Beaver Wetland Buffers as Ecosystem-Based Tools for Sustainable Water Management and Lead (Pb) Risk Control
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Beaver Population Surveys and Habitat Characterization
2.3. Sampling
2.4. Sample Preparation and Analysis
2.5. Quality Assurance and Quality Control (QA/QC)
2.6. Statistical Analysis
3. Results
3.1. Cross-Matrix Distributions and Censoring
- Fur: 22.8 [5.198; 0.05–82.56];
- Plants: 2.000 [2.880; 0.730–9.67];Sediments: 19.030 [15.300; 3.120–45.10].
3.2. Regional Differences in Pb Distribution
- Fur: H = 14.505, p = 7.08 × 10−4;
- Plants: H = 12.310, p = 2.12 × 10−3;
- Sediments: H = 21.043, p = 2.70 × 10−5.
- Plants: 2K > 3G (Δ median = 1.16 µg g−1; p₍holm₎ = 0.0063); 2K > 1M (Δ = 0.89 µg g−1; p₍holm₎ = 0.0066); 1M vs. 3G not significant.
- Sediments: 2K > 3G (Δ = 8.98 µg g−1; p₍holm₎ = 0.00011); 2K > 1M (Δ = 11.25 µg g−1; p₍holm₎ = 0.00028); 1M vs. 3G not significant.
- Fur: 3G > 1M (p₍holm₎ = 0.00054); 2K > 1M (p₍holm₎ = 0.00196); 2K vs. 3G not significant.
3.3. Patterns by Source Type: Stream, Drying Ditch, Natural Pond
3.4. Transect Distances (10–50 m)
3.5. Fur Pb by Region and Season
3.6. Cross-Matrix Correlations and Variability
3.7. Management-Relevant Highlights
4. Discussion
4.1. Hydro-Ecological Mechanisms
4.2. Regional Contrasts
4.3. Matrix Complementarity
4.4. Implications for Sustainable Water Management and Environmental Governance
4.5. Study Limitations and Future Work
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| AAS | Atomic Absorption Spectrometry |
| APC | Article Processing Charge |
| CV | Coefficient of Variation |
| DW | Dry Weight |
| FAAS | Flame Atomic Absorption Spectrometry |
| LOD | Limit of Detection |
| OC | Organic Carbon |
| Pb | Lead |
| Q1/Q3 | First/Third Quartiles |
| r | Pearson’s correlation coefficient |
| SD | Standard Deviation |
| 1M/2K/3G | Study zones in Lithuania |
References
- Collin, S.; Baskar, A.; Geevarghese, D.M.; Syed Ali, M.N.V.; Bahubali, P.; Choudhary, R.; Lvov, V.; Tovar, G.I.; Senatov, F.; Swamiappan, S. Bioaccumulation of Lead (Pb) and Its Effects in Plants: A Review. J. Hazard. Mater. Lett. 2022, 3, 100064. [Google Scholar] [CrossRef]
- Ashraf, U.; Mahmood, M.H.-U.-R.; Hussain, S.; Abbas, F.; Anjum, S.A.; Tang, X. Lead (Pb) Distribution and Accumulation in Different Plant Parts and Its Associations with Grain Pb Concentrations in Fragrant Rice. Chemosphere 2020, 248, 126003. [Google Scholar] [CrossRef]
- Nikolova, T. Absorption of Pb, Cu, Zn and Cd by Morus alba L. Cultivated on Soils Contaminated with Heavy Metals. Bulg. J. Agric. Sci. 2015, 21, 747–750. [Google Scholar]
- Szwalec, A.; Lasota, A.; Kędzior, R.; Mundała, P. Variation in Heavy Metal Concentration in Plants Growing on a Zinc and Lead Tailings Dump. Appl. Ecol. Environ. Res. 2018, 16, 5081–5094. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar] [CrossRef]
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability, 3rd ed.; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- United Nations Environment Programme (UNEP). The Emissions Gap Report 2016; UNEP: Nairobi, Kenya, 2016; Available online: http://uneplive.unep.org/theme/index/13#eg (accessed on 13 August 2025).
- Temmink, R.J.M.; Lamers, L.P.M.; Angelini, C.; Bouma, T.J.; Fritz, C.; van de Koppel, J.; Lexmond, R.; Rietkerk, M.; Silliman, B.R.; Joosten, H.; et al. Recovering Wetland Biogeomorphic Feedbacks to Restore the World’s Biotic Carbon Hotspots. Science 2022, 376, eabn1479. [Google Scholar] [CrossRef]
- Zhang, Z.; Jiang, W.; Peng, K.; Wu, Z.; Ling, Z.; Li, Z. Assessment of the Impact of Wetland Changes on Carbon Storage in Coastal Urban Agglomerations from 1990 to 2035 in Support of SDG 15.1. Sci. Total Environ. 2023, 877, 162824. [Google Scholar] [CrossRef]
- European Commission. The European Green Deal; COM(2019) 640 final; European Commission: Brussels, Belgium, 2019; Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52019DC0640 (accessed on 13 August 2025).
- Siddi, M. The European Green Deal: Assessing Its Current State and Future Implementation; FIIA Working Paper 114; Finnish Institute of International Affairs: Helsinki, Finland, 2020; Available online: https://www.fiia.fi/wp-content/uploads/2020/05/wp114_european-green-deal.pdf (accessed on 13 August 2025).
- European Parliament and Council. Directive 2013/39/EU Amending Directives 2000/60/EC and 2008/105/EC as Regards Priority Substances in the Field of Water Policy. Off. J. Eur. Union 2013, L 226, 1–17. [Google Scholar]
- Commission Regulation (EU). Commission Regulation (EU) 2021/57 of 25 January 2021 Amending Annex XVII to Regulation (EC) No 1907/2006 (REACH) as Regards Lead in Gunshot in or around Wetlands. Off. J. Eur. Union 2021, L 24, 19–27. [Google Scholar]
- Council of the European Union. AOB Item for the Meeting of the “Agriculture and Fisheries” Council on 26 May 2025: The Proposed Ban on Lead in Ammunition and Fishing Tackle Under the REACH Regulation—Information from Czechia and Slovakia. Note from the General Secretariat of the Council to Delegations; ST 9225/25 (ST-9225-2025-INIT); Council of the European Union: Brussels, Belgium, 2025; Available online: https://data.consilium.europa.eu/doc/document/ST-9225-2025-INIT/en/pdf (accessed on 8 September 2025).
- Ramsar Convention Secretariat. Ramsar Convention on Wetlands; Country Profile: Lithuania. 1971. Available online: https://www.ramsar.org/country-profile/lithuania (accessed on 13 August 2025).
- Tanneberger, F.; Moen, A.; Barthelmes, A.; Lewis, E.; Miles, L.; Sirin, A.; Tegetmeyer, C.; Joosten, H. Mires in Europe—Regional Diversity, Condition and Protection. Diversity 2021, 13, 381. [Google Scholar] [CrossRef]
- Stroud, D.; Dunn, E.; Jones, W.; Tucker, G. Nature Conservation in Europe: Approaches and Lessons—Annex 1. Further Details of Conventions and Conferences of Key Importance to Nature Conservation in Europe: The Convention on Wetlands (Ramsar Convention). In Nature Conservation in Europe: Approaches and Lessons; Cambridge University Press: Cambridge, UK, 2023; pp. 2–25. [Google Scholar] [CrossRef]
- Butler, D.R.; Malanson, G.P. Sedimentation Rates and Patterns in Beaver Ponds in a Mountain Environment. Geomorphology 1995, 13, 255–269. [Google Scholar] [CrossRef]
- Nolet, B.A.; Rosell, F. Comeback of the Beaver Castor fiber: An Overview of Old and New Conservation Problems. Biol. Conserv. 1998, 83, 165–173. [Google Scholar] [CrossRef]
- Paine, R.T. A Note on Trophic Complexity and Community Stability. Am. Nat. 1969, 103, 91–93. [Google Scholar] [CrossRef]
- Nuñez, M.A.; DiMarco, R.D. Keystone Species. In The Berkshire Encyclopedia of Sustainability: Ecosystem Management and Sustainability; Berkshire Publishing Group: Great Barrington, MA, USA, 2012; pp. 226–230. [Google Scholar]
- Cockman, C. Beavers as a Keystone Species. 2016. Available online: http://landtrustcnc.org/2016/beavers-as-a-keystone-species (accessed on 13 August 2025).
- Puttock, A.; Graham, H.; Cunliffe, A.M.; Elliott, M.; Brazier, R.E. Sediment, Water and Nutrient Retention in Beaver-Engineered Ponds. Sci. Total Environ. 2017, 576, 430–443. [Google Scholar] [CrossRef]
- Puttock, A.; Graham, H.A.; Carless, D.; Brazier, R.E. Eurasian Beaver Activity Increases Water Storage, Attenuates Flow and Mitigates Diffuse Pollution. Earth Surf. Process Landf. 2018, 43, 2358–2370. [Google Scholar] [CrossRef]
- Murray, D.; Lacey, J.; Armitage, P.D. Role of Beaver Dams in Water Quality and Flow Regulation: A Review. J. Environ. Manag. 2021, 285, 112127. [Google Scholar] [CrossRef]
- Westbrook, C.J.; Cooper, D.J. Comparing the Sources of Sediment Retained by Beaver Dams and Beaver Dam Analogs. Water 2024, 16, 505. [Google Scholar] [CrossRef]
- Wohl, E. Beaver Versus Human: The Big Differences in Small Dams. WIREs Water 2025, 12, e1706. [Google Scholar] [CrossRef]
- Oleszczuk, R.; Bajkowski, S.; Urbański, J.; Pawluśkiewicz, B.; Małuszyński, M.J.; Małuszyńska, I.; Jadczyszyn, J.; Hewelke, E. The Impacts of Beaver Dams on Groundwater Regime and Habitat 6510. Land 2024, 13, 1902. [Google Scholar] [CrossRef]
- Sjöberg, G.; Belova, O. (Eds.) Beaver as a Renewable Resource: A Beaver Dam Handbook for the Baltic Sea Region; Swedish Forest Agency: Jönköping, Sweden, 2020; p. 125. Available online: https://www.lammc.lt/data/public/uploads/2020/05/beaver-handbook.pdf (accessed on 13 August 2025).
- Belova, O.; Ulevičius, A.; Lode, E.; Piirainen, S.; Wróbel, M.; Čiuldienė, D.; Lībiete, Z. Beaver Population Management in the Baltic Sea Region Countries—A Review of Current Knowledge, Methods and Areas for Development; Interreg Baltic Sea Region, WAMBAF: Rostock, Germany; Riga, Latvia, 2017; p. 50. Available online: https://www.lammc.lt/data/public/uploads/2019/02/beaver-report_wp2_wambaf_final-25-02-2017.pdf (accessed on 13 August 2025).
- Virbickas, T.; Stakėnas, S.; Steponėnas, A. Impact of Beaver Dams on Abundance and Distribution of Anadromous Salmonids in Two Lowland Streams in Lithuania. PLoS ONE 2015, 10, e0123107. [Google Scholar] [CrossRef]
- Giżejewska, A.; Spodniewska, A.; Barski, D.; Fattebert, J. Beavers Indicate Metal Pollution Away from Industrial Centres in Northeastern Poland. Environ. Sci. Pollut. Res. 2015, 22, 3969–3975. [Google Scholar] [CrossRef] [PubMed]
- Fastovetska, K.; Belova, O.; Šlepetienė, A. Lead Fixation in Sediments of Protected Wetlands in Lithuania. Land 2025, 14, 737. [Google Scholar] [CrossRef]
- Ministry of Environment of the Republic of Lithuania. Rules for Hunting in the Territory of the Republic of Lithuania, No. D1-631 of 14 October 2020 (as Last Amended on 1 May 2025); Register of Legal Acts, i.k. 2020-21339; Ministry of Environment of the Republic of Lithuania: Vilnius, Lithuania, 2020. Available online: https://e-tar.lt/portal/lt/legalAct/TAR.308F43BA7D00/fdRJxBChJl (accessed on 16 September 2025).
- Belova, O.; Šlepetienė, A.; Urbaitis, G.; Vigricas, E. Bioindikacinis Bebrų Vaidmuo Miško Šlapynių Buferinių Zonų Taršos Nustatymui; Final Report of the Applied Research Project VSP-2022-7-SBMŪRP; Lithuanian Research Centre for Agriculture and Forestry (LAMMC), Forest Institute: Girionys, Lithuania, 2025; p. 32. (In Lithuanian) [Google Scholar]
- Fastovetska, K.; Šlepetienė, A.; Vigricas, E.; Urbaitis, G.; Belova, O. Lead Content in Plant Materials in the Buffer Zones of Surface Water Bodies of Northwestern and Central Regions of Lithuania. Zemdirb. Agric. 2022, 109, 335–340. [Google Scholar] [CrossRef]
- Mocák, J.; Bond, A.M.; Mitchell, S.; Scollary, G. A Statistical Overview of Standard (IUPAC and ACS) and New Approaches to LOD/LOQ. Pure Appl. Chem. 1997, 69, 297–328. [Google Scholar]
- Jonckheere, A.R. A Distribution-Free k-Sample Test against Ordered Alternatives. Biometrika 1954, 41, 133–145. [Google Scholar] [CrossRef]
- US EPA. Method 3050B: Acid Digestion of Sediments, Sludges, and Soils; US EPA: Washington, DC, USA, 1996; SW-846.
- US EPA. SW-846 Test Method 7000B: Flame Atomic Absorption Spectrophotometry; US EPA: Washington, DC, USA, 2007.
- IUPAC. Gold Book. Limit of Detection (L03540); IUPAC: Research Triangle Park, NC, USA, 2019; Available online: https://goldbook.iupac.org/terms/view/L03540 (accessed on 18 September 2025).
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Smith, C.H.; Georges, P.; Nguyen, N. The Systems Measurement of Mammalian Biotas, Part Two. Life 2023, 13, 2193. [Google Scholar] [CrossRef]
- Efron, B. Better Bootstrap Confidence Intervals. J. Am. Stat. Assoc. 1987, 82, 171–200. [Google Scholar] [CrossRef]
- Gibson, P.P.; Olden, J.D. Ecology, Management, and Conservation Implications of North American Beaver (Castor canadensis) in Dryland Streams. Aquat. Conserv. 2014, 24, 391–409. [Google Scholar] [CrossRef]
- Canadian Council of Ministers of the Environment (CCME). Canadian Sediment Quality Guidelines for the Protection of Aquatic Life: Summary Tables (Update 2002). Canadian Council of Ministers of the Environment, Winnipeg, MB, Canada. Available online: https://ccme.ca/en/res/lead-canadian-sediment-quality-guidelines-for-the-protection-of-aquatic-life-en.pdf (accessed on 30 August 2025).
- Zalewski, K.; Falandysz, J.; Jadacka, M.; Martysiak-Żurowska, D.; Nitkiewicz, B.; Giżejewski, Z. Concentrations of Heavy Metals and PCBs in the Tissues of European Beavers (Castor fiber) Captured in Northeastern Poland. Eur. J. Wildl. Res. 2012, 58, 655–660. [Google Scholar] [CrossRef]
- Gridan, A.; Ionescu, O.; Ionescu, G.; Fedorca, A.; Ciocirlan, E.; Pasca, C.; Hardalau, D. The Ecological Impacts and Modeling of the Beaver Dam Distribution: A Study on Habitat Characteristics and Environmental Factors in Romania. Ecologies 2025, 6, 34. [Google Scholar] [CrossRef]
- Naiman, R.J.; Melillo, J.M.; Hobbie, J.E. Ecosystem Alteration of Boreal Forest Streams by Beaver (Castor canadensis). Ecology 1986, 67, 1254–1269. [Google Scholar] [CrossRef]
- Naiman, R.J.; Pinay, G.; Johnston, C.A.; Pastor, J. Beaver Influences on the Long-Term Biogeochemical Characteristics of Boreal Forest Drainage Networks. Ecology 1994, 75, 905–921. [Google Scholar] [CrossRef]
- Horowitz, A.J. A Primer on Sediment-Trace Element Chemistry; USGS Open-File Report 91-76; US Geological Survey: Reston, VA, USA, 1991. [CrossRef]
- Gurnell, A.M. The Hydrogeomorphological Effects of Beaver Dam-Building Activity. Prog. Phys. Geogr. 1998, 22, 167–189. [Google Scholar] [CrossRef]
- Pollock, M.M.; Heim, M.; Werner, D. Hydrologic and Geomorphic Effects of Beaver Dams and Their Influence on Fishes. Am. Fish. Soc. Symp. 2003, 37, 213–233. [Google Scholar]
- Draghi, S.; Agradi, S.; Riva, F.; Tarhan, D.; Bilgiç, B.; Dokuzeylül, B.; Ercan, A.M.; Or, M.E.; Brecchia, G.; Vigo, D.; et al. Hair as a Biomonitoring Matrix for Metals and Metalloids in Mammals: A Review. Toxics 2023, 11, 49. [Google Scholar] [CrossRef]
- Schloemer, S.; Kaijser, W.; Hörren, T.; von Schledorn, F.; Lorenz, A.W.; Mausbach, P.; Hund, K.; Hering, D. Species Richness and Abundance of Benthic Invertebrates Are Multiplied by Beaver (Castor sp.) Activities in Small Floodplains. Freshw. Biol. 2025, 70, e70046. [Google Scholar] [CrossRef]
- Bryan, G.W.; Langston, W.J. Bioavailability, Accumulation and Effects of Heavy Metals in Sediments—A Review. Environ. Pollut. 1992, 76, 89–131. [Google Scholar] [CrossRef]
- European Parliament and Council. Regulation (EU) 2024/1991 on Nature Restoration and Amending Regulation (EU) 2022/869. Off. J. Eur. Union 2024, L 29.7.2024. Regulation (EU) 2024/1991 of the European Parliament and of the Council of 29 July 2024 on Nature Restoration and Amending Regulation (EU) 2022/869. Official Journal of the European Union 2024, L 202, 1–64. Available online: https://eur-lex.europa.eu/eli/reg/2024/1991/oj (accessed on 30 August 2025).
- European Commission. Common Implementation Strategy for the Water Framework Directive (2000/60/EC); Guidance Document No. 25: Chemical Monitoring of Sediment and Biota under the Water Framework Directive; Office for Official Publications of the European Communities: Luxembourg, 2009; Available online: https://circabc.europa.eu/sd/a/7f47ccd9-ce47-4f4a-b4f0-cc61db518b1c/Guidance%20No%2025%20-%20Chemical%20Monitoring%20of%20Sediment%20and%20Biota.pdf (accessed on 30 August 2025).
- European Commission. Guidance Document for Sediment Assessment under the Water Framework Directive; European Sediment Network (SedNet): Brussels, Belgium, 2010; Available online: https://sednet.org/download/guidance_document_for_sediment_assessment.pdf (accessed on 30 August 2025).





| Matrix | Median [IQR] | Range | SQG | Regional range |
|---|---|---|---|---|
| Sediments | 19.0 [15.3] | 4.3–68.7 | 25 (TEL)–91 (PEL) * | 10–80 (Baltic/Scandinavia) ** |
| Plants | 2.0 [2.9] | 0.7–9.7 | – | 0.3–5.0 (wetland macrophytes) |
| Fur | 22.8 [5.2] | 0.05–82.6 | – | 0.5–20.0 (Castor spp.) |
| Matrix | n | <LOD (%) | LOD–LOQ (%) | >LOQ (%) | Median (µg g−1) | Range (µg g−1) |
|---|---|---|---|---|---|---|
| Sediments | 210 | 0 | 0 | 100 | 20.48 | 5.08–45.10 |
| Plants | 210 | 3 | 4 | 93 | 2.11 | 0.01–9.67 |
| Beaver fur | 91 | 32 | 0 | 68 | 22.81 | 0.05–82.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Belova, O.; Fastovetska, K.; Vigricas, E.; Urbaitis, G.; Slepetiene, A. Beaver Wetland Buffers as Ecosystem-Based Tools for Sustainable Water Management and Lead (Pb) Risk Control. Sustainability 2025, 17, 9892. https://doi.org/10.3390/su17219892
Belova O, Fastovetska K, Vigricas E, Urbaitis G, Slepetiene A. Beaver Wetland Buffers as Ecosystem-Based Tools for Sustainable Water Management and Lead (Pb) Risk Control. Sustainability. 2025; 17(21):9892. https://doi.org/10.3390/su17219892
Chicago/Turabian StyleBelova, Olgirda, Kateryna Fastovetska, Egidijus Vigricas, Gintautas Urbaitis, and Alvyra Slepetiene. 2025. "Beaver Wetland Buffers as Ecosystem-Based Tools for Sustainable Water Management and Lead (Pb) Risk Control" Sustainability 17, no. 21: 9892. https://doi.org/10.3390/su17219892
APA StyleBelova, O., Fastovetska, K., Vigricas, E., Urbaitis, G., & Slepetiene, A. (2025). Beaver Wetland Buffers as Ecosystem-Based Tools for Sustainable Water Management and Lead (Pb) Risk Control. Sustainability, 17(21), 9892. https://doi.org/10.3390/su17219892

