education Institutions | 0.0053 | |
| Number of Research Institutions | 0.0058 | ||
| Innovation Factors | Labor Force | Number of Employees in the Digital Industry | 0.0366 |
| Number of R&D Personnel in the Digital Industry | 0.0381 | ||
| Full-Time Equivalent of R&D Personnel in the Digital Industry | 0.0412 | ||
| Capital | Internal Expenditure on R&D in the Digital Industry | 0.0413 | |
| External Expenditure on R&D in the Digital Industry | 0.0741 | ||
| Expenditure on New Product Development in the Digital Industry | 0.0473 | ||
| Technological Input | Expenditure on Domestic Technology Acquisition in the Digital Industry | 0.0990 | |
| Expenditure on Imported Technology in the Digital Industry | 0.0829 | ||
| Innovation Environment | Infrastructure (Hardware) | Number of Internet Broadband Access Ports | 0.0100 |
| Length of Optical Cable Lines | 0.0104 | ||
| Number of Computers per 100 Persons | 0.0155 | ||
| Telephone Penetration Rate | 0.0052 | ||
| Infrastructure (Software) | Digital Inclusive Finance Index | 0.0040 | |
| Total Postal and Telecommunications Business Volume | 0.0211 | ||
| Level of E-commerce Development | 0.0125 | ||
| Digital Economy Policy Support | 0.0034 | ||
| Level of Technology Market Transactions | 0.0266 | ||
| Innovation Performance | Short-term Performance | Main Business Income of the Digital Industry | 0.0338 |
| Software Business Revenue | 0.0321 | ||
| Software Product Revenue | 0.0303 | ||
| Embedded System Software Revenue | 0.0501 | ||
| Long-term Performance | Number of Patent Applications in the Digital Industry | 0.0464 | |
| New Product Sales Revenue in the Digital Industry | 0.0415 | ||
| Level of Enterprise Digital Transformation | 0.0311 |
| Indicators | Formula | Description of Formulas | |
|---|---|---|---|
| Global network | Network density | is the number of all relationships present in the digital Innovation network | |
| Network hierarchy | T is the number of provinces with symmetrically reachable points in the digital Innovation network; max(T) is the number of provinces in the digital Innovation network | ||
| Network correlation | N is the number of provinces; V is the number of provinces where the digital Innovation network is unreachable points | ||
| Network efficiency | is the maximum possible total number of redundant relationships | ||
| Personal network | Degree of Centrality | is the total number of associations in the digital Innovation network | |
| Proximity centrality | is the spherical distance between two provinces in the digital Innovation network | ||
| Intermediary Center Degree | passes |
| Variable | Schematic Diagram | Variable Definition | |
|---|---|---|---|
| Structural dependence | edges | ![]() | Baseline propensity for digital innovation linkages between provinces, analogous to an intercept term |
| mutual | ![]() | Propensity for mutual tie formation between provinces, reflecting reciprocity effects | |
| ctriple | ![]() | triadic structures on the formation of digital innovation networks | |
| twopath | ![]() | dyadic chain structures on the formation of digital innovation networks | |
| Temporal dependence | stability | ![]() | |
| variability | ![]() | , the emergence or dissolution of ties | |
| Sender effect | market | ![]() | Reflects how a province’s specific attribute influences its propensity to initiate digital innovation linkages with other provinces |
| pgdp | |||
| lndigital | |||
| Receiver effect | market | ![]() | Reflects how a province’s specific attribute influences its propensity to receive digital innovation linkages from other provinces |
| pgdp | |||
| lndigital | |||
| Convergence effect | group | ![]() | Reflects the propensity for digital innovation linkages to form within the same economic region |
| Co-network | distance | ![]() | Reflects the propensity for geographic adjacency between provinces to facilitate the formation of digital innovation linkages |
| Year | Network Relevance | Number of Network Relationships | Network Density | Network Hierarchy | Network Efficiency |
|---|---|---|---|---|---|
| 2012 | 1.0000 | 221 | 0.2540 | 0.1290 | 0.6601 |
| 2013 | 1.0000 | 220 | 0.2529 | 0.1290 | 0.6626 |
| 2014 | 1.0000 | 223 | 0.2563 | 0.1875 | 0.6502 |
| 2015 | 1.0000 | 222 | 0.2552 | 0.1290 | 0.6576 |
| 2016 | 1.0000 | 212 | 0.2437 | 0.2419 | 0.6724 |
| 2017 | 1.0000 | 210 | 0.2414 | 0.2419 | 0.6749 |
| 2018 | 1.0000 | 201 | 0.2310 | 0.2424 | 0.6872 |
| 2019 | 1.0000 | 204 | 0.2345 | 0.2424 | 0.6823 |
| 2020 | 1.0000 | 209 | 0.2402 | 0.2419 | 0.6749 |
| 2021 | 1.0000 | 208 | 0.2391 | 0.2424 | 0.6724 |
| 2022 | 1.0000 | 219 | 0.2517 | 0.2424 | 0.6601 |
| Province | Degree Centrality | Proximity Centrality | Betweenness Centrality | |||||
|---|---|---|---|---|---|---|---|---|
| Out-Degree | In-Degree | Centrality | Rank | Centrality | Rank | Centrality | Rank | |
| Beijing | 6 | 25 | 86.21 | 2 | 87.88 | 2 | 15.19 | 1 |
| Tianjin | 3 | 12 | 41.38 | 8 | 63.04 | 8 | 2.19 | 6 |
| Hebei | 7 | 8 | 31.03 | 14 | 59.18 | 14 | 0.74 | 11 |
| Shanxi | 6 | 3 | 20.69 | 27 | 55.77 | 27 | 0.12 | 26 |
| Inner Mongolia | 6 | 8 | 37.93 | 10 | 61.70 | 10 | 1.29 | 9 |
| Liaoning | 4 | 3 | 20.69 | 28 | 55.77 | 28 | 0.10 | 28 |
| Jilin | 7 | 0 | 24.14 | 21 | 56.86 | 21 | 0.32 | 17 |
| Heilongjiang | 8 | 0 | 27.59 | 19 | 58.00 | 19 | 0.56 | 15 |
| Shanghai | 9 | 27 | 93.10 | 1 | 93.55 | 1 | 14.26 | 2 |
| Jiangsu | 7 | 25 | 86.21 | 3 | 87.88 | 3 | 12.11 | 3 |
| Zhejiang | 5 | 19 | 65.52 | 4 | 74.36 | 4 | 5.32 | 4 |
| Anhui | 4 | 5 | 20.69 | 29 | 55.77 | 29 | 0.08 | 30 |
| Fujian | 9 | 15 | 62.07 | 5 | 72.50 | 5 | 4.97 | 5 |
| Jiangxi | 6 | 6 | 24.14 | 22 | 56.86 | 22 | 0.13 | 24 |
| Shandong | 6 | 6 | 20.69 | 30 | 55.77 | 30 | 0.10 | 29 |
| Henan | 8 | 11 | 41.38 | 9 | 63.04 | 9 | 1.63 | 8 |
| Hubei | 9 | 10 | 44.83 | 7 | 64.44 | 7 | 1.05 | 10 |
| Hunan | 7 | 4 | 24.14 | 23 | 56.86 | 23 | 0.13 | 25 |
| Guangdong | 10 | 5 | 37.93 | 11 | 61.70 | 11 | 0.73 | 12 |
| Guangxi | 8 | 4 | 31.03 | 15 | 59.18 | 15 | 0.36 | 16 |
| Hainan | 7 | 1 | 24.14 | 24 | 56.86 | 24 | 0.11 | 27 |
| Chongqing | 9 | 6 | 34.48 | 12 | 60.42 | 12 | 0.66 | 13 |
| Sichuan | 6 | 2 | 24.14 | 25 | 56.86 | 25 | 0.14 | 23 |
| Guizhou | 8 | 4 | 31.03 | 16 | 59.18 | 16 | 0.26 | 20 |
| Yunnan | 9 | 1 | 31.03 | 17 | 59.18 | 17 | 0.26 | 21 |
| Shanxi | 8 | 2 | 31.03 | 18 | 59.18 | 18 | 0.31 | 19 |
| Gansu | 12 | 6 | 48.28 | 6 | 65.91 | 6 | 1.81 | 7 |
| Qinghai | 10 | 1 | 34.48 | 13 | 60.42 | 13 | 0.62 | 14 |
| Ningxia | 7 | 0 | 24.14 | 26 | 56.86 | 26 | 0.20 | 22 |
| Xinjiang | 8 | 0 | 27.59 | 20 | 58.00 | 20 | 0.32 | 18 |
| Average | 7.3 | 7.3 | 38.39 | 63.10 | 2.20 | |||
| Sector | Total Number of Relationships Accepted | Total Number of Overflow Relationships | Proportion of Desired Internal Relationships | Proportion of Actual Internal Relationships/% | Sector Division | ||
|---|---|---|---|---|---|---|---|
| Within the Sector | Outside the Sector | Within the Sector | Outside the Sector | ||||
| Block 1 | 3 | 42 | 3 | 12 | 6.90% | 20.00% | two-way Overflow block |
| Block 2 | 14 | 82 | 14 | 25 | 13.79% | 53.85% | primary beneficiary block |
| Block 3 | 14 | 15 | 14 | 69 | 34.48% | 14.29% | broker block |
| Block 4 | 22 | 27 | 22 | 60 | 34.48% | 30.56% | broker block |
| Plate | Density Matrix | Image Matrix | ||||||
|---|---|---|---|---|---|---|---|---|
| Block 1 | Block 2 | Block 3 | Block 4 | Block 1 | Block 2 | Block 3 | Block 4 | |
| Block 1 | 0.5000 | 0.0670 | 0.2730 | 0.0610 | 1 | 0 | 1 | 0 |
| Block 2 | 0.0670 | 0.7000 | 0.0730 | 0.3640 | 0 | 1 | 0 | 1 |
| Block 3 | 0.8790 | 0.6360 | 0.1270 | 0.0410 | 1 | 1 | 0 | 0 |
| Block 4 | 0.3640 | 0.8360 | 0.0170 | 0.2000 | 1 | 1 | 0 | 0 |
| Structure | 2012 | 2015 | 2018 | 2021 | 2022 | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ID | Motif | Frequency/% | ID | Motif | Frequency/% | ID | Motif | Frequency/% | ID | Motif | Frequency/% | ID | Motif | Frequency/% | |
| Triadic structure | 164 | ![]() | 23.26 | 164 | ![]() | 24.22 | 164 | ![]() | 25.90 | 164 | ![]() | 23.27 | 164 | ![]() | 24.70 |
| 46 | ![]() | 2.98 | 46 | ![]() | 3.13 | 6 | ![]() | 6.89 | 6 | ![]() | 7.09 | 6 | ![]() | 6.80 | |
| 12 | ![]() | 1.20 | 12 | ![]() | 0.97 | 46 | ![]() | 1.94 | 12 | ![]() | 1.85 | 46 | ![]() | 1.88 | |
| 238 | ![]() | 0.55 | 238 | ![]() | 0.83 | 12 | ![]() | 1.47 | 46 | ![]() | 1.55 | 12 | ![]() | 1.33 | |
| / | / | / | / | / | / | 238 | ![]() | 0.78 | 238 | ![]() | 0.72 | 238 | ![]() | 0.95 | |
| Quadruple structure | 18,568 | ![]() | 13.53 | 18,568 | ![]() | 12.50 | 18,568 | ![]() | 17.16 | 18,568 | ![]() | 15.26 | 18,568 | ![]() | 15.44 |
| 18,572 | ![]() | 4.48 | 2202 | ![]() | 3.96 | 2202 | ![]() | 2.24 | 18,572 | ![]() | 3.60 | 18,572 | ![]() | 3.39 | |
| 2202 | ![]() | 3.87 | 4380 | ![]() | 3.34 | 588 | ![]() | 1.59 | 204 | ![]() | 2.45 | 204 | ![]() | 2.65 | |
| 204 | ![]() | 2.97 | 204 | ![]() | 2.09 | 18,518 | ![]() | 0.83 | 2202 | ![]() | 1.70 | 588 | ![]() | 1.98 | |
| 10,380 | ![]() | 1.25 | 588 | ![]() | 1.81 | 4438 | ![]() | 0.80 | 27,340 | ![]() | 0.88 | 2202 | ![]() | 1.91 | |
| Variable | Model 1 | Model 2 | Model 3 | Model 4 | |
|---|---|---|---|---|---|
| Structural Dependence | edges | −10.6640 *** | −8.9405 *** | −10.1457 *** | −3.6063 * |
| (−0.4492) | (−0.3806) | (−0.4728) | (−1.4125) | ||
| mutual | 3.2772 *** | 3.2869 *** | 3.1553 *** | ||
| (−0.1372) | (−0.1312) | (−0.5054) | |||
| ctriple | −0.3319 *** | −0.2966 *** | |||
| (−0.0439) | (−0.0893) | ||||
| twopath | 0.0329 * | 0.0571 * | |||
| (−0.0156) | (−0.0290) | ||||
| Temporal Dependence | stability | 3.7285 *** | |||
| (−0.1000) | |||||
| variability | −1.6287 *** | ||||
| (−0.4530) | |||||
| Sender Attributes | market | −0.0085 *** | −0.0237 *** | −0.0209 *** | −0.0075 |
| (−0.0021) | (−0.0024) | (−0.0026) | (−0.0069) | ||
| pgdp | −0.0108 *** | −0.0277 *** | −0.0221 *** | −0.0110 * | |
| (−0.0016) | (−0.0019) | (−0.0027) | (−0.0055) | ||
| lndigital | 0.8142 *** | 0.6045 *** | 0.6807 *** | 0.0875 | |
| (−0.0785) | (−0.0853) | (−0.0921) | (−0.2547) | ||
| Receiver Attributes | market | 0.0307 *** | 0.0406 *** | 0.0413 *** | 0.0222 ** |
| (−0.0024) | (−0.0027) | (−0.0028) | (−0.008) | ||
| pgdp | 0.0243 *** | 0.0346 *** | 0.0326 *** | 0.0242 *** | |
| (−0.0016) | (−0.0018) | (−0.0019) | (−0.0053) | ||
| lndigital | 0.6165 *** | 0.3815 *** | 0.4722 *** | −0.1788 | |
| (−0.0726) | (−0.0826) | (−0.0864) | (−0.2510) | ||
| Convergence | group | −0.1436 * | −0.0653 | −0.1031 | −0.0746 |
| (−0.0687) | (−0.0582) | (−0.0614) | (−0.2038) | ||
| Co-network | distance | 1.8136 *** | 1.2158 *** | 1.2422 *** | 1.2901 *** |
| (−0.0769) | (−0.0629) | (−0.0675) | (−0.2499) | ||
| Num. obs. | 9570 | 9570 | 9570 | 8700 | |
| AIC | 7746.8217 | 7002.1551 | 6933.6085 | 1353.9004 | |
| BIC | 7811.3192 | 7098.1066 | 7048.7503 | 1485.5596 | |
| Log Likelihood | −3864.4109 | −3491.0775 | −3454.8043 | −662.9502 | |
| Model 5 | Model 6 | Model 7 | Model 8 | Model 9 | Model 10 | ||
|---|---|---|---|---|---|---|---|
| Structural Dependence | edges | −3.9623 * | −2.9637 | −4.7926 ** | −4.8597 * | −4.6637 *** | −5.1798 ** |
| [−8.1271; −0.2798] | (−1.5175) | (−1.8216) | (−2.0597) | (−1.3126) | (−1.5976) | ||
| mutual | 3.3166 * | 2.9327 *** | 2.3490 *** | 2.8316 *** | 2.6698 *** | 3.2904 *** | |
| [1.6350; 4.4509] | (−0.5110) | (−0.6205) | (−0.6560) | (−0.4827) | (−0.5106) | ||
| ctriple | −0.3170 * | −0.3132 ** | −0.3610 ** | −0.4083 ** | −0.3668 *** | −0.3186 *** | |
| [−0.4562; −0.1913] | (−0.0980) | (−0.1211) | (−0.1428) | (−0.0760) | (−0.0924) | ||
| twopath | 0.0496 | 0.0745 * | 0.0993 ** | 0.0913 | 0.0393 | 0.0651 * | |
| [−0.0102; 0.1028] | (−0.0326) | (−0.0381) | (−0.0477) | (−0.0271) | (−0.0303) | ||
| Temporal Dependence | stability | 3.7195 * | 3.1540 *** | 2.9264 *** | 2.7697 *** | 3.4639 *** | 3.7365 *** |
| [3.5871; 3.9897] | (−0.1134) | (−0.1326) | (−0.1581) | (−0.0890) | (−0.1087) | ||
| variability | −1.7124 * | −1.3516 ** | −0.9221 | −1.1283 * | −0.8462 | −1.8549 *** | |
| [−2.4405; −0.2551] | (−0.4491) | (−0.5319) | (−0.5407) | (−0.4390) | (−0.4386) | ||
| Sender Attributes | market | −0.0069 | −0.0092 | −0.0107 | −0.0088 | −0.0048 | −0.0091 |
| [−0.0191; 0.0062] | (−0.0075) | (−0.0087) | (−0.0103) | (−0.0062) | (−0.0073) | ||
| pgdp | −0.0102 | −0.0131 * | −0.0119 | −0.0109 | −0.0113 * | −0.0099 | |
| [−0.0183; 0.0002] | (−0.0063) | (−0.0072) | (−0.0102) | (−0.0051) | (−0.0062) | ||
| lndigital | 0.0969 | 0.0256 | −0.1827 | −0.0791 | 0.4101 | −0.0135 | |
| [−0.6832; 0.7268] | (−0.2731) | (−0.3330) | (−0.3830) | (−0.2275) | (−0.2757) | ||
| Receiver Attributes | market | 0.0231 * | 0.0201 * | 0.0309 ** | 0.0357 ** | 0.0223 ** | 0.0306 *** |
| [0.0018; 0.0459] | (−0.0083) | (−0.0100) | (−0.0121) | (−0.0068) | (−0.0083) | ||
| pgdp | 0.0240 * | 0.0276 *** | 0.0172 ** | 0.0250 ** | 0.0228 *** | 0.0138 * | |
| [0.0058; 0.0422] | (−0.0057) | (−0.0066) | (−0.0085) | (−0.0049) | (−0.0057) | ||
| lndigital | −0.1278 | −0.2771 | 0.2209 | −0.1254 | −0.1879 | 0.2664 | |
| [−0.9578; 0.6441] | (−0.2741) | (−0.3358) | (−0.3875) | (−0.2432) | (−0.283) | ||
| Convergence | group | −0.0478 | −0.0899 | 0.0086 | 0.0454 | −0.0465 | 0.0333 |
| [−0.3346; 0.2495] | (−0.2105) | (−0.2541) | (−0.2865) | (−0.1847) | (−0.2108) | ||
| Co-network | distance | 1.2944 * | 1.3539 *** | 1.1860 *** | 1.2251 *** | 1.2706 *** | 1.0666 *** |
| [0.8292; 1.9726] | (−0.2551) | (−0.3132) | (−0.3514) | (−0.2432) | (−0.2600) | ||
| Num. obs. | 8700 | 8700 | 2610 | 1740 | 8700 | 7830 | |
| AIC | / | 1040.7906 | 643.9199 | 460.7988 | 1545.6567 | 1143.409 | |
| BIC | / | 1152.9947 | 741.7581 | 547.2051 | 1677.3159 | 1272.1128 | |
| Log Likelihood | / | −506.3953 | −307.9599 | −216.3994 | −758.8283 | −557.7045 | |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Xing, M. Digital Innovation Networks for Regional Sustainability: An Analysis of Evolutionary Characteristics and Driving Mechanisms in China. Sustainability 2025, 17, 10835. https://doi.org/10.3390/su172310835
Zhang Y, Xing M. Digital Innovation Networks for Regional Sustainability: An Analysis of Evolutionary Characteristics and Driving Mechanisms in China. Sustainability. 2025; 17(23):10835. https://doi.org/10.3390/su172310835
Chicago/Turabian StyleZhang, Yongheng, and Mengkai Xing. 2025. "Digital Innovation Networks for Regional Sustainability: An Analysis of Evolutionary Characteristics and Driving Mechanisms in China" Sustainability 17, no. 23: 10835. https://doi.org/10.3390/su172310835
APA StyleZhang, Y., & Xing, M. (2025). Digital Innovation Networks for Regional Sustainability: An Analysis of Evolutionary Characteristics and Driving Mechanisms in China. Sustainability, 17(23), 10835. https://doi.org/10.3390/su172310835

























