Intersectoral Labour Mobility in Europe as a Driver of Resilience and Innovation: Evidence from Granularity and Spatio-Temporal Modelling
Abstract
1. Introduction
- (i)
- To establish intersectoral labour mobility (MI) between all European regions from 2008 to 2020 using the NUTS-2 regions and to identify patterns of structural change over time and space;
- (ii)
- To project these mobility patterns onto the regional learning ecosystems, evaluating the encouragement of innovation diffusion and adaptability;
- (iii)
- To reflect on the policy implications of transition management towards digital and green economies.
2. Literature Review
2.1. Baseline of Intersectoral Labour Mobility
2.2. Previous Methodological Approaches to Measuring Structural Change
2.3. Intersectoral Mobility, Resilience, and Regional Labour Markets
2.4. Intersectoral Mobility and Innovation Capacity
2.5. Policy Context and Sustainability Perspectives
- Offer reskilling and upskilling programmes to prepare workers for roles in renewable energy, sustainable manufacturing and green infrastructure;
- Ensure social security and mobility of benefits to mitigate the risks associated with sectoral developments;
- Engage stakeholders (governments, unions, employers, communities) to ensure that processes are fair and inclusive.
2.6. Research Questions and Hypothesis
- RQ1. How does MI vary across European NUTS-2 regions from 2008 to 2020, what are its distributional properties and does it exhibit a statistically significant trend?
- RQ2. To what extent does sectoral granularity (1-digit vs. 2-digit NACE) affect the measurement and interpretation of MI, and how do the difference (Δ) and ratio (ρ) diagnostics behave over time?
- RQ3. How can MI be interpreted within a space–time framework, distinguishing between crisis shocks, recovery phases and stability, as well as between advanced and vulnerable regions?
- RQ4. Does a high MI primarily indicate resilience and innovation capacity in advanced economies, or structural fragility in vulnerable economies?
- RQ5. What are the implications of MI patterns for EU cohesion and labour market policies, particularly in the context of green and digital transitions, and can space–time approaches provide early-warning signals for policy?
- RQ6. Are MI trajectories sufficiently persistent to allow for short-term forecasting, and what is the uncertainty associated with one-step-ahead predictions?
- RQ1–RQ3 examine the temporal and spatial characteristics of MI, establishing the descriptive foundation for subsequent trend and distribution analyses.
- RQ4–RQ5 connect mobility interpretation to innovation and resilience outcomes, aligning with the conceptual hypotheses H1–H3 introduced in Section 2.4 and empirically tested through clustering and spatio-temporal modelling.
- RQ6 focuses on predictive assessment, addressing MI persistence and short-term forecasting (H6).
3. Materials and Methods
3.1. Dataset and Variables
- (i)
- One-digit (sections): B–N (excluding K, following SBS coverage), encompassing Mining and quarrying; Manufacturing; Electricity, gas, steam and air-conditioning; Water supply, sewerage, waste and remediation; Construction; Wholesale and retail trade and repair of motor vehicles; Transportation and storage; Accommodation and food; Information and communication; Real estate; Professional, scientific and technical; Administrative and support—a total of 12 sectors [55,56].
- (ii)
- cu K = 12 (divisions, 1-digit);
- cu K = 68 (divisions, 2-digit).
3.2. Sample Properties and Comparability (1d vs. 2d)
- 2012: median(2d) = 0.0258 vs. median(1d) = 0.0142;
- 2019: median(2d) = 0.0221 vs. median(1d) = 0.0130;
- 2020: median(2d) = 0.0322 vs. median(1d) = 0.0223.
3.3. Comparability Across Granularities and Derived Measures
3.4. Research Framework
4. Results
4.1. Granularity Effect in Intersectoral Mobility
4.2. Space–Time Cube and Forecasts
4.3. Time Series Clustering by Value, Correlation and Fourier Clustering
- Cluster 1 (n = 29): Regions with moderate MI values and relative stability over time, exhibiting only minor fluctuations around the EU mean.
- Cluster 2 (n = 9): Regions with persistently high MI levels during the first half of the period, followed by a pronounced decline after 2014, indicating substantial post-crisis adjustments.
- Cluster 3 (n = 41): Regions with low baseline MI values but marked cyclical peaks, particularly around 2011–2013, suggesting heightened sensitivity to short-term shocks.
- Cluster 4 (n = 65): The largest group, characterised by consistently low and flat trajectories with no statistically significant trend—representing structurally stable or stagnant labour markets.
- Cluster 5 (n = 24): Regions with historically elevated MI values but a statistically significant downward trend (statistic = −1.99, p = 0.047), reflecting progressive structural rigidification despite earlier dynamism.
- Cluster 1 (n = 85) comprises most Northern and Western European regions, characterised by moderate MI values and no statistically significant trend, indicating structural stability and mature labour markets.
- Cluster 2 (n = 44) includes a substantial share of Central and Eastern European regions, exhibiting moderate yet statistically insignificant fluctuations, which suggest slow and partial structural transitions.
- Clusters 4 (n = 14) and 7 (n = 1) are the only groups displaying a statistically significant decreasing trend (p < 0.05), pointing to a gradual rigidification of the employment structure and the reduced pace of sectoral reallocation. These clusters encompass several highly industrialised regions in Poland, Slovakia and Germany.
- Clusters 5, 6 and 8 represent exceptional cases, showing pronounced peaks in intersectoral mobility immediately after the 2008–2010 crisis, followed by sharp declines. This indicates that most structural adjustments were concentrated in the first half of the study period.
- −
- Support occupational transitions and targeted re-skilling in regions experiencing declining mobility.
- −
- Ensure continuous, multi-scalar monitoring (at both 1-digit and 2-digit levels) to detect early signals of structural shifts.
- −
- Promote labour market flexibility as a mechanism for enhancing resilience to future shocks and facilitating green and digital transitions.
5. Discussion
Synthesis of Space–Time Cube and Forecast Results
6. Conclusions
6.1. Synthesis of Space–Time Cube and Forecast Results
6.2. Theoretical Implications
6.3. Practical Implications
- Establishing regional exchange systems among companies, educational institutions and local governments to organise reskilling and job-matching programmes;
- Forming cross-sectoral consortia to pilot labour redeployment projects in digital and green industries;
- Implementing geographical fiscal or innovation incentives in regional innovation centres to stimulate the flow of skills and entrepreneurship.
6.4. Limitations
6.5. Further Developments
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Temporal Correlations of Granularity Indicators (Dif and Rho), NUTS2, EU27+ (2009–2020)
| Correlations | |||||||||||||||||||||||||
| Dif2009 | Dif2010 | Dif2011 | Dif2012 | Dif2013 | Dif2014 | Dif2015 | Dif2016 | Dif2017 | Dif2018 | Dif2019 | Dif2020 | Rho2009 | Rho2010 | Rho2011 | Rho2012 | Rho2013 | Rho2014 | Rho2015 | Rho2016 | Rho2017 | Rho2018 | Rho2019 | Rho2020 | ||
| Dif2009 | Pearson Correlation | 1 | 0.022 | 0.228 ** | 0.219 ** | 0.014 | −0.004 | 0.255 ** | 0.310 ** | 0.110 | 0.100 | 0.086 | −0.004 | 0.625 ** | 0.043 | −0.047 | 0.145 * | 0.102 | 0.016 | 0.052 | 0.114 | 0.115 | 0.143 * | 0.186 * | 0.028 |
| Sig. (2-tailed) | 0.732 | 0.000 | 0.001 | 0.837 | 0.948 | 0.000 | 0.000 | 0.115 | 0.153 | 0.263 | 0.958 | 0.000 | 0.502 | 0.478 | 0.027 | 0.133 | 0.810 | 0.447 | 0.101 | 0.097 | 0.040 | 0.014 | 0.711 | ||
| N | 251 | 251 | 233 | 233 | 220 | 220 | 220 | 208 | 208 | 208 | 173 | 173 | 251 | 251 | 233 | 233 | 220 | 220 | 220 | 208 | 208 | 208 | 173 | 173 | |
| Dif2010 | Pearson Correlation | 0.022 | 1 | 0.396 ** | 0.397 ** | 0.322 ** | 0.204 ** | 0.033 | 0.043 | 0.079 | −0.010 | −0.078 | 0.141 | −0.022 | 0.562 ** | 0.240 ** | 0.178 ** | 0.189 ** | 0.112 | 0.035 | 0.059 | 0.004 | −0.020 | −0.029 | 0.118 |
| Sig. (2-tailed) | 0.732 | 0.000 | 0.000 | 0.000 | 0.002 | 0.622 | 0.536 | 0.256 | 0.884 | 0.309 | 0.064 | 0.729 | 0.000 | 0.000 | 0.006 | 0.005 | 0.095 | 0.605 | 0.393 | 0.957 | 0.777 | 0.704 | 0.120 | ||
| N | 251 | 252 | 234 | 234 | 221 | 221 | 221 | 209 | 209 | 209 | 174 | 174 | 251 | 252 | 234 | 234 | 221 | 221 | 221 | 209 | 209 | 209 | 174 | 174 | |
| Dif2011 | Pearson Correlation | 0.228 ** | 0.396 ** | 1 | 0.394 ** | 0.145 * | 0.076 | 0.348 ** | 0.375 ** | 0.013 | 0.012 | −0.088 | 0.067 | 0.025 | 0.096 | 0.575 ** | 0.244 ** | 0.133 * | 0.109 | 0.154 * | 0.171 * | 0.092 | 0.071 | −0.118 | 0.034 |
| Sig. (2-tailed) | 0.000 | 0.000 | 0.000 | 0.023 | 0.235 | 0.000 | 0.000 | 0.849 | 0.865 | 0.245 | 0.373 | 0.705 | 0.142 | 0.000 | 0.000 | 0.036 | 0.086 | 0.015 | 0.012 | 0.177 | 0.299 | 0.118 | 0.652 | ||
| N | 233 | 234 | 265 | 265 | 248 | 248 | 248 | 215 | 215 | 215 | 178 | 178 | 233 | 234 | 265 | 265 | 248 | 248 | 248 | 215 | 215 | 215 | 178 | 178 | |
| Dif2012 | Pearson Correlation | 0.219 ** | 0.397 ** | 0.394 ** | 1 | 0.285 ** | 0.276 ** | 0.548 ** | 0.442 ** | 0.097 | 0.063 | −0.043 | 0.443 ** | 0.066 | 0.113 | 0.231 ** | 0.564 ** | 0.252 ** | 0.221 ** | 0.221 ** | 0.243 ** | 0.028 | 0.168 * | 0.022 | 0.262 ** |
| Sig. (2-tailed) | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.146 | 0.343 | 0.558 | 0.000 | 0.314 | 0.086 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.675 | 0.011 | 0.765 | 0.000 | ||
| N | 233 | 234 | 265 | 278 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | 233 | 234 | 265 | 278 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | |
| Dif2013 | Pearson Correlation | 0.014 | 0.322 ** | 0.145 * | 0.285 ** | 1 | 0.879 ** | 0.177 ** | 0.041 | 0.115 | 0.032 | 0.167 * | 0.384 ** | 0.099 | 0.084 | 0.014 | 0.150 * | 0.529 ** | 0.403 ** | 0.169 ** | 0.097 | 0.099 | 0.122 | 0.046 | 0.247 ** |
| Sig. (2-tailed) | 0.837 | 0.000 | 0.023 | 0.000 | 0.000 | 0.004 | 0.542 | 0.084 | 0.633 | 0.021 | 0.000 | 0.143 | 0.216 | 0.823 | 0.015 | 0.000 | 0.000 | 0.006 | 0.143 | 0.138 | 0.066 | 0.528 | 0.001 | ||
| N | 220 | 221 | 248 | 261 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | 220 | 221 | 248 | 261 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | |
| Dif2014 | Pearson Correlation | −0.004 | 0.204 ** | 0.076 | 0.276 ** | 0.879 ** | 1 | 0.249 ** | 0.004 | −0.090 | −0.180 ** | 0.263 ** | 0.316 ** | 0.095 | 0.051 | −0.009 | 0.144 * | 0.410 ** | 0.531 ** | 0.166 ** | 0.067 | 0.085 | 0.074 | 0.138 | 0.253 ** |
| Sig. (2-tailed) | 0.948 | 0.002 | 0.235 | 0.000 | 0.000 | 0.000 | 0.956 | 0.161 | 0.005 | 0.000 | 0.000 | 0.160 | 0.449 | 0.882 | 0.020 | 0.000 | 0.000 | 0.005 | 0.295 | 0.186 | 0.247 | 0.051 | 0.000 | ||
| N | 220 | 221 | 248 | 261 | 261 | 281 | 281 | 244 | 244 | 244 | 201 | 201 | 220 | 221 | 248 | 261 | 261 | 281 | 281 | 244 | 244 | 244 | 201 | 201 | |
| Dif2015 | Pearson Correlation | 0.255 ** | 0.033 | 0.348 ** | 0.548 ** | 0.177 ** | 0.249 ** | 1 | 0.574 ** | 0.153 * | 0.079 | 0.253 ** | 0.045 | 0.035 | 0.048 | 0.131 * | 0.259 ** | 0.176 ** | 0.238 ** | 0.548 ** | 0.264 ** | 0.148 * | 0.172 ** | 0.123 | 0.123 |
| Sig. (2-tailed) | 0.000 | 0.622 | 0.000 | 0.000 | 0.004 | 0.000 | 0.000 | 0.016 | 0.217 | 0.000 | 0.526 | 0.610 | 0.475 | 0.039 | 0.000 | 0.004 | 0.000 | 0.000 | 0.000 | 0.020 | 0.007 | 0.081 | 0.082 | ||
| N | 220 | 221 | 248 | 261 | 261 | 281 | 284 | 247 | 247 | 247 | 202 | 202 | 220 | 221 | 248 | 261 | 261 | 281 | 284 | 247 | 247 | 247 | 202 | 202 | |
| Dif2016 | Pearson Correlation | 0.310 ** | 0.043 | 0.375 ** | 0.442 ** | 0.041 | 0.004 | 0.574 ** | 1 | 0.457 ** | 0.316 ** | 0.026 | 0.126 | 0.029 | 0.038 | 0.201 ** | 0.209 ** | 0.085 | 0.086 | 0.276 ** | 0.482 ** | 0.332 ** | 0.119 | 0.018 | 0.095 |
| Sig. (2-tailed) | 0.000 | 0.536 | 0.000 | 0.000 | 0.542 | 0.956 | 0.000 | 0.000 | 0.000 | 0.717 | 0.073 | 0.683 | 0.580 | 0.003 | 0.001 | 0.199 | 0.180 | 0.000 | 0.000 | 0.000 | 0.062 | 0.794 | 0.181 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 248 | 248 | 202 | 202 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 248 | 248 | 202 | 202 | |
| Dif2017 | Pearson Correlation | 0.110 | 0.079 | 0.013 | 0.097 | 0.115 | −0.090 | 0.153 * | 0.457 ** | 1 | 0.931 ** | 0.313 ** | 0.204 ** | 0.020 | 0.064 | 0.087 | 0.151 * | 0.185 ** | 0.075 | 0.184 ** | 0.244 ** | 0.446 ** | 0.296 ** | 0.082 | 0.190 ** |
| Sig. (2-tailed) | 0.115 | 0.256 | 0.849 | 0.146 | 0.084 | 0.161 | 0.016 | 0.000 | 0.000 | 0.000 | 0.001 | 0.775 | 0.358 | 0.204 | 0.023 | 0.005 | 0.244 | 0.004 | 0.000 | 0.000 | 0.000 | 0.207 | 0.003 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | |
| Dif2018 | Pearson Correlation | 0.100 | −0.010 | 0.012 | 0.063 | 0.032 | −0.180 ** | 0.079 | 0.316 ** | 0.931 ** | 1 | 0.368 ** | 0.176 ** | 0.097 | −0.135 | 0.102 | 0.100 | 0.126 | −0.003 | 0.086 | 0.125 * | 0.294 ** | 0.366 ** | 0.008 | 0.098 |
| Sig. (2-tailed) | 0.153 | 0.884 | 0.865 | 0.343 | 0.633 | 0.005 | 0.217 | 0.000 | 0.000 | 0.000 | 0.006 | 0.162 | 0.051 | 0.137 | 0.132 | 0.058 | 0.963 | 0.178 | 0.049 | 0.000 | 0.000 | 0.904 | 0.131 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | |
| Dif2019 | Pearson Correlation | 0.086 | −0.078 | −0.088 | −0.043 | 0.167 * | 0.263 ** | 0.253 ** | 0.026 | 0.313 ** | 0.368 ** | 1 | 0.414 ** | 0.118 | 0.018 | −0.013 | 0.078 | 0.216 ** | 0.241 ** | 0.201 ** | 0.085 | 0.199 ** | 0.201 ** | 0.341 ** | 0.257 ** |
| Sig. (2-tailed) | 0.263 | 0.309 | 0.245 | 0.558 | 0.021 | 0.000 | 0.000 | 0.717 | 0.000 | 0.000 | 0.000 | 0.122 | 0.816 | 0.865 | 0.285 | 0.003 | 0.001 | 0.004 | 0.229 | 0.002 | 0.002 | 0.000 | 0.000 | ||
| N | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 241 | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 241 | |
| Dif2020 | Pearson Correlation | −0.004 | 0.141 | 0.067 | 0.443 ** | 0.384 ** | 0.316 ** | 0.045 | 0.126 | 0.204 ** | 0.176 ** | 0.414 ** | 1 | 0.110 | 0.087 | 0.072 | 0.308 ** | 0.317 ** | 0.274 ** | 0.202 ** | 0.235 ** | 0.177 ** | 0.171 ** | 0.173 ** | 0.080 |
| Sig. (2-tailed) | 0.958 | 0.064 | 0.373 | 0.000 | 0.000 | 0.000 | 0.526 | 0.073 | 0.001 | 0.006 | 0.000 | 0.151 | 0.251 | 0.339 | 0.000 | 0.000 | 0.000 | 0.004 | 0.001 | 0.006 | 0.008 | 0.007 | 0.210 | ||
| N | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 249 | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 249 | |
| Rho2009 | Pearson Correlation | 0.625 ** | −0.022 | 0.025 | 0.066 | 0.099 | 0.095 | 0.035 | 0.029 | 0.020 | 0.097 | 0.118 | 0.110 | 1 | −0.083 | −0.082 | 0.111 | 0.162 * | 0.099 | −0.029 | 0.135 | −0.016 | 0.143 * | 0.088 | 0.054 |
| Sig. (2-tailed) | 0.000 | 0.729 | 0.705 | 0.314 | 0.143 | 0.160 | 0.610 | 0.683 | 0.775 | 0.162 | 0.122 | 0.151 | 0.188 | 0.211 | 0.092 | 0.016 | 0.143 | 0.671 | 0.052 | 0.813 | 0.039 | 0.251 | 0.478 | ||
| N | 251 | 251 | 233 | 233 | 220 | 220 | 220 | 208 | 208 | 208 | 173 | 173 | 251 | 251 | 233 | 233 | 220 | 220 | 220 | 208 | 208 | 208 | 173 | 173 | |
| Rho2010 | Pearson Correlation | 0.043 | 0.562 ** | 0.096 | 0.113 | 0.084 | 0.051 | 0.048 | 0.038 | 0.064 | −0.135 | 0.018 | 0.087 | −0.083 | 1 | −0.020 | −0.008 | 0.069 | 0.040 | 0.027 | −0.007 | 0.045 | −0.068 | 0.042 | 0.114 |
| Sig. (2-tailed) | 0.502 | 0.000 | 0.142 | 0.086 | 0.216 | 0.449 | 0.475 | 0.580 | 0.358 | 0.051 | 0.816 | 0.251 | 0.188 | 0.756 | 0.900 | 0.306 | 0.552 | 0.691 | 0.923 | 0.517 | 0.329 | 0.584 | 0.133 | ||
| N | 251 | 252 | 234 | 234 | 221 | 221 | 221 | 209 | 209 | 209 | 174 | 174 | 251 | 252 | 234 | 234 | 221 | 221 | 221 | 209 | 209 | 209 | 174 | 174 | |
| Rho2011 | Pearson Correlation | −0.047 | 0.240 ** | 0.575 ** | 0.231 ** | 0.014 | −0.009 | 0.131 * | 0.201 ** | 0.087 | 0.102 | −0.013 | 0.072 | −0.082 | −0.020 | 1 | 0.244 ** | 0.040 | 0.126 * | 0.069 | 0.066 | 0.080 | 0.070 | −0.094 | −0.012 |
| Sig. (2-tailed) | 0.478 | 0.000 | 0.000 | 0.000 | 0.823 | 0.882 | 0.039 | 0.003 | 0.204 | 0.137 | 0.865 | 0.339 | 0.211 | 0.756 | 0.000 | 0.535 | 0.047 | 0.277 | 0.336 | 0.241 | 0.308 | 0.213 | 0.873 | ||
| N | 233 | 234 | 265 | 265 | 248 | 248 | 248 | 215 | 215 | 215 | 178 | 178 | 233 | 234 | 265 | 265 | 248 | 248 | 248 | 215 | 215 | 215 | 178 | 178 | |
| Rho2012 | Pearson Correlation | 0.145 * | 0.178 ** | 0.244 ** | 0.564 ** | 0.150 * | 0.144 * | 0.259 ** | 0.209 ** | 0.151 * | 0.100 | 0.078 | 0.308 ** | 0.111 | −0.008 | 0.244 ** | 1 | 0.247 ** | 0.274 ** | 0.118 | 0.171 ** | 0.079 | 0.234 ** | 0.058 | 0.167 * |
| Sig. (2-tailed) | 0.027 | 0.006 | 0.000 | 0.000 | 0.015 | 0.020 | 0.000 | 0.001 | 0.023 | 0.132 | 0.285 | 0.000 | 0.092 | 0.900 | 0.000 | 0.000 | 0.000 | 0.056 | 0.010 | 0.235 | 0.000 | 0.430 | 0.022 | ||
| N | 233 | 234 | 265 | 278 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | 233 | 234 | 265 | 278 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | |
| Rho2013 | Pearson Correlation | 0.102 | 0.189 ** | 0.133 * | 0.252 ** | 0.529 ** | 0.410 ** | 0.176 ** | 0.085 | 0.185 ** | 0.126 | 0.216 ** | 0.317 ** | 0.162 * | 0.069 | 0.040 | 0.247 ** | 1 | 0.435 ** | 0.174 ** | 0.226 ** | 0.209 ** | 0.304 ** | 0.096 | 0.302 ** |
| Sig. (2-tailed) | 0.133 | 0.005 | 0.036 | 0.000 | 0.000 | 0.000 | 0.004 | 0.199 | 0.005 | 0.058 | 0.003 | 0.000 | 0.016 | 0.306 | 0.535 | 0.000 | 0.000 | 0.005 | 0.001 | 0.002 | 0.000 | 0.186 | 0.000 | ||
| N | 220 | 221 | 248 | 261 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | 220 | 221 | 248 | 261 | 261 | 261 | 261 | 228 | 228 | 228 | 190 | 190 | |
| Rho2014 | Pearson Correlation | 0.016 | 0.112 | 0.109 | 0.221 ** | 0.403 ** | 0.531 ** | 0.238 ** | 0.086 | 0.075 | −0.003 | 0.241 ** | 0.274 ** | 0.099 | 0.040 | 0.126 * | 0.274 ** | 0.435 ** | 1 | 0.175 ** | 0.128 * | 0.256 ** | 0.179 ** | 0.115 | 0.318 ** |
| Sig. (2-tailed) | 0.810 | 0.095 | 0.086 | 0.000 | 0.000 | 0.000 | 0.000 | 0.180 | 0.244 | 0.963 | 0.001 | 0.000 | 0.143 | 0.552 | 0.047 | 0.000 | 0.000 | 0.003 | 0.046 | 0.000 | 0.005 | 0.105 | 0.000 | ||
| N | 220 | 221 | 248 | 261 | 261 | 281 | 281 | 244 | 244 | 244 | 201 | 201 | 220 | 221 | 248 | 261 | 261 | 281 | 281 | 244 | 244 | 244 | 201 | 201 | |
| Rho2015 | Pearson Correlation | 0.052 | 0.035 | 0.154 * | 0.221 ** | 0.169 ** | 0.166 ** | 0.548 ** | 0.276 ** | 0.184 ** | 0.086 | 0.201 ** | 0.202 ** | −0.029 | 0.027 | 0.069 | 0.118 | 0.174 ** | 0.175 ** | 1 | 0.222 ** | 0.213 ** | 0.118 | 0.096 | 0.337 ** |
| Sig. (2-tailed) | 0.447 | 0.605 | 0.015 | 0.000 | 0.006 | 0.005 | 0.000 | 0.000 | 0.004 | 0.178 | 0.004 | 0.004 | 0.671 | 0.691 | 0.277 | 0.056 | 0.005 | 0.003 | 0.000 | 0.001 | 0.063 | 0.176 | 0.000 | ||
| N | 220 | 221 | 248 | 261 | 261 | 281 | 284 | 247 | 247 | 247 | 202 | 202 | 220 | 221 | 248 | 261 | 261 | 281 | 284 | 247 | 247 | 247 | 202 | 202 | |
| Rho2016 | Pearson Correlation | 0.114 | 0.059 | 0.171 * | 0.243 ** | 0.097 | 0.067 | 0.264 ** | 0.482 ** | 0.244 ** | 0.125 * | 0.085 | 0.235 ** | 0.135 | −0.007 | 0.066 | 0.171 ** | 0.226 ** | 0.128 * | 0.222 ** | 1 | 0.447 ** | 0.178 ** | 0.041 | 0.230 ** |
| Sig. (2-tailed) | 0.101 | 0.393 | 0.012 | 0.000 | 0.143 | 0.295 | 0.000 | 0.000 | 0.000 | 0.049 | 0.229 | 0.001 | 0.052 | 0.923 | 0.336 | 0.010 | 0.001 | 0.046 | 0.000 | 0.000 | 0.005 | 0.561 | 0.001 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 248 | 248 | 202 | 202 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 248 | 248 | 202 | 202 | |
| Rho2017 | Pearson Correlation | 0.115 | 0.004 | 0.092 | 0.028 | 0.099 | 0.085 | 0.148 * | 0.332 ** | 0.446 ** | 0.294 ** | 0.199 ** | 0.177 ** | −0.016 | 0.045 | 0.080 | 0.079 | 0.209 ** | 0.256 ** | 0.213 ** | 0.447 ** | 1 | 0.338 ** | 0.210 ** | 0.229 ** |
| Sig. (2-tailed) | 0.097 | 0.957 | 0.177 | 0.675 | 0.138 | 0.186 | 0.020 | 0.000 | 0.000 | 0.000 | 0.002 | 0.006 | 0.813 | 0.517 | 0.241 | 0.235 | 0.002 | 0.000 | 0.001 | 0.000 | 0.000 | 0.001 | 0.000 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | |
| Rho2018 | Pearson Correlation | 0.143 * | −0.020 | 0.071 | 0.168 * | 0.122 | 0.074 | 0.172 ** | 0.119 | 0.296 ** | 0.366 ** | 0.201 ** | 0.171 ** | 0.143 * | −0.068 | 0.070 | 0.234 ** | 0.304 ** | 0.179 ** | 0.118 | 0.178 ** | 0.338 ** | 1 | 0.230 ** | 0.216 ** |
| Sig. (2-tailed) | 0.040 | 0.777 | 0.299 | 0.011 | 0.066 | 0.247 | 0.007 | 0.062 | 0.000 | 0.000 | 0.002 | 0.008 | 0.039 | 0.329 | 0.308 | 0.000 | 0.000 | 0.005 | 0.063 | 0.005 | 0.000 | 0.000 | 0.001 | ||
| N | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | 208 | 209 | 215 | 228 | 228 | 244 | 247 | 248 | 290 | 290 | 241 | 241 | |
| Rho2019 | Pearson Correlation | 0.186 * | −0.029 | −0.118 | 0.022 | 0.046 | 0.138 | 0.123 | 0.018 | 0.082 | 0.008 | 0.341 ** | 0.173 ** | 0.088 | 0.042 | −0.094 | 0.058 | 0.096 | 0.115 | 0.096 | 0.041 | 0.210 ** | 0.230 ** | 1 | 0.245 ** |
| Sig. (2-tailed) | 0.014 | 0.704 | 0.118 | 0.765 | 0.528 | 0.051 | 0.081 | 0.794 | 0.207 | 0.904 | 0.000 | 0.007 | 0.251 | 0.584 | 0.213 | 0.430 | 0.186 | 0.105 | 0.176 | 0.561 | 0.001 | 0.000 | 0.000 | ||
| N | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 241 | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 241 | |
| Rho2020 | Pearson Correlation | 0.028 | 0.118 | 0.034 | 0.262 ** | 0.247 ** | 0.253 ** | 0.123 | 0.095 | 0.190 ** | 0.098 | 0.257 ** | 0.080 | 0.054 | 0.114 | −0.012 | 0.167 * | 0.302 ** | 0.318 ** | 0.337 ** | 0.230 ** | 0.229 ** | 0.216 ** | 0.245 ** | 1 |
| Sig. (2-tailed) | 0.711 | 0.120 | 0.652 | 0.000 | 0.001 | 0.000 | 0.082 | 0.181 | 0.003 | 0.131 | 0.000 | 0.210 | 0.478 | 0.133 | 0.873 | 0.022 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000 | ||
| N | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 249 | 173 | 174 | 178 | 190 | 190 | 201 | 202 | 202 | 241 | 241 | 241 | 249 | |
| ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed). | |||||||||||||||||||||||||
| Year | Variable | Mean | 95% CI (Lower–Upper) | Median | Variance | Std. Dev. | Skewness | Kurtosis | Min | Max | N |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 2009 | Dif | −0.004 | −0.013–0.004 | 0.009 | 0.003 | 0.056 | −3.146 | 10.326 | −0.263 | 0.091 | 251 |
| Rho | 1.415 | 1.300–1.530 | 1.303 | 0.586 | 0.765 | 2.254 | 9.201 | 0.149 | 5.482 | 251 | |
| 2010 | Dif | 0.009 | 0.002–0.016 | 0.011 | 0.002 | 0.049 | −3.262 | 14.774 | −0.275 | 0.097 | 252 |
| Rho | 1.971 | 1.755–2.187 | 1.583 | 2.07 | 1.439 | 2.672 | 9.138 | 0.149 | 9.091 | 252 | |
| 2011 | Dif | −0.001 | −0.009–0.006 | 0.01 | 0.002 | 0.049 | −3.906 | 18.773 | −0.324 | 0.073 | 265 |
| Rho | 1.659 | 1.536–1.782 | 1.587 | 0.672 | 0.82 | 1.427 | 6.21 | 0.062 | 6.185 | 265 | |
| 2012 | Dif | 0.002 | −0.006–0.009 | 0.01 | 0.002 | 0.048 | −4.877 | 24.519 | −0.305 | 0.044 | 278 |
| Rho | 1.828 | 1.720–1.937 | 1.72 | 0.522 | 0.723 | 0.749 | 3.459 | 0.08 | 5.277 | 278 | |
| 2013 | Dif | 0.002 | −0.005–0.009 | 0.01 | 0.002 | 0.045 | −5.726 | 34.878 | −0.321 | 0.039 | 261 |
| Rho | 1.626 | 1.543–1.710 | 1.582 | 0.31 | 0.557 | 0.273 | 2.765 | 0.083 | 3.975 | 261 | |
| 2014 | Dif | 0.005 | −0.002–0.011 | 0.01 | 0.002 | 0.041 | −5.074 | 30.501 | −0.299 | 0.097 | 281 |
| Rho | 1.734 | 1.638–1.831 | 1.655 | 0.415 | 0.644 | 0.295 | 1.06 | 0.094 | 3.8 | 281 | |
| 2015 | Dif | 0.005 | 0.000–0.010 | 0.009 | 0.001 | 0.032 | −6.723 | 51.603 | −0.287 | 0.033 | 284 |
| Rho | 1.721 | 1.631–1.811 | 1.669 | 0.357 | 0.597 | 0.806 | 4.019 | 0.113 | 4.665 | 284 | |
| 2016 | Dif | 0.008 | 0.004–0.013 | 0.01 | 0.001 | 0.029 | −6.752 | 57.657 | −0.273 | 0.071 | 248 |
| Rho | 1.767 | 1.670–1.864 | 1.642 | 0.421 | 0.649 | 1.122 | 3.672 | 0.089 | 4.86 | 248 | |
| 2017 | Dif | 0.006 | 0.003–0.010 | 0.009 | 0.001 | 0.023 | −4.488 | 25.888 | −0.155 | 0.081 | 290 |
| Rho | 1.808 | 1.712–1.904 | 1.761 | 0.412 | 0.642 | 0.738 | 2.682 | 0.169 | 4.7 | 290 | |
| 2018 | Dif | 0.013 | 0.011–0.014 | 0.01 | 0 | 0.01 | 1.659 | 6.364 | −0.023 | 0.066 | 290 |
| Rho | 1.863 | 1.765–1.962 | 1.771 | 0.427 | 0.654 | 2.647 | 10.745 | 0.562 | 5.649 | 290 | |
| 2019 | Dif | 0.007 | 0.004–0.010 | 0.008 | 0 | 0.02 | −5.271 | 34.489 | −0.127 | 0.073 | 241 |
| Rho | 1.808 | 1.691–1.925 | 1.662 | 0.608 | 0.779 | 3.694 | 27.752 | 0.132 | 8.289 | 241 | |
| 2020 | Dif | 0.004 | −0.001–0.009 | 0.008 | 0.001 | 0.032 | −5.189 | 30.942 | −0.239 | 0.052 | 249 |
| Rho | 1.454 | 1.384–1.524 | 1.4 | 0.219 | 0.468 | 0.791 | 3.942 | 0.143 | 3.422 | 249 |
References
- Filippetti, A.; Gkotsis, P.; Vezzani, A.; Zinilli, A. Are innovative regions more resilient? Evidence from Europe in 2008–2016. Econ. Politics 2020, 37, 807–832. [Google Scholar] [CrossRef]
- Braunerhjelm, P.; Ding, D.; Thulin, P. Labour market mobility, knowledge diffusion and innovation. Eur. Econ. Rev. 2020, 123, 103386. [Google Scholar] [CrossRef]
- Palan, N. Measurement of Specialization: The Choice of Indices; Research Centre International Economics: Vienna, Austria, 2010; Available online: https://hdl.handle.net/10419/121065 (accessed on 31 August 2025).
- Jarosch, G.; Nimczik, J.S.; Sorkin, I. Granular search, market structure, and wages. Rev. Econ. Stud. 2024, 91, 3569–3607. [Google Scholar] [CrossRef]
- Lincaru, C.; Badea, F.; Pîrciog, S.; Grigorescu, A.; Badea, S.I.; Badea, C.R. An Overview About Mechanics Developments and Achievements in the Context of Industry 4.0. Lect. Notes Netw. Syst. 2023, 762, 17–41. [Google Scholar] [CrossRef]
- Karayalcin, C.; Pintea, M. The role of productivity, transportation costs, and barriers to intersectoral mobility in structural transformation. Econ. Model. 2022, 108, 105759. [Google Scholar] [CrossRef]
- OECD. Regions in Industrial Transition 2023: New Approaches to Persistent Problems. OECD Regional Development Studies; OECD Publishing: Paris, France, 2023. [Google Scholar] [CrossRef]
- Tondro, M.; Jahanbakth, M.; Ozay, D. Exploring the role of information technology and digital innovation in socio-economic development: A case study of startup and home-based businesses. IEEE Access 2025, 13, 155064–155083. [Google Scholar] [CrossRef]
- Eurofound; European Commission Joint Research Centre. Regional Employment Change and the Geography of Telework in Europe; Publications Office of the European Union: Luxembourg, 2024; Available online: https://www.eurofound.europa.eu/en/publications/all/regional-employment-change-and-geography-telework-europe#overview (accessed on 31 August 2025).
- Lundvall, B.-Å.; Johnson, B. The Learning Economy. J. Ind. Stud. 1994, 1, 23–42. [Google Scholar] [CrossRef]
- Horta, H.; Jung, J.; Santos, J.M. Mobility and Research Performance of Academics in City-Based Higher Education Systems. High. Educ. Policy 2020, 33, 437–458. [Google Scholar] [CrossRef]
- ESRI Space-Time Pattern Mining Toolbox—ArcGIS Pro. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining (accessed on 25 May 2025).
- Hyndman, R.J.; Athanasopoulos, G. Forecasting: Principles and Practice, 3rd ed.; Otexts: Melbourne, Australia, 2021; Available online: https://otexts.com/fpp3/ (accessed on 25 May 2025).
- Eurostat. Structural Business Statistics (SBS)—Data by NUTS 2 Region and NACE Rev.2 (2008–2020). Dataset Code: Sbs_r_nuts06_r2. Available online: https://ec.europa.eu/eurostat/web/structural-business-statistics (accessed on 31 August 2025).
- Eurostat. Structural Business Statistics (SBS)—ESMS Metadata. Eurostat Metadata Repository. Available online: https://www.dst.dk/Site/Dst/SingleFiles/GetArchiveFile.aspx?fi=587987066&fo=0&ext=ukraine (accessed on 31 August 2025).
- Eurostat. Structural Business Statistics—Variable Codes (V16110 = Persons Employed). Available online: https://ec.europa.eu/eurostat (accessed on 31 August 2025).
- European Commission. NACE Rev.2—Statistical Classification of Economic Activities in the European Community. Regulation (EC) No. 1893/2006; Publications Office of the EU: Luxembourg, 2008. [Google Scholar]
- Duncan, O.D.; Duncan, B. A methodological analysis of segregation indexes. Am. Sociol. Rev. 1955, 20, 210–217. [Google Scholar] [CrossRef]
- Shorrocks, A.F. The measurement of mobility. Econometrica 1978, 46, 1013–1024. [Google Scholar] [CrossRef]
- Connolly, E.; Lewis, C. Structural Change in the Australian Economy. RBA Bull. 2010, 1–9. Available online: https://econpapers.repec.org/article/rbarbabul/sep2010-01.htm (accessed on 31 August 2025).
- Productivity Commission. Aspects of Structural Change in Australia; Productivity Commission: Canberra, Australia, 1998; Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=324624 (accessed on 31 August 2025).
- Trofimov, I.D. The effects of structural change on economic growth: A panel data analysis. Panoeconomicus 2023, 10, 1–43. [Google Scholar] [CrossRef]
- Harris, J.R.; Todaro, M.P. Migration, unemployment and development: A two-sector analysis. Am. Econ. Rev. 1970, 60, 126–142. [Google Scholar]
- Becker, G.S. Human Capital: A Theoretical and Empirical Analysis, with Special Reference to Education, 2nd ed.; National Bureau of Economic Research: New York, NY, USA, 1975. [Google Scholar]
- Doeringer, P.B.; Piore, M.J. Internal Labor Markets and Manpower Analysis; Lexington Books: Lanham, MD, USA, 1971. [Google Scholar] [CrossRef]
- Reich, M.; Gordon, D.M.; Edwards, R.C. A theory of labor market segmentation. Am. Econ. Rev. 1973, 63, 359–365. [Google Scholar]
- Foster-McGregor, N.; Nomaler, Ö.; Verspagen, B. Job automation risk, economic structure and trade: A European perspective. Res. Policy 2021, 50, 104269. [Google Scholar] [CrossRef]
- Foster-McGregor, N.; Verspagen, B. The role of structural change in the economic development of Asian economies. Asian Dev. Rev. 2016, 33, 74–93. [Google Scholar] [CrossRef]
- Krugman, P. Geography and Trade; MIT Press: Cambridge, MA, USA, 1991. [Google Scholar]
- Sassen, S. The Mobility of Labor and Capital: A Study in International Investment and Labor Flow; Cambridge University Press: Cambridge, UK, 1988. [Google Scholar]
- Dietrich, A. Does growth cause structural change, or is it the other way around? A dynamic panel data analysis for seven OECD countries. Empir. Econ. 2012, 43, 915–944. [Google Scholar] [CrossRef]
- Straulino, D.; Diodato, D.; O’Clery, N. Economic Crisis Accelerates Urban Structural Change via Inter-Sectoral Labour Mobility (JRC Working Papers on Territorial Development and Inter-Regional Dynamics No. 04/2022); European Commission: Brussels, Belgium, 2022; Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC129110 (accessed on 31 August 2025).
- Herrendorf, B.; Rogerson, R.; Valentinyi, Á. Growth structural transformation. In Handbook of Economic Growth; Aghion, P., Durlauf, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 2, pp. 855–941. [Google Scholar] [CrossRef]
- Barca, F.; McCann, P.; Rodríguez-Pose, A. The case for regional development intervention: Place-based versus place-neutral approaches. J. Reg. Sci. 2012, 52, 134–152. [Google Scholar] [CrossRef]
- Lilien, D.M. Sectoral shifts and cyclical unemployment. J. Polit. Econ. 1982, 90, 777–793. [Google Scholar] [CrossRef]
- Rousseau, P.L.; Wachtel, P. What is happening to the impact of financial deepening on economic growth? Econ. Inq. 2011, 49, 276–288. [Google Scholar] [CrossRef]
- ESRI. How Time Series Clustering Works—ArcGIS Pro. Available online: https://pro.arcgis.com/en/pro-app/latest/tool-reference/space-time-pattern-mining/learnmoretimeseriesclustering.htm (accessed on 13 September 2025).
- Mitra, D.; Ranjan, P. Offshoring and unemployment: The role of search frictions labor mobility. J. Int. Econ. 2010, 81, 219–229. [Google Scholar] [CrossRef]
- Katayama, M.; Kim, K.H. Intersectoral Labor Immobility, Sectoral Comovement, and News Shocks. J. Money Credit Bank. 2018, 50, 77–114. [Google Scholar] [CrossRef]
- Vakulenko, E.S. Comparative analysis of interregional and intersectoral mobility in Russia. Econ. Reg. 2020, 16, 1193–1207. [Google Scholar] [CrossRef]
- Colburn, C.; Zhou, H. Land Endowment, Intersectoral Labor Mobility, and Economic Geography. Atl. Econ. J. 2010, 38, 429–441. [Google Scholar] [CrossRef]
- Pratiwi, E.D.; Ashar, K.; Syafitri, W. Intersectoral Labor Mobility in Indonesia; Atlantis Press: Paris, France, 2020. [Google Scholar] [CrossRef]
- Hartal, S.; Kourtit, K.; Carmen Pascariu, G. Spatial labour markets and resilience of cities and regions: A critical review. Reg. Stud. 2023, 57, 2359–2372. [Google Scholar] [CrossRef]
- Jahanbakht, M.; Ahmadi, F. Empirical assessment of external enablers on new venture creation: The effect of technologies and non-technological change in Iran digital entrepreneurship. J. Entrep. Emerg. Econ. 2025, 17, 819–850. [Google Scholar] [CrossRef]
- Roumboutsos, A.; Pagoni, I.; Tsirimpa, A.; Polydoropoulou, A. An Ecosystem Innovation Framework: Assessing Mobility as a Service in Budapest. Sustainability 2021, 13, 3753. [Google Scholar] [CrossRef]
- Zhang, M.; Cheng, R.; Fei, J.; Khanal, R. Enhancing Digital Innovation Ecosystem Resilience through the Interplay of Organizational, Technological, and Environmental Factors: A Study of 31 Provinces in China Using NCA and fsQCA. Sustainability 2024, 16, 1946. [Google Scholar] [CrossRef]
- Alfano, V.; Gaeta, G.; Pinto, M. Non-academic employment and matching satisfaction among PhD graduates with high intersectoral mobility potential. Int. J. Manpow. 2021, 42, 1202–1223. [Google Scholar] [CrossRef]
- Finkel, M.K.; Grøn, C.H.; Hughes, M.M. Moving on Up? Effects of Leadership Training and Intersectoral Mobility on Women’s Advancement in Danish Public Administration Management. Rev. Public Pers. Adm. 2023, 43, 215–238. [Google Scholar] [CrossRef]
- Zheng, X.; Cai, Y. Transforming innovation systems into innovation ecosystems: The role of public policy. Sustainability 2022, 14, 7520. [Google Scholar] [CrossRef]
- Rodrik, D. Premature deindustrialization. J. Econ. Growth 2016, 21, 1–33. [Google Scholar] [CrossRef]
- European Commission. A Strong Social Europe for Just Transitions; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Tohmo, T.; Viinikainen, J. Does intersectoral labour mobility pay for academics? Scientometrics 2017, 113, 83–103. [Google Scholar] [CrossRef]
- Millard, D. Blended and co-existing worlds in intersectoral mobilities of European PhD graduates in the social sciences and humanities. Glob. Soc. Educ. 2018, 16, 224–240. [Google Scholar] [CrossRef]
- Reveiu, A.; Vasilescu, M.D.; Banica, A. Digital divide across the European Union and labour market resilience. Reg. Stud. 2023, 57, 2391–2405. [Google Scholar] [CrossRef]
- Eurostat. Correspondence Table Between NACE Rev. 2 and NACE Rev. 2.1. Available online: https://ec.europa.eu/eurostat/web/nace/correspondence-tables (accessed on 31 August 2025).
- Eurostat. Overview—NACE Rev.2 (2008–2024); NACE Rev.2.1 (from 2025). Available online: https://ec.europa.eu/eurostat (accessed on 31 August 2025).
- Cheng, T.; Adepeju, M. Modifiable temporal unit problem (MTUP) and its effect on space-time cluster detection. PLoS ONE 2014, 9, e100465. [Google Scholar] [CrossRef] [PubMed]
- OECD. OECD Regions and Cities at a Glance 2022; OECD Publishing: Paris, France, 2022. [Google Scholar] [CrossRef]
- European Commission. Employment and Social Developments in Europe 2021; Publications Office of the European Union: Luxembourg, 2021; Available online: https://op.europa.eu/en/publication-detail/-/publication/e823d46f-e518-11eb-a1a5-01aa75ed71a1 (accessed on 31 August 2025).
- OECD. OECD Regions and Cities at a Glance 2024; OECD Publishing: Paris, France, 2024. [Google Scholar] [CrossRef]
- European Commission. Regional Innovation Scoreboard 2025; Publications Office of the European Union: Luxembourg, 2025; Available online: https://research-and-innovation.ec.europa.eu/statistics/performance-indicators/regional-innovation-scoreboard_en (accessed on 25 October 2025).
- Eurostat. Structural Business Statistics (SBS)—Methodology and Data Coverage. 2024. Available online: https://ec.europa.eu/eurostat/web/structural-business-statistics (accessed on 25 October 2025).
- European Central Bank. Euro Area Labour Markets and the Crisis (Occasional Paper No. 177). 2016. Available online: https://www.ecb.europa.eu/pub/pdf/scpops/ecbop177.en.pdf (accessed on 31 August 2025).
- Taleb, N.N. The Black Swan: The Impact of the Highly Improbable; Random House: New York, NY, USA, 2010. [Google Scholar]
- Baldwin, R.; Weder di Mauro, B. Economics in the Time of COVID-19; CEPR Press: London, UK, 2020; Available online: https://cepr.org/publications/books-and-reports/economics-time-covid-19 (accessed on 31 August 2025).
- Bloom, N. Fluctuations in Uncertainty. J. Econ. Perspect. 2014, 28, 153–176. [Google Scholar] [CrossRef]
- Adão, R.; Kolesár, M.; Morales, E. Shift-Share Designs: Theory and Inference. Q. J. Econ. 2019, 135, 1949–2010. [Google Scholar] [CrossRef]








| Year | Dif Min | Dif Max | Dif Mean | Dif Stdev | Rho Min | Rho Max | Rho Mean | Rho Stdev |
|---|---|---|---|---|---|---|---|---|
| 2009 | −0.263 | 0.091 | −0.002 | 0.053 | 0.149 | 5.482 | 1.430 | 0.709 |
| 2010 | −0.275 | 0.097 | 0.013 | 0.042 | 0.149 | 9.091 | 1.941 | 1.234 |
| 2011 | −0.458 | 0.086 | 0.007 | 0.052 | 0.062 | 6.185 | 1.764 | 0.769 |
| 2012 | −0.305 | 0.087 | 0.009 | 0.043 | 0.080 | 5.277 | 1.880 | 0.691 |
| 2013 | −0.398 | 0.047 | 0.005 | 0.051 | 0.083 | 3.975 | 1.716 | 0.590 |
| 2014 | −0.403 | 0.241 | 0.010 | 0.051 | 0.094 | 4.491 | 1.810 | 0.677 |
| 2015 | −0.287 | 0.099 | 0.010 | 0.030 | 0.113 | 6.811 | 1.819 | 0.752 |
| 2016 | −0.273 | 0.071 | 0.010 | 0.028 | 0.089 | 4.860 | 1.759 | 0.640 |
| 2017 | −0.784 | 0.164 | 0.005 | 0.067 | 0.169 | 8.459 | 1.807 | 0.773 |
| 2018 | −0.663 | 0.129 | 0.011 | 0.060 | 0.166 | 6.604 | 1.944 | 0.807 |
| 2019 | −0.679 | 0.085 | 0.004 | 0.057 | 0.132 | 8.289 | 1.885 | 0.844 |
| 2020 | −0.255 | 0.070 | 0.002 | 0.043 | 0.137 | 55,100.000 | 222.771 | 3491.726 |
| Research Question (RQ) | Hypothesis (H) | Answer (Based on Results) | Instrument/Method |
|---|---|---|---|
| RQ1. Variation and distribution of MI across NUTS-2 regions (2008–2020). | H1a (distribution): MI distributions are non-normal, positively skewed and heavy-tailed, with outlier regions driving structural change during crises. | Confirmed: Both MI-1d and MI-2d deviate significantly from normality (p < 0.001), exhibiting positive skewness and heavy tails. Peaks occur in 2009–2011 and 2020, consistent with crisis-induced restructuring. | Descriptive statistics (Skewness, Kurtosis), K-S and Shapiro–Wilk tests |
| H1b (trend): At the EU NUTS-2 level, MI shows a statistically significant downward trend (2009–2020), indicating progressive structural rigidification. | Confirmed: The space–time trend test yields a statistic of −2.67 (p = 0.0075), indicating declining mobility and gradual consolidation of employment structures. | ArcGIS Pro Space–Time Cube (Mann–Kendall test for trend) | |
| RQ2. Effect of sectoral granularity (1d vs. 2d). | H2a (level effect): MI-2d > MI-1d, capturing intra-sector reallocations. | Confirmed: The median MI is systematically higher at 2d (e.g., 2020 median: 0.0322 vs. 0.0223 at 1d), confirming that finer granularity reveals within-sector adjustments. | Comparative analysis of MI medians (1d vs. 2d) |
| H2b (granularity diagnostics): The ratio ρ = MI2d/MI1d exceeds 1 on average, while the difference Δ = MI2d − MI1d is close to zero in the mean but shows high variance and outliers in crisis years; extreme ρ values arise when MI1d ≈ 0. | Confirmed: Rho averages 1.4–1.9; extreme values (>8) appear when MI1d ≈ 0, particularly in 2017–2020. The difference shows a near-zero mean but large variance, capturing hidden reallocations during shocks. | Derived measures (Δ, ρ) + Winsorised analysis for outliers | |
| RQ3. Interpretation in a space–time framework. | H3a (shocks and fragility): Crisis spikes concentrate in fragile or specialised regions. | Confirmed: Hot spot analysis identifies significant clusters in Greek and outermost regions, reflecting vulnerability during 2009–2011 and 2020. | ArcGIS Pro Emerging Hot Spot Analysis |
| H3b (stability in cores): Cold spots occur in advanced industrial cores. | Confirmed: Germany, Austria and Northern Italy display persistent cold spots, where low MI represents stable, resilient structures. | ArcGIS Pro Emerging Hot Spot Analysis | |
| H3c (temporal profiles): Clustering reveals significant downward trends even in historically high-mobility regions. | Confirmed: DTW/Fourier clustering shows a long-run decline for Cluster 2 and 5 regions (e.g., DE50 Bremen, DEA5 Arnsberg), signalling structural rigidification after initial post-crisis adjustments. | ArcGIS Pro Time-Series Clustering (DTW + Fourier) | |
| RQ4. Does high MI signal resilience/innovation in advanced economies? | H4 (dual meaning of high MI): High MI can indicate adaptability/innovation (advanced regions) or fragility (peripheries). | Confirmed: Ireland (2013–2014) exemplifies adaptive reallocation and innovation readiness. Conversely, Greek and outermost regions exhibit high MI due to structural vulnerability. | Combined interpretation of MI + regional typology (advanced vs. peripheral) |
| RQ5. Policy implications. | H5 (framework utility): A multi-scalar and spatio-temporal approach enables differentiation between ‘positive’ flexibility and ‘negative’ fragility. | Confirmed: 1d is suitable for EU-wide benchmarking, while 2d is necessary for fine-grained policy targeting. Space–time cube and clustering provide early-warning signals for cohesion and just-transition policies. | Multi-scalar comparative framework + GIS-based monitoring |
| RQ6. Forecastability of MI trajectories. | H6 (forecastability): MI trajectories are sufficiently persistent to allow short-term forecasting, with uncertainty highest in extreme regions. | Confirmed: Exponential smoothing forecasts yield low RMSE (≈0.02) overall, with slightly higher errors in regions with extreme volatility (e.g., Madeira, Bremen). | ArcGIS Pro Exponential Smoothing Forecast (RMSE validation) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lincaru, C.; Pirciog, C.S.; Grigorescu, A.; Mladen-Macovei, L. Intersectoral Labour Mobility in Europe as a Driver of Resilience and Innovation: Evidence from Granularity and Spatio-Temporal Modelling. Sustainability 2025, 17, 10333. https://doi.org/10.3390/su172210333
Lincaru C, Pirciog CS, Grigorescu A, Mladen-Macovei L. Intersectoral Labour Mobility in Europe as a Driver of Resilience and Innovation: Evidence from Granularity and Spatio-Temporal Modelling. Sustainability. 2025; 17(22):10333. https://doi.org/10.3390/su172210333
Chicago/Turabian StyleLincaru, Cristina, Camelia Speranta Pirciog, Adriana Grigorescu, and Luise Mladen-Macovei. 2025. "Intersectoral Labour Mobility in Europe as a Driver of Resilience and Innovation: Evidence from Granularity and Spatio-Temporal Modelling" Sustainability 17, no. 22: 10333. https://doi.org/10.3390/su172210333
APA StyleLincaru, C., Pirciog, C. S., Grigorescu, A., & Mladen-Macovei, L. (2025). Intersectoral Labour Mobility in Europe as a Driver of Resilience and Innovation: Evidence from Granularity and Spatio-Temporal Modelling. Sustainability, 17(22), 10333. https://doi.org/10.3390/su172210333

