Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodological Framework
2.3. UAV Data Acquisition and Processing
2.3.1. Multispectral Data
2.3.2. LiDAR Data
2.4. AGB from Field Data Collection
2.5. Extraction and Integration of Spectral, Structural, and Biomass Variables
2.6. Variable Selection for Modeling
2.7. AGB Modeling
2.7.1. Random Forest (RF)
2.7.2. Support Vector Machines (SVM)
2.7.3. Elastic Net
2.8. Model Evaluation
3. Results
3.1. Field-Based AGB at Site and Plot Level
3.2. Correlation Between Predictor and Response Variables
3.3. Predictive Performance of Machine Learning Models
3.4. Variable Importance in AGB Prediction Models
3.5. AGB Predicted Maps
4. Discussion
4.1. Field-Based AGB Variability
4.2. Variables Correlation and Predictor Selection
4.3. Model Performance and Predictor Importance
4.4. Predicted AGB and Ecological Implications
4.5. Limitations and Future Perspectives
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- O’Mara, F.P. The Role of Grasslands in Food Security and Climate Change. Ann. Bot. 2012, 110, 1263–1270. [Google Scholar] [CrossRef]
- White, R.P.; Murray, S.; Rohweder, M.; Prince, S.D.; Thompson, K.M. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000. [Google Scholar]
- Petermann, J.S.; Buzhdygan, O.Y. Grassland Biodiversity. Curr. Biol. 2021, 31, R1195–R1201. [Google Scholar] [CrossRef]
- Scurlock, J.M.O.; Hall, D.O. The Global Carbon Sink: A Grassland Perspective. Glob. Change Biol. 1998, 4, 229–233. [Google Scholar] [CrossRef]
- Török, P.; Brudvig, L.A.; Kollmann, J.; Price, J.N.; Tóthmérész, B. The Present and Future of Grassland Restoration. Restor. Ecol. 2021, 29, e13378. [Google Scholar] [CrossRef]
- MINAGRI Minagri Instalará Más de 128 000 Hectáreas de Pastos Para Impulsar Producción Ganadera en Zonas Rurales. Available online: https://www.gob.pe/institucion/agrorural/noticias/526008-minagri-instalara-mas-de-128-000-hectareas-de-pastos-para-impulsar-produccion-ganadera-en-zonas-rurales (accessed on 11 August 2025).
- Fuentes, E.; Gómez, C.; Pizarro, D.; Alegre, J.; Castillo, M.; Vela, J.; Huaman, E.; Vásquez, H. A Review of Silvopastoral Systems in the Peruvian Amazon Region. Trop. Grassl.-Forrajes Trop. 2022, 10, 78–88. [Google Scholar] [CrossRef]
- Raul Marino, Y.C.; Ja, O.; Se, P. Species of the Poaceae Family Suitable for Andean Livestock Farming in the Peruvian Andes Reported in GBIF and Local Studies. Glob. J. Ecol. 2024, 9, 057–065. [Google Scholar] [CrossRef]
- Medina Quispe, P.R.; Arizapana-Almonacid, M.A.; Nosetto, M.D. Changes in the Soil Organic Carbon of Grasslands in the High Andes of Peru after Their Conversion to Croplands and Their Environmental Controls. Grasses 2024, 3, 35–44. [Google Scholar] [CrossRef]
- Duchicela, S.A.; Llambí, L.D.; Bonnesoeur, V.; Román-Dañobeytia, F. Pastoralism in the High Tropical Andes: A Review of the Effect of Grazing Intensity on Plant Diversity and Ecosystem Services. Appl. Veg. Sci. 2024, 27, e12791. [Google Scholar] [CrossRef]
- Taboada-Hermoza, R.; Martínez, A.G. “No One Is Safe”: Agricultural Burnings, Wildfires and Risk Perception in Two Agropastoral Communities in the Puna of Cusco, Peru. Fire 2025, 8, 60. [Google Scholar] [CrossRef]
- Cervantes, R.; Sánchez, J.M.; Alegre, J.; Rendón, E.; Baiker, J.R.; Locatelli, B.; Bonnesoeur, V. Contribución de Los Ecosistemas Altoandinos En La Provisión Del Servicio Ecosistémico de Regulación Hídrica. Ecol. Apl. 2022, 20, 137–146. [Google Scholar] [CrossRef]
- Vásquez, H.V.; Huamán Puscán, M.M.; Bobadilla, L.G.; Zagaceta, H.; Valqui, L.; Maicelo, J.L.; Silva-López, J.O. Evaluation of Pasture Degradation through Vegetation Indices of the Main Livestock Micro-Watersheds in the Amazon Region (NW Peru). Environ. Sustain. Indic. 2023, 20, 100315. [Google Scholar] [CrossRef]
- Ramos-Hernández, E.; Martínez Sánchez, J.L. Almacenes de Biomasa y Carbono Aéreo y Radicular En Pastizales de Urochloa Decumbens y Paspalum Notatum (Poaceae) En El Sureste de México. RBT 2020, 68, 440–451. [Google Scholar] [CrossRef]
- Sinde-González, I.; Gil-Docampo, M.; Arza-García, M.; Grefa-Sánchez, J.; Yánez-Simba, D.; Pérez-Guerrero, P.; Abril-Porras, V. Biomass Estimation of Pasture Plots with Multitemporal UAV-Based Photogrammetric Surveys. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102355. [Google Scholar] [CrossRef]
- Segura-Carmona, J.E.; Yerena Yamallel, J.I.; Bernal Barragán, H.; Alanís Rodríguez, E.; Cuéllar Rodríguez, L.G.; Jiménez Pérez, J. Generación de Nuevas Ecuaciones Para Estimar La Biomasa Aérea a Partir de Variables Morfológicas Obtenidas de Pastos En Agostaderos de Nuevo León, México. Rev. Mex. Cienc. Pecu. 2024, 15, 1–16. [Google Scholar] [CrossRef]
- Tong, X.; Duan, L.; Liu, T.; Yang, Z.; Wang, Y.; Singh, V.P. Estimation of Grassland Aboveground Biomass Combining Optimal Derivative and Raw Reflectance Vegetation Indices at Peak Productive Growth Stage. Geocarto Int. 2023, 38, 2186497. [Google Scholar] [CrossRef]
- Waite, R.B. The Application of Visual Estimation Procedures for Monitoring Pasture Yield and Composition in Exclosures and Small Plots. Trop. Grassl. 1994, 28, 38. [Google Scholar]
- Archibald, S.; Bond, W.J.; Stock, W.D.; Fairbanks, D.H.K. Shaping the Landscape: Fire–Grazer Interactions in an African Savanna. Ecol. Appl. 2005, 15, 96–109. [Google Scholar] [CrossRef]
- Joubert, D.; Powell, L.A.; Schacht, W.H. Visual Obstruction as a Method to Quantify Herbaceous Biomass in Southern African Semi-Arid Savannas. Afr. J. Range Forage Sci. 2015, 32, 225–230. [Google Scholar] [CrossRef]
- Riginos, C.; Grace, J.B.; Augustine, D.J.; Young, T.P. Local versus Landscape-scale Effects of Savanna Trees on Grasses. J. Ecol. 2009, 97, 1337–1345. [Google Scholar] [CrossRef]
- Ali, I.; Cawkwell, F.; Dwyer, E.; Barrett, B.; Green, S. Satellite Remote Sensing of Grasslands: From Observation to Management. J. Plant Ecol. 2016, 9, 649–671. [Google Scholar] [CrossRef]
- Reinermann, S.; Asam, S.; Kuenzer, C. Remote Sensing of Grassland Production and Management—A Review. Remote Sens. 2020, 12, 1949. [Google Scholar] [CrossRef]
- Crabbe, R.A.; Lamb, D.W.; Edwards, C.; Andersson, K.; Schneider, D. A Preliminary Investigation of the Potential of Sentinel-1 Radar to Estimate Pasture Biomass in a Grazed Pasture Landscape. Remote Sens. 2019, 11, 872. [Google Scholar] [CrossRef]
- Chen, Y.; Guerschman, J.; Shendryk, Y.; Henry, D.; Harrison, M.T. Estimating Pasture Biomass Using Sentinel-2 Imagery and Machine Learning. Remote Sens. 2021, 13, 603. [Google Scholar] [CrossRef]
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R.B.; Chang, Q. Estimating Leaf Area Index and Aboveground Biomass of Grazing Pastures Using Sentinel-1, Sentinel-2 and Landsat Images. ISPRS J. Photogramm. Remote Sens. 2019, 154, 189–201. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, L.; Xie, D.; Yin, X.; Liu, C.; Liu, G. Application of Synthetic NDVI Time Series Blended from Landsat and MODIS Data for Grassland Biomass Estimation. Remote Sens. 2015, 8, 10. [Google Scholar] [CrossRef]
- Anaya, J.A.; Chuvieco, E.; Palacios-Orueta, A. Aboveground Biomass Assessment in Colombia: A Remote Sensing Approach. For. Ecol. Manag. 2009, 257, 1237–1246. [Google Scholar] [CrossRef]
- Nuñez Delgado, J.; Pizarro Carcausto, S.; Gutiérrez Tang, M.; Ñaupari Vásquez, J. Dinámica Espacio Temporal de La Biomasa Aérea En Pastizales Altoandinos Basado En NDVI-MODIS Validado Por Espectrometría in Situ. Rev. Investig. Vet. Perú 2021, 32, e20392. [Google Scholar] [CrossRef]
- Bendix, J.; Rollenbeck, R.; Göttlicher, D.; Cermak, J. Cloud Occurrence and Cloud Properties in Ecuador. Clim. Res. 2006, 30, 133–147. [Google Scholar] [CrossRef]
- Montenegro-Díaz, P.; Alvear, R.C.; Carrillo-Rojas, G. Overcast Sky Condition Prevails on and Influences the Biometeorology of the Tropical Andean Páramos. J. Mt. Sci. 2023, 20, 78–86. [Google Scholar] [CrossRef]
- Santos, W.M.D.; Martins, L.D.C.D.S.; Bezerra, A.C.; Souza, L.S.B.D.; Jardim, A.M.D.R.F.; Silva, M.V.D.; Souza, C.A.A.D.; Silva, T.G.F.D. Use of Unmanned Aerial Vehicles for Monitoring Pastures and Forages in Agricultural Sciences: A Systematic Review. Drones 2024, 8, 585. [Google Scholar] [CrossRef]
- Bazzo, C.O.G.; Kamali, B.; Hütt, C.; Bareth, G.; Gaiser, T. A Review of Estimation Methods for Aboveground Biomass in Grasslands Using UAV. Remote Sens. 2023, 15, 639. [Google Scholar] [CrossRef]
- Freitas, R.G.; Pereira, F.R.S.; Dos Reis, A.A.; Magalhães, P.S.G.; Figueiredo, G.K.D.A.; Do Amaral, L.R. Estimating Pasture Aboveground Biomass under an Integrated Crop-Livestock System Based on Spectral and Texture Measures Derived from UAV Images. Comput. Electron. Agric. 2022, 198, 107122. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, Z.; Wang, B.; Meng, B.; Qin, Y.; Sun, Y.; Lv, Y.; Zhang, J.; Yi, S. A Non-Destructive Method for Rapid Acquisition of Grassland Aboveground Biomass for Satellite Ground Verification Using UAV RGB Images. Glob. Ecol. Conserv. 2022, 33, e01999. [Google Scholar] [CrossRef]
- Alvarez-Mendoza, C.I.; Guzman, D.; Casas, J.; Bastidas, M.; Polanco, J.; Valencia-Ortiz, M.; Montenegro, F.; Arango, J.; Ishitani, M.; Selvaraj, M.G. Predictive Modeling of Above-Ground Biomass in Brachiaria Pastures from Satellite and UAV Imagery Using Machine Learning Approaches. Remote Sens. 2022, 14, 5870. [Google Scholar] [CrossRef]
- Vahidi, M.; Shafian, S.; Thomas, S.; Maguire, R. Pasture Biomass Estimation Using Ultra-High-Resolution RGB UAVs Images and Deep Learning. Remote Sens. 2023, 15, 5714. [Google Scholar] [CrossRef]
- Michez, A.; Lejeune, P.; Bauwens, S.; Herinaina, A.; Blaise, Y.; Castro Muñoz, E.; Lebeau, F.; Bindelle, J. Mapping and Monitoring of Biomass and Grazing in Pasture with an Unmanned Aerial System. Remote Sens. 2019, 11, 473. [Google Scholar] [CrossRef]
- Hütt, C.; Isselstein, J.; Komainda, M.; Schöttker, O.; Sturm, A. UAV LiDAR-Based Grassland Biomass Estimation for Precision Livestock Management. J. Appl. Remote Sens. 2024, 18, 017502. [Google Scholar] [CrossRef]
- Urquizo, J.; Ccopi, D.; Ortega, K.; Castañeda, I.; Patricio, S.; Passuni, J.; Figueroa, D.; Enriquez, L.; Ore, Z.; Pizarro, S. Estimation of Forage Biomass in Oat (Avena Sativa) Using Agronomic Variables through UAV Multispectral Imaging. Remote Sens. 2024, 16, 3720. [Google Scholar] [CrossRef]
- Bobadilla Rivera, L.G.; Chichipe Vela, E.; Oliva, M. Efecto de Cuatro Enmiendas Cálcicas Sobre El Suelo En El Rendimiento de Cinco Especies Forrajeras Presentes En El Distrito de Molinopampa (Región Amazonas). Rev. Investig. Agroprod. Sustent. 2018, 2, 7–13. [Google Scholar] [CrossRef]
- Murga, L.; Vásquez, H.; Bardales, J. Caracterización de Los Sistemas de Producción de Ganado Bovino En Las Cuencas Ganaderas de Ventilla, Florida y Leyva -Región Amazonas. Rev. Científica UNTRM Cienc. Nat. E Ing. 2019, 1, 28–37. [Google Scholar] [CrossRef]
- SENAMHI SENAMHI-Estaciones. Available online: https://www.senamhi.gob.pe/?p=estaciones (accessed on 16 September 2025).
- MicaSense RedEdge-MX Integration Guide. Available online: https://support.micasense.com/hc/en-us/articles/360011389334-RedEdge-MX-Integration-Guide (accessed on 16 September 2025).
- Newell, F.L.; Ausprey, I.J.; Robinson, S.K. Spatiotemporal Climate Variability in the Andes of Northern Peru: Evaluation of Gridded Datasets to Describe Cloud Forest Microclimate and Local Rainfall. Int. J. Climatol. 2022, 42, 5892–5915. [Google Scholar] [CrossRef]
- PIX4Dmapper 2025. Available online: https://support.pix4d.com/ (accessed on 29 October 2025).
- Eskandari, R.; Mahdianpari, M.; Mohammadimanesh, F.; Salehi, B.; Brisco, B.; Homayouni, S. Meta-Analysis of Unmanned Aerial Vehicle (UAV) Imagery for Agro-Environmental Monitoring Using Machine Learning and Statistical Models. Remote Sens. 2020, 12, 3511. [Google Scholar] [CrossRef]
- Poley, L.G.; McDermid, G.J. A Systematic Review of the Factors Influencing the Estimation of Vegetation Aboveground Biomass Using Unmanned Aerial Systems. Remote Sens. 2020, 12, 1052. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Chen, A.; Wang, X.; Zhang, M.; Guo, J.; Xing, X.; Yang, D.; Zhang, H.; Hou, Z.; Jia, Z.; Yang, X. Fusion of LiDAR and Multispectral Data for Aboveground Biomass Estimation in Mountain Grassland. Remote Sens. 2023, 15, 405. [Google Scholar] [CrossRef]
- Da Costa, M.B.T.; Silva, C.A.; Broadbent, E.N.; Leite, R.V.; Mohan, M.; Liesenberg, V.; Stoddart, J.; Do Amaral, C.H.; De Almeida, D.R.A.; Da Silva, A.L.; et al. Beyond Trees: Mapping Total Aboveground Biomass Density in the Brazilian Savanna Using High-Density UAV-Lidar Data. For. Ecol. Manag. 2021, 491, 119155. [Google Scholar] [CrossRef]
- Liu, B.; Ye, H.; Liao, X.; Zhang, X.; Mao, G.; Pan, T. UAV Data for Herbaceous Community’ Aboveground Biomass Upscaling: A New Perspective on LiDAR and Multispectral Information Fusion. Int. J. Digit. Earth 2025, 18, 2543563. [Google Scholar] [CrossRef]
- Roussel, J.-R.; Auty, D.; Coops, N.C.; Tompalski, P.; Goodbody, T.R.H.; Meador, A.S.; Bourdon, J.-F.; De Boissieu, F.; Achim, A. lidR: An R Package for Analysis of Airborne Laser Scanning (ALS) Data. Remote Sens. Environ. 2020, 251, 112061. [Google Scholar] [CrossRef]
- R Core Team R. A Language and Environment for Statistical Computing; R Core Team R: Vienna, Austria, 2025. [Google Scholar]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Zou, H.; Hastie, T. Regularization and Variable Selection Via the Elastic Net. J. R. Stat. Soc. Ser. B Stat. Methodol. 2005, 67, 301–320. [Google Scholar] [CrossRef]
- Coverdale, T.C.; Boucher, P.B.; Singh, J.; Davies, A.B. Quantifying Aboveground Herbaceous Biomass in Grassy Ecosystems: A Comparison of Field and High-resolution UAV-LiDAR Approaches. Remote Sens. Ecol. Conserv. 2025, rse2.70023. [Google Scholar] [CrossRef]
- Liu, W.; Xu, C.; Zhang, Z.; De Boeck, H.; Wang, Y.; Zhang, L.; Xu, X.; Zhang, C.; Chen, G.; Xu, C. Machine Learning-Based Grassland Aboveground Biomass Estimation and Its Response to Climate Variation in Southwest China. Front. Ecol. Evol. 2023, 11, 1146850. [Google Scholar] [CrossRef]
- Hao, L.; Ye, H.; He, S.; Zhang, X.; Bayin, D.; Safarov, M.; Okhonniyozov, M.; Liao, X. Estimation of Aboveground Biomass in Tajikistan Based on Upscaling Extrapolation of UAV and Sentinel-2 Multi-Source Data Synergy. Sci. Remote Sens. 2025, 12, 100259. [Google Scholar] [CrossRef]
- Huang, W.; Li, W.; Xu, J.; Ma, X.; Li, C.; Liu, C. Hyperspectral Monitoring Driven by Machine Learning Methods for Grassland Above-Ground Biomass. Remote Sens. 2022, 14, 2086. [Google Scholar] [CrossRef]
- Chen, D.; Luo, H.; Liu, Z.; Pan, J.; Wu, Y.; Wang, E.; Lu, C.; Wang, L.; Wang, W.; Ou, G. A Dual-Variable Selection Framework for Enhancing Forest Aboveground Biomass Estimation via Multi-Source Remote Sensing. Remote Sens. 2025, 17, 2493. [Google Scholar] [CrossRef]
- Fraser, M.D.; Vallin, H.E.; Roberts, B.P. Animal Board Invited Review: Grassland-Based Livestock Farming and Biodiversity. animal 2022, 16, 100671. [Google Scholar] [CrossRef]
- Oliveras, I.; Girardin, C.; Doughty, C.E.; Cahuana, N.; Arenas, C.E.; Oliver, V.; Huaraca Huasco, W.; Malhi, Y. Andean Grasslands Are as Productive as Tropical Cloud Forests. Environ. Res. Lett. 2014, 9, 115011. [Google Scholar] [CrossRef]
- Marin, N.A.; Barboza, E.; López, R.S.; Vásquez, H.V.; Gómez Fernández, D.; Terrones Murga, R.E.; Rojas Briceño, N.B.; Oliva-Cruz, M.; Gamarra Torres, O.A.; Silva López, J.O.; et al. Spatiotemporal Dynamics of Grasslands Using Landsat Data in Livestock Micro-Watersheds in Amazonas (NW Peru). Land 2022, 11, 674. [Google Scholar] [CrossRef]
- Oliva, M.; Rojas, D.; Morales, A.; Oliva, C.; Oliva, M.A. Nutritional Content, Digestibility and Performance of Native Grasses Biomass That Dominate Livestock Molinopampa, Pomacochas and Leymebamba Basins, Amazonas, Peru. Sci. Agropecu. 2015, 6, 211–215. [Google Scholar] [CrossRef][Green Version]
- Dos Reis, A.A.; Werner, J.P.S.; Silva, B.C.; Figueiredo, G.K.D.A.; Antunes, J.F.G.; Esquerdo, J.C.D.M.; Coutinho, A.C.; Lamparelli, R.A.C.; Rocha, J.V.; Magalhães, P.S.G. Monitoring Pasture Aboveground Biomass and Canopy Height in an Integrated Crop–Livestock System Using Textural Information from PlanetScope Imagery. Remote Sens. 2020, 12, 2534. [Google Scholar] [CrossRef]
- Lussem, U.; Schellberg, J.; Bareth, G. Monitoring Forage Mass with Low-Cost UAV Data: Case Study at the Rengen Grassland Experiment. PFG 2020, 88, 407–422. [Google Scholar] [CrossRef]
- Cai, T.; Chang, C.; Zhao, Y.; Wang, X.; Yang, J.; Dou, P.; Otgonbayar, M.; Zhang, G.; Zeng, Y.; Wang, J. Within-Season Estimates of 10 m Aboveground Biomass Based on Landsat, Sentinel-2 and PlanetScope Data. Sci Data 2024, 11, 1276. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Xu, C.; Zhang, M.; Guo, J.; Xing, X.; Yang, D.; Xu, B.; Yang, X. Cross-Scale Mapping of above-Ground Biomass and Shrub Dominance by Integrating UAV and Satellite Data in Temperate Grassland. Remote Sens. Environ. 2024, 304, 114024. [Google Scholar] [CrossRef]
- Maesano, M.; Khoury, S.; Nakhle, F.; Firrincieli, A.; Gay, A.; Tauro, F.; Harfouche, A. UAV-Based LiDAR for High-Throughput Determination of Plant Height and Above-Ground Biomass of the Bioenergy Grass Arundo Donax. Remote Sens. 2020, 12, 3464. [Google Scholar] [CrossRef]
- Rivera-Fernandez, A.; Cotrina-Sanchez, A.; Salas López, R.; Zabaleta-Santisteban, J.; Rios, N.; Medina-Medina, A.; Tuesta-Trauco, K.; Sánchez-Vega, J.; Silva-Melendez, T.; Oliva-Cruz, M.; et al. Spatiotemporal Land Cover Change and Future Hydrological Impacts Under Climate Scenarios in the Amazonian Andes: A Case Study of the Utcubamba River Basin. Land 2025, 14, 1234. [Google Scholar] [CrossRef]
- Vallejos-Fernández, L.A.; Alvarez, W.Y.; Paredes-Arana, M.E.; Pinares-Patiño, C.; Bustíos-Valdivia, J.C.; Vásquez, H.; García-Ticllacuri, R. Productive Behavior and Nutritional Value of 22 Genotypes of Ryegrass (Lolium spp.) on Three High Andean Floors of Northern Peru. Sci. Agropecu. 2020, 11, 537–545. [Google Scholar] [CrossRef]
- Barnetson, J.; Phinn, S.; Scarth, P. Estimating Plant Pasture Biomass and Quality from UAV Imaging across Queensland’s Rangelands. AgriEngineering 2020, 2, 523–543. [Google Scholar] [CrossRef]
- Lyu, X.; Li, X.; Dang, D.; Dou, H.; Wang, K.; Lou, A. Unmanned Aerial Vehicle (UAV) Remote Sensing in Grassland Ecosystem Monitoring: A Systematic Review. Remote Sens. 2022, 14, 1096. [Google Scholar] [CrossRef]
- Rouse, J.W.; Hass, R.H.; Schell, J.A.; Deering, D.W. Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Earth Resources Technology Satellite Symposium, Washington, DC, USA, 10–14 December 1973; Volume 1, pp. 309–317. [Google Scholar]
- Gitelson, A.; Merzlyak, M.N. Spectral Reflectance Changes Associated with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. Leaves. Spectral Features and Relation to Chlorophyll Estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Buschmann, C.; Nagel, E. Variation of Reflectance Signatures of a Leaf as Indication of Physiological Activity. In Proceedings of the IGARSS ’93—IEEE International Geoscience and Remote Sensing Symposium, Tokyo, Japan, 18–21 August 1993; Volume 2, pp. 522–524. [Google Scholar]
- Gitelson, A.A.; Vina, A.; Arkebauer, T.J.; Rundquist, D.C.; Keydan, G.; Leavitt, B. Remote Estimation of Leaf Area Index and Green Leaf Biomass in Maize Canopies. Geophys. Res. Lett. 2003, 30, 4–7. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; de Colstoun, E.B.; McMurtrey, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Pañuelas, J.; Baret, F.; Filela, I. Semi-Empirical Indices to Assess Carotenoids/Chlorophyll a Ratio from Leaf Spectral Reflectance. Photosynthetica 1995, 31, 221–230. [Google Scholar]
- Gitelson, A.A.; Merzlyak, M.N.; Zur, Y.; Stark, R.; Gritz, U. Non-Destructive and Remote Sensing Techniques for Non-Destructive and Remote Sensing Techniques for Estimation of Vegetation Status Estimation of Vegetation Status. Pap. Nat. Resour. 2001. [Google Scholar]
- Gitelson, A.A.; Stark, R.; Grits, U.; Rundquist, D.; Kaufman, Y.; Derry, D. Vegetation and Soil Lines in Visible Spectral Space: A Concept and Technique for Remote Estimation of Vegetation Fraction. Int. J. Remote Sens. 2002, 23, 2537–2562. [Google Scholar] [CrossRef]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Sulik, J.J.; Long, D.S. Spectral Considerations for Modeling Yield of Canola. Remote Sens. Environ. 2016, 184, 161–174. [Google Scholar] [CrossRef]
- Hunt, D.A.; Tabor, K.; Hewson, J.H.; Wood, M.A.; Reymondin, L.; Koenig, K.; Schmitt-harsh, M.; Follett, F. Review of Remote Sensing Methods to Map Co Ff Ee Production Systems. Remote Sens. 2011, 12, 2041. [Google Scholar] [CrossRef]
- El-Shikha, D.M.; Barnes, E.M.; Clarke, T.R.; Hunsaker, D.J.; Haberland, J.A.; Pinter, P.J., Jr.; Waller, P.M.; Thompson, T.L. Remote Sensing of Cotton Nitrogen Status Using the Canopy Chlorophyll Content Index (CCCI). Trans. ASABE 2008, 51, 73–82. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Tremblay, N.; Zarco-Tejada, P.J.; Dextraze, L. Integrated Narrow-Band Vegetation Indices for Prediction of Crop Chlorophyll Content for Application to Precision Agriculture. Remote Sens. Environ. 2002, 81, 416–426. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of Soil-Adjusted Vegetation Indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Andreatta, D.; Gianelle, D.; Scotton, M.; Dalponte, M. Estimating Grassland Vegetation Cover with Remote Sensing: A Comparison between Landsat-8, Sentinel-2 and PlanetScope Imagery. Ecol. Indic. 2022, 141, 109102. [Google Scholar] [CrossRef]
- Roujean, J.L.; Breon, F.M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Wu, W. The Generalized Difference Vegetation Index (GDVI) for Dryland Characterization. Remote Sens. 2014, 6, 1211–1233. [Google Scholar] [CrossRef]
- Richardson, A.J.; Everitt, J.H. Using Spectral Vegetation Indices to Estimate Rangeland Productivity. Geocarto Int. 1992, 7, 63–69. [Google Scholar] [CrossRef]







| Site | Month | AGB Type | Mean (g) | SD (g) | CV (%) | Site | Month | AGB Type | Mean (g) | SD (g) | CV (%) |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Atuen | Feb. | Dry weight | 16.71 | 8.95 | 53.55 | Molino pampa | Mar. | Dry weight | 4.15 | 3.27 | 78.82 |
| Feb. | Fresh weight | 105.71 | 49.44 | 46.77 | Mar. | Fresh weight | 26.33 | 25.62 | 97.30 | ||
| Mar. | Dry weight | 17.41 | 20.00 | 114.85 | Apr. | Dry weight | 8.37 | 5.00 | 59.73 | ||
| Mar. | Fresh weight | 135.69 | 161.09 | 118.72 | Apr. | Fresh weight | 50.80 | 31.83 | 62.66 |
| Site—Month | Model | AGB | R2 | MAE | RMSE | Site—Month | Model | AGB | R2 | MAE | RMSE |
|---|---|---|---|---|---|---|---|---|---|---|---|
| Atuen— February | RF | Fresh | 0.551 | 0.466 | 0.556 | Molinopampa— March | RF | Fresh | 0.624 | 0.397 | 0.812 |
| RF | Dry | 0.561 | 0.087 | 0.094 | RF | Dry | 0.601 | 0.057 | 0.084 | ||
| SVM | Fresh | 0.649 | 0.417 | 0.487 | SVM | Fresh | 0.331 | 0.542 | 1.007 | ||
| SVM | Dry | 0.504 | 0.077 | 0.091 | SVM | Dry | 0.441 | 0.073 | 0.107 | ||
| Elastic Net | Fresh | 0.567 | 0.45 | 0.552 | Elastic Net | Fresh | 0.332 | 0.608 | 1.019 | ||
| Elastic Net | Dry | 0.446 | 0.085 | 0.097 | Elastic Net | Dry | 0.412 | 0.082 | 0.111 | ||
| Atuen— March | RF | Fresh | 0.92 | 1.049 | 1.812 | Molinopampa— April | RF | Fresh | 0.816 | 0.378 | 0.565 |
| RF | Dry | 0.903 | 0.137 | 0.252 | RF | Dry | 0.798 | 0.056 | 0.09 | ||
| SVM | Fresh | 0.858 | 1.671 | 2.386 | SVM | Fresh | 0.685 | 0.526 | 0.73 | ||
| SVM | Dry | 0.889 | 0.188 | 0.261 | SVM | Dry | 0.672 | 0.084 | 0.116 | ||
| Elastic Net | Fresh | 0.767 | 2.42 | 3.05 | Elastic Net | Fresh | 0.508 | 0.688 | 0.909 | ||
| Elastic Net | Dry | 0.791 | 0.284 | 0.357 | Elastic Net | Dry | 0.523 | 0.109 | 0.14 |
| Site | Month | AGB | Spatial Resolution | Mean (±SD) | Min | Max |
|---|---|---|---|---|---|---|
| Atuen | February | Fresh | 0.2 m | 130.52 (±23.91) | 75.62 | 176.26 |
| Fresh | 1 m | 130.64 (±19.87) | 85.06 | 171.53 | ||
| Dry | 0.2 m | 20.93 (±3.54) | 12.56 | 31.22 | ||
| Dry | 1 m | 20.94 (±2.74) | 13.83 | 29.61 | ||
| March | Fresh | 0.2 m | 116.90 (±92.22) | 7.61 | 325.1 | |
| Fresh | 1 m | 116.95 (±89.01) | 11.11 | 287.49 | ||
| Dry | 0.2 m | 16.99 (±12.69) | 1.49 | 42.92 | ||
| Dry | 1 m | 17.00 (±12.24) | 2.28 | 39.6 | ||
| Molinopampa | March | Fresh | 0.2 m | 23.59 (±7.06) | 6.89 | 73.6 |
| Fresh | 1 m | 23.65 (±5.14) | 9.05 | 54.79 | ||
| Dry | 0.2 m | 3.65 (±0.77) | 0.84 | 6.11 | ||
| Dry | 1 m | 3.65 (±0.62) | 1.11 | 5.33 | ||
| April | Fresh | 0.2 m | 64.11 (±14.35) | 8.09 | 105.87 | |
| Fresh | 1 m | 64.23 (±10.97) | 9.44 | 92.72 | ||
| Dry | 0.2 m | 10.55 (±2.41) | 0.68 | 18.7 | ||
| Dry | 1 m | 10.57 (±1.76) | 0.83 | 16.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Medina-Medina, A.J.; Pizarro, S.; Tuesta-Trauco, K.M.; Zabaleta-Santisteban, J.A.; Rivera-Fernandez, A.S.; Silva-López, J.O.; Salas López, R.; Terrones Murga, R.E.; Sánchez-Vega, J.A.; Silva-Melendez, T.B.; et al. Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru. Sustainability 2025, 17, 9745. https://doi.org/10.3390/su17219745
Medina-Medina AJ, Pizarro S, Tuesta-Trauco KM, Zabaleta-Santisteban JA, Rivera-Fernandez AS, Silva-López JO, Salas López R, Terrones Murga RE, Sánchez-Vega JA, Silva-Melendez TB, et al. Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru. Sustainability. 2025; 17(21):9745. https://doi.org/10.3390/su17219745
Chicago/Turabian StyleMedina-Medina, Angel J., Samuel Pizarro, Katerin M. Tuesta-Trauco, Jhon A. Zabaleta-Santisteban, Abner S. Rivera-Fernandez, Jhonsy O. Silva-López, Rolando Salas López, Renzo E. Terrones Murga, José A. Sánchez-Vega, Teodoro B. Silva-Melendez, and et al. 2025. "Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru" Sustainability 17, no. 21: 9745. https://doi.org/10.3390/su17219745
APA StyleMedina-Medina, A. J., Pizarro, S., Tuesta-Trauco, K. M., Zabaleta-Santisteban, J. A., Rivera-Fernandez, A. S., Silva-López, J. O., Salas López, R., Terrones Murga, R. E., Sánchez-Vega, J. A., Silva-Melendez, T. B., Oliva-Cruz, M., Barboza, E., & Cotrina-Sanchez, A. (2025). Integrating UAV LiDAR and Multispectral Data for Aboveground Biomass Estimation in High-Andean Pastures of Northeastern Peru. Sustainability, 17(21), 9745. https://doi.org/10.3390/su17219745

