Digital Maturity and Resilient Cities: A Coupling System for Sustainable Development of Chinese Cities
Abstract
1. Introduction
2. Literature Review
2.1. Digital Maturity
2.2. Resilient Cities
- 1.
- Structural resilience: this encompasses both governing bodies (government, enterprises, citizens, etc.) and institutional resilience.
- 2.
- Functional resilience: the ability to defend, recover, learn, and change from disasters.
- 3.
- Indemnificatory resilience: this includes supplies, technology, and legal safeguards.
2.3. Digital Maturity and Resilient Cities Governance
- 1.
- Maturity Assessment: Dynamically track urban transformation stages based on ISO standards;
- 2.
- Real-time Monitoring (IoT): Sensor networks integrate environmental, transportation, and other data;
- 3.
- Smart Mobility: Optimises public transportation and new energy vehicle management;
- 4.
- Crisis Management: AI predicts disasters and automatically activates response protocols (e.g., flood warnings);
- 5.
- Citizen Participation: Achieve transparent governance and feedback through digital portals (e.g., New York Open Data).
3. Research Methodology
3.1. Coupling Relationship
3.2. Comprehensive Evaluation Model
- 1.
- The principal component score:
- 2.
- Then, calculate the model coefficients.
- 1.
- The proportion of each indicator:
- 2.
- The information entropy value of the J indicator:
- 3.
- The coefficient of difference for the J metric:
- 4.
- The weights of each metric:
3.3. Coupling Coordination Degree Calculation
- 1.
- Coupling (C) reflects the strength of interaction between systems, with values ranging from 0 to 1. The larger the value, the stronger the interdependence and influence between systems.
- 2.
- Coupling coordination degree (CCD) is an indicator used to measure the degree of interaction, mutual influence, and ultimate collaborative development between two or more systems (or internal elements of a system). It is denoted by “D” in the formula.
- 3.
- T represents the overall development level of the two subsystems: the digital maturity level of megacities and super-large cities, and resilient cities.
3.4. Grey Relational Grade Evaluation Model
- 1.
- Set the reference column.
- 2.
- Set the coupling coordination as the reference sequence, and the criteria indicators of the subsystem are set as the comparison sequence.
- 3.
- Data normalisation processing was conduced by the formula mentioned in previous sections.
- 4.
- Calculate the grey correlation coefficient which equals the correlation coefficient of the comparison sequence and the reference sequence on the i metric.
- 5.
- Calculate the grey correlation degree:
4. Results
4.1. Comprehensive Evaluation
4.1.1. Metrics for Coupling Systems
4.1.2. Comprehensive Evaluation Results—Digital Maturity
- 1.
- General features: A Rising trend and inter-city disparities.
- 2.
- Geographical evolution trends: decreasing from the east shore to the west, with overall growth in each city cluster.
4.1.3. Comprehensive Evaluation Results—Resilient Cities
- 1.
- General characteristics: A rising trend with inter-city disparities.
- 2.
- Geographical trend: The resilience approximates with small variations among urban clusters.
4.2. Coupling Coordination Analysis
4.2.1. Coupling Coordination Calculating Results
4.2.2. Coupling Coordination Dynamic Evolution Trends
4.3. Analysis of Contributing Factors
5. Discussion
6. Conclusions
- 1.
- Insufficiency in indicator completeness and data accuracy: Failure to cover all indicators; quantitative indicators need to supplement the latest technical indicators; there are oversights in safety and resilience indicators. Future needs are to organise data, expand data acquisition channels, supplement missing data, and improve the evaluation system by integrating research hotspots.
- 2.
- The practical explanatory power of coupling coordination research needs to be improved: The conclusions are in line with the reality of China’s megacities, but the actual logic needs to be further explained through coupling coordination degree. Subsequent research needs to explore their actual relationships, not only relying on panel data but also obtaining actual situations through questionnaire surveys of urban managers and residents.
- 3.
- The factors selected in the model for influence factor analysis need to be improved: We need to consider the interactions between unfinished indicators. Future needs are to expand relevant variables and conduct in-depth research on influence factors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- United Nations Human Settlements Programme. Unlocking the Potential of Cities: Financing Sustainable Urban Development; UN-Habitat: Nairobi, Kenya, 2023; Available online: https://unhabitat.org/sites/default/files/2023/11/unlocking_the_potential_of_cities_-_financing_sustainable_urban_development_-_06-min.pdf (accessed on 20 September 2025).
- Department of Urban Social and Economic Surveys; National Bureau of Statistics of China. China Urban Development Statistical Yearbook 2023; China Statistics Press: Beijing, China, 2023. [Google Scholar]
- Marasco, S.; Noori, A.Z.; Cimellaro, G.P. Cascading Hazard Analysis of a Hospital Building. J. Struct. Eng. 2017, 143, 04017100. [Google Scholar] [CrossRef]
- Li, M.; Zhang, J.; Wang, H. A framework for managing public security risks with complex interactions in cities and its application evidenced from Shenzhen City in China. Int. J. Environ. Res. Public Health 2020, 17, 1234. [Google Scholar]
- Central Committee of the Communist Party of China; State Council. National New Urbanization Plan (2014–2020); Central People’s Government of the People’s Republic of China: Beijing, China, 2014. Available online: https://www.gov.cn/zhengce/2014-03/16/content_2640075.htm (accessed on 20 September 2025).
- Hangzhou City Brain Research Institute; Hangzhou City Brain Construction Headquarters. City Brain 2.0 Practice and Thinking—System Solutions for Smart and Efficient Governance in Mega Cities and Very Large Cities; Zhejiang People’s Publishing House: Hangzhou, China, 2025; pp. 1–350. [Google Scholar]
- Lu, J. City Brain: The Intelligent Tool for Urban Management Innovation; Academic Frontier of People’s Tribune: Beijing, China, 2021; pp. 65–69. [Google Scholar]
- Sun, Y.; Wu, K.; Zheng, G.; Zhang, X.; Lu, H.; Fang, J. City brain promotes the co-reduction of carbon and nitrogen emissions. Earth Crit. Zone 2025, 2, 100028. [Google Scholar] [CrossRef]
- Pritchard, O.; Vernon-Avery, I.; Pricopi, J.; Frost, L.; Tiaras, E.; Walmsley, N.; Liakou, L.; Lim, L.; Tan, G. Digital Cities, Resilient Cities: Delivering Urban Resilience Through Digital Solutions; Fitzgerald, R., Ed.; Arup: London, UK; Resilient Cities Network: Singapore, 2023; Available online: https://resilientcitiesnetwork.org/digital-cities-resilient-cities/ (accessed on 20 September 2025).
- Negroponte, N. Being Digital; Alfred, A. Knopf: New York, NJ, USA, 1995. [Google Scholar]
- Gore, A. The digital earth: Understanding our planet in the 21st century. Aust. Surv. 1998, 43, 89–91. [Google Scholar] [CrossRef]
- Ding, D.; Meng, H. “Digital City” is coming to us. People’s Daily, 4 June 2000; p. 4. [Google Scholar]
- Qiu, P. Problems and proposals for urban digitalization development in China. New Horiz. 2006, 6, 41–42. [Google Scholar]
- China Academy of Information and Communications Technology. Digital Economy Development in China; China Academy of Information and Communications Technology: Beijing, China, 2020. [Google Scholar]
- Zheng, L. Content, Path and Direction of Urban digital maturity. Explor. Controv. 2021, 4, 147–152+180. [Google Scholar]
- Aljowder, T.; Ali, M.; Kurnia, S. Development of a Maturity Model for Assessing Smart Cities: A Focus Area Maturity Model. Smart Cities 2023, 2150–2175. [Google Scholar] [CrossRef]
- Zhang, G.; Qian, Y.; Zhao, Y. Impact and heterogeneity of urban digitalization on innovation-space evolution from an ecological-niche perspective. R&D Manag. 2024, 36, 77–90. [Google Scholar] [CrossRef]
- Ge, Y.; Shi, Y.; Shen, Y.; Li, H. Research on the coupling and coordinated development of resilient cities and digital maturity: A case study of the Yangtze River Delta urban cluster. In Beautiful China, Co-construction, Co-governance and Sharing, Proceedings of the 2024 China Urban Planning Annual Conference, Hangzhou, China, 5–8 July 2024; Hangzhou Urban Planning and Design Institute: Hangzhou, China, 2024; pp. 89–103. [Google Scholar] [CrossRef]
- Vial, G. Understanding digital transformation: A review and a research agenda. In Managing Digital Transformation; Routledge: London, UK, 2021; pp. 13–66. [Google Scholar]
- Li, J.; Lin, H.; Zhang, J.; Yin, Y. Research on the spatial effect and influence mechanism of urban digital maturity driving residents’ consumption. Res. World 2025, 2, 75–83. [Google Scholar] [CrossRef]
- Chinoracky, R.; Corejova, T. How to evaluate the digital economy scale and potential? Entrep. Sustain. Issues 2021, 8, 536–552. [Google Scholar] [CrossRef]
- Moroz, M. The level of development of the digital economy in Poland and selected European countries: A comparative analysis. Found. Manag. 2017, 9, 175–190. [Google Scholar] [CrossRef]
- Walker, J.; Cooper, M. Genealogies of resilience: From systems ecology to the political economy of crisis adaptation. Saf. Dialogue 2011, 42, 143–160. [Google Scholar] [CrossRef]
- Holling, C.S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 1973, 4, 1–23. [Google Scholar] [CrossRef]
- Holling, C. Resilience of Ecosystems: Local Surprise and Global Change; Cambridge University Press: Cambridge, UK, 1985; pp. 228–269. [Google Scholar]
- Feng, Y.; Wang, J.; Zhang, T. The impact of smart city policies on city resilience: An evaluation of 282 Chinese cities. Sustainability 2024, 16, 8669. [Google Scholar] [CrossRef]
- Godschalk, D.R. Urban hazard mitigation: Creating resilient cities. Nat. Hazards Rev. 2003, 4, 136–143. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P.; Stults, M. Defining resilient cities: A review. Landsc. Urban Plan. 2016, 147, 38–49. [Google Scholar] [CrossRef]
- Xiao, W.; Wang, L. Resilient cities: Strategic choices for safe development of modern cities. Southeast Acad. 2019, 2, 89–99+246. [Google Scholar] [CrossRef]
- Berkes, F.; Ross, H. Community resilience: Toward an integrated approach. Soc. Nat. Resour. 2013, 26, 5–20. [Google Scholar] [CrossRef]
- Wildavsky, A.B. Searching for Safety; Transaction Publishers: Piscataway, NJ, USA, 1988; Volume 10. [Google Scholar]
- Yabe, T.; Rao, P.S.C.; Ukkusuri, S.V.; Cutter, S.L. Toward data-driven, dynamical complex systems approaches to disaster resilience. Proc. Natl. Acad. Sci. USA 2022, 119, e2111997119. [Google Scholar] [CrossRef]
- Huang, H.; Li, R.; Fan, W.; Shan, C. Characteristic analysis of safety-resilient city and its enlightenment to safety development of Xiong’an New Area. J. Saf. Sci. Technol. 2018, 14, 5–11. [Google Scholar]
- Zhu, Z.; Guo, R.; Yuan, L. resilient cities resilience evaluation framework in the context of new safety pattern: Exploration and construction. Public Manag. Policy Rev. 2024, 13, 138–151. [Google Scholar]
- Datola, G.; Bottero, M.; De Angelis, E.; Romagnoli, F. Operationalising resilience: A methodological framework for assessing urban resilience through System Dynamics Model. Ecol. Model. 2022, 465, 109851. [Google Scholar] [CrossRef]
- Bruneau, M.; Chang, S.E.; Eguchi, R.T.; Lee, G.C. A Framework to Quantitatively Assess and Enhance the Seismic Resilience of Communities. Earthq. Spectra 2003, 19, 733–752. [Google Scholar] [CrossRef]
- Anelli, D.; Morano, P.; Locurcio, M.; Tajani, F. Resilient cities and land-take effective management through sustainable urban planning tools. Land 2025, 14, 1335. [Google Scholar] [CrossRef]
- Rockefeller Foundation and Arup Group. City Resilience Framework. 2014. Available online: https://www.rockefellerfoundation.org/wp-content/uploads/100RC-City-Resilience-Framework.pdf (accessed on 18 May 2024).
- The People’s Government of Guangdong Province. Report on the Work of the Government. 2021. Available online: http://www.gd.gov.cn/gkmlpt/content/3/3185/post_3185894.html#45 (accessed on 24 April 2021).
- ISO 37123; Sustainable Cities and Communities—Indicators for Resilient Cities. International Organization for Standardization: Geneva, Switzerland, 2019.
- Apostu, S.A.; Vasile, V.; Vasile, R.; Rosak-Szyrocka, J. Do smart cities represent the key to urban resilience? Rethinking urban resilience. Int. J. Environ. Res. Public Health 2022, 19, 15410. [Google Scholar] [CrossRef]
- Yu, R.X.; Chen, Y.Q.; Jin, Y.H.; Zhang, S. Evaluating the Impact of Digital Transformation on Urban Innovation Resilience. Systems 2025, 13, 8. [Google Scholar] [CrossRef]
- Wei, J.; Wang, Y. Can smart city construction improve the performance of production-safety governance?—A time-varying difference-in-differences analysis based on panel data of 299 Chinese cities. J. South China Univ. Technol. (Soc. Sci. Ed.) 2024, 26, 116–131. [Google Scholar] [CrossRef]
- de Genaro Chiroli, D.M.; Ferrassa, T.P.; Idalgo, L.D.N.; Mick, M.M.A.P.; Kovaleski, J.L.; Aragão, F.V.; Tebcherani, S.M.; Zola, F.C. Digital Transformation for Smart and Resilient Cities: Assessing Platform Maturity and ISO 37123 Compliance. Platforms 2025, 3, 3. [Google Scholar] [CrossRef]
- Wu, C.; Huang, X.; Wang, B. Basic theoretical research progress and prospect of smart safe city from the perspective of big safety. China Saf. Prod. Sci. Technol. 2022, 18, 5–10. [Google Scholar]
- Shan, Y. Towards spatial justice: Technical governance of urban public safety. Stud. Social. Chin. Charact. 2018, 5, 74–79. [Google Scholar]
- Stankovski, T.; Pereira, T.; McClintock, P.V.E.; Stefanovska, A. Coupling functions: Dynamical interaction mechanisms in the physical, biological and social sciences. Proc. R. Soc. A Math. Phys. Eng. Sci. 2019, 377, 20190039. [Google Scholar] [CrossRef] [PubMed]
- Bai, W.; Chen, M.; Bai, F.; Huang, J. Priocity Intervention Evaluation of Community Regeneration in Megacities: A Baseline Framework for Sustainable Urban Transformation. Buildings 2024, 14, 2263. [Google Scholar] [CrossRef]
- Cover, T.M.; Thomas, J.A. Elements of Information Theory, 2nd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar] [CrossRef]
- Cheng, J.H.; Dong, M.T.; Zhao, L. A Combination Weight Method Based on MOEA/D. Control. Decis. 2021, 36, 3056–3062. [Google Scholar] [CrossRef]
- Li, X.; Wang, Y.; Zhang, L. Coupling Coordination Degree Model for Evaluating Sustainable Development of Urban Agglomerations. Sustainability 2023, 15, 6543. [Google Scholar] [CrossRef]
- Deng, J. Grey systematic review. World Sci. 1983, 7, 5. [Google Scholar]
- Fan, W.C. Development Trends of Safe and Resilient Cities. Labour Prot. 2020, 3, 20–23. [Google Scholar]
- Shang, Y. Research on Effectively Preventing and Controlling Risks in Urban Safe Development. Future City Stud. 2022, 5, 7–14. [Google Scholar]
- Wu, X.L.; Li, N.H. Why the Differences? Urban-District Relations in Digital Risk Prevention and Control of Megacities. Chin. Public Adm. 2024, 40, 30–41. [Google Scholar]
- Cui, W.; Liu, X.; Yue, Q.; Shi, Z.; Yang, X.; Zhou, L.; Yang, Z.; Cai, B.; Yue, Y.; Zhou, Y.; et al. Research on the classification of urban emerging risks based on the ‘hazard source-disaster-affected body-disaster mitigation capacity’ theory for urban safety. Strateg. Study CAE 2025, 27, 71–81. [Google Scholar]
- Fu, K. Measurement of Digital Transformation Level, Evolution Trend, and Regional Differences in Chinese Provinces. Hans J. 2025, 14, 2350–2360. [Google Scholar] [CrossRef]
- Nanjing Emergency Management Bureau. Pioneering Digital Transformation for Urban Safety Risk Monitoring and Early Warning. Classic Cases of Urban Comprehen-sive Digital Transformation, National Data Bureau of China. Available online: https://www.nda.gov.cn/sjj/ywpd/szsh/0110/20250110170454160281873_pc.html (accessed on 10 January 2025).
- Chengdu Emergency Management Bureau. White Paper on Chengdu Urban Safety Risk Comprehensive Monitoring and Early Warning Platform Construction; Chengdu Municipal Government: Chengdu, China, 2024. [Google Scholar]
- Wu, X.L.; Zuo, X.Y. Breaking Bureaucratic Constraints: Organizational Change in Digital Risk Prevention and Control in Megacities. Manag. World 2025, 128–142+164+8. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Wan, X. A review of digital twin application and safety development. J. Syst. Simul. 2019, 31, 385–392. [Google Scholar] [CrossRef]
- Wang, Z.J.; Yu, Y.; Zhang, W. Research on Coupling Coordination Degree between Higher Engineering Education and High-Tech Industry. Res. High. Eng. Educ. 2021, 5, 75–82. [Google Scholar]
- Hyun, C.T.; Lee, S.; Jin, C. Digital Twin for Disaster Management in Smart City. In Future of Information and Communication Conference; Springer: Cham, Switzerland, 2024; pp. 627–641. [Google Scholar]
- Hwang, Y.K. Synergistic Effects of Digital Economy and Renewable Energy Transition on Green Economic Growth: An Empirical Study of 18 Countries in Latin America and the Caribbean. J. Clean. Prod. 2023, 418, 138146. [Google Scholar] [CrossRef]
- Wang, X.; Li, J. Legal governance in the smart cities of China: Functions, problems, and solutions. Sustainability 2022, 14, 9738. [Google Scholar] [CrossRef]
- Sullivan, C.; Burger, E. E-residency and blockchain. Comput. Law Secur. Rev. 2017, 33, 470–481. [Google Scholar] [CrossRef]
- Newell, B.C. The massive data breach: Privacy and security in the age of the mega-leak. UCLA Law Rev. Discourse 2014, 61, 194–213. [Google Scholar]
- Reding, V. The EU Data Protection Reform: Towards a New Data Protection Era. Speech at the Center for European Policy Studies. 2012. Available online: https://ec.europa.eu/commission/presscorner/detail/en/SPEECH_12_448 (accessed on 20 September 2025).
- Mcdonald, G.; Pan, S.L. The ethics of AI in organizations: A review and research agenda. J. Bus. Ethics 2020, 167, 411–421. [Google Scholar]
- Hanisch, M.; Goldsby, C.M.; Fabian, N.E.; Oehmichen, J. Digital governance: A conceptual framework and research agenda. J. Bus. Res. 2023, 162, 113777. [Google Scholar] [CrossRef]
- Kitchin, R.; Dodge, M. The (In)security of smart cities: Vulnerabilities, risks, mitigation, and prevention. J. Urban Technol. 2019, 26, 47–65. [Google Scholar] [CrossRef]
- Sourbati, M. Smart cities and ageing: Age-inclusive design and digital equity. J. Urban Technol. 2023, 30, 89–105. [Google Scholar]
- Wood, M.A. A framework for digital inclusion: Progressive policy for closing the urban digital divide. Urban Stud. 2022, 59, 2267–2285. [Google Scholar]
- Schulz, R.; Wahl, H.-W.; Matthews, J.T.; De Vito Dabbs, A.; Beach, S.R.; Czaja, S.J. Digital ageism: How technological ageism excludes older adults from the digital world. Policy Internet 2024, 16, 45–63. [Google Scholar] [CrossRef]






| Coupling Coordination Degree | Coordination Level |
| [0, 0.1) | Extreme imbalance |
| [0.1, 0.2) | Severely imbalance |
| [0.2, 0.3) | Moderate imbalance |
| [0.3, 0.4) | Mild imbalance |
| [0.4, 0.5) | On the verge of imbalance |
| [0.5, 0.6) | Reluctant balance |
| [0.6, 0.7) | Primary balance |
| [0.7, 0.8) | Moderate balance |
| [0.8, 0.9) | good balance |
| [0.9,1] | High quality balance |
| Degree of Correlation | Correlation Type |
|---|---|
| 0–0.4 | Weak correlation |
| 0.4–0.6 | Slightly correlation |
| 0.6–0.8 | Moderate correlation |
| 0.8–1 | Strong Associations |
| System Layer | Criteria Layer | Code | Decision-Making Level | Code | Properties |
|---|---|---|---|---|---|
| Digital Maturity | Digital infrastructure | X1 | The density of long-distance optical cable lines (kilometers per square kilometer) | Y1 | + |
| The proportion of mobile phone users at the end of the year (in ten thousands) | Y2 | + | |||
| The proportion of international Internet users | Y3 | + | |||
| Digital governance | X2 | The frequency of digital-related words in the government work report | Y4 | + | |
| The establishment time of the municipal big data management platform | Y5 | + | |||
| Digital innovation capacity | X3 | The number of patent authorizations (pieces) | Y6 | + | |
| Internal expenditure on R&D (in ten thousand yuan) | Y7 | + | |||
| Digital economy | X4 | The number of employees in the information transmission, computer services and software industry (in ten thousands) | Y8 | + | |
| The proportion of telecommunications business revenue in GDP (billion yuan) | Y9 | + | |||
| The total industrial output value of the digital industry (in 100 million yuan) | Y10 | + | |||
| Digital Inclusive Finance Index | Y11 | + |
| System Layer | Criterion Layer | Code | Decision-Making Level | Code | Properties |
|---|---|---|---|---|---|
| Resilient City | Accident metrics | A1 | The total number of work safety accidents | B1 | − |
| The mortality rate of accidents per one hundred thousand population | B2 | − | |||
| The fatality rate per 10 billion yuan of GDP | B3 | − | |||
| The number of deaths in work safety accidents | B4 | − | |||
| Direct economic losses of production safety accidents | B5 | − | |||
| The mortality rate of road traffic accidents per 10,000 vehicles (person/10,000 vehicles) | B6 | − | |||
| Mortality rate of infectious diseases | B7 | − | |||
| Disaster carrier | A2 | Per capita GDP (GDP/yuan/person) | B8 | + | |
| Unemployment rate | B9 | − | |||
| Population density | B10 | − | |||
| The number of medical institutions | B11 | + | |||
| The number of earthquake emergency shelters | B12 | + | |||
| The number of fire stations | B13 | + | |||
| Urban green coverage rate | B14 | + | |||
| The treatment rate of domestic sewage in urban and town areas | B15 | + | |||
| The discharge compliance quantity of industrial wastewater (in ten thousand tons) | B16 | + | |||
| grain output | B17 | + | |||
| Urban road mileage | B18 | + | |||
| Density of social organizations (per person) | B19 | + | |||
| Safety management | A3 | The number of health workers | B20 | + | |
| The number of project initiations for the urban emergency response system in that year | B21 | + | |||
| Expenditure on disaster prevention and control and public security (in ten thousand yuan) | B22 | + |
| 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
|---|---|---|---|---|---|---|---|
| Beijing | 0.5870 | 0.5846 | 0.6239 | 0.6517 | 0.6731 | 0.6892 | 0.6929 |
| Shanghai | 0.4209 | 0.4601 | 0.5207 | 0.5502 | 0.5849 | 0.6296 | 0.6333 |
| Guangzhou | 0.3277 | 0.3725 | 0.4206 | 0.4519 | 0.4767 | 0.5054 | 0.5541 |
| Shenzhen | 0.3708 | 0.3843 | 0.4840 | 0.5226 | 0.5046 | 0.5677 | 0.6155 |
| Hangzhou | 0.1768 | 0.2035 | 0.2223 | 0.2543 | 0.2707 | 0.3105 | 0.3264 |
| Chongqing | 0.2113 | 0.2303 | 0.2689 | 0.2810 | 0.3020 | 0.3285 | 0.3341 |
| Chengdu | 0.2154 | 0.2423 | 0.2706 | 0.2650 | 0.2849 | 0.3344 | 0.3367 |
| Tianjin | 0.1840 | 0.1721 | 0.1772 | 0.1851 | 0.2015 | 0.2190 | 0.2009 |
| Nanjing | 0.1218 | 0.1359 | 0.1646 | 0.1751 | 0.1923 | 0.2161 | 0.2223 |
| Wuhan | 0.1238 | 0.1444 | 0.1669 | 0.1836 | 0.1849 | 0.2146 | 0.2179 |
| Suzhou | 0.1997 | 0.2292 | 0.2547 | 0.2789 | 0.3183 | 0.3518 | 0.3568 |
| Dalian | 0.0540 | 0.0539 | 0.0674 | 0.0752 | 0.0859 | 0.0978 | 0.1025 |
| Kunming | 0.0305 | 0.0465 | 0.0633 | 0.0654 | 0.0775 | 0.0856 | 0.0891 |
| Zhengzhou | 0.0864 | 0.1067 | 0.1239 | 0.2656 | 0.2212 | 0.1878 | 0.1987 |
| Harbin | 0.0455 | 0.0570 | 0.0565 | 0.0608 | 0.0647 | 0.0731 | 0.0762 |
| Changsha | 0.0719 | 0.0893 | 0.1013 | 0.1167 | 0.1334 | 0.1524 | 0.1613 |
| Jinan | 0.0732 | 0.0782 | 0.0899 | 0.1064 | 0.1194 | 0.1455 | 0.1512 |
| Qingdao | 0.0985 | 0.1024 | 0.1097 | 0.1230 | 0.1402 | 0.1517 | 0.1596 |
| Shenyang | 0.0590 | 0.0581 | 0.0678 | 0.0735 | 0.0771 | 0.0886 | 0.0910 |
| Foshan | 0.1017 | 0.1248 | 0.1435 | 0.1733 | 0.1739 | 0.2077 | 0.2162 |
| Xi’an | 0.1074 | 0.1280 | 0.1401 | 0.1411 | 0.1482 | 0.1679 | 0.1795 |
| Dongguan | 0.1449 | 0.1992 | 0.1663 | 0.1885 | 0.1978 | 0.2332 | 0.2478 |
| Region, Urban Cluster | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | Mean |
|---|---|---|---|---|---|---|---|---|
| Capital | 0.3855 | 0.3783 | 0.4005 | 0.4184 | 0.4373 | 0.4469 | 0.4469 | 0.4173 |
| Northeast China | 0.0528 | 0.0563 | 0.0639 | 0.0698 | 0.0759 | 0.0865 | 0.0899 | 0.0708 |
| Yangtze River Delta | 0.2298 | 0.2572 | 0.2906 | 0.3146 | 0.3416 | 0.3770 | 0.3847 | 0.3136 |
| Shandong Peninsula | 0.0858 | 0.0903 | 0.0998 | 0.1147 | 0.1298 | 0.1486 | 0.1554 | 0.1178 |
| Central region | 0.0940 | 0.1135 | 0.1307 | 0.1886 | 0.1798 | 0.1849 | 0.1927 | 0.1549 |
| Pearl River Delta | 0.2363 | 0.2702 | 0.3036 | 0.3341 | 0.3382 | 0.3785 | 0.4084 | 0.3242 |
| Western Region | 0.1411 | 0.1618 | 0.1857 | 0.1881 | 0.2031 | 0.2316 | 0.2349 | 0.1923 |
| 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | |
|---|---|---|---|---|---|---|---|
| Beijing | 0.3152 | 0.3250 | 0.3462 | 0.3596 | 0.3660 | 0.3864 | 0.3720 |
| Shanghai | 0.2671 | 0.2519 | 0.2855 | 0.3016 | 0.3467 | 0.3374 | 0.3590 |
| Guangzhou | 0.2915 | 0.2606 | 0.2605 | 0.3088 | 0.2836 | 0.2853 | 0.3070 |
| Shenzhen | 0.2876 | 0.3014 | 0.3170 | 0.3546 | 0.3311 | 0.3412 | 0.3692 |
| Hangzhou | 0.2227 | 0.2145 | 0.2349 | 0.2455 | 0.2549 | 0.2866 | 0.2643 |
| Chongqing | 0.2325 | 0.2374 | 0.2279 | 0.2361 | 0.2356 | 0.2473 | 0.2580 |
| Chengdu | 0.1594 | 0.2157 | 0.1855 | 0.2063 | 0.2256 | 0.2185 | 0.2142 |
| Tianjin | 0.1675 | 0.1867 | 0.2036 | 0.2255 | 0.2393 | 0.2509 | 0.2540 |
| Nanjing | 0.1600 | 0.1749 | 0.1913 | 0.2064 | 0.1853 | 0.1928 | 0.1971 |
| Wuhan | 0.1788 | 0.1660 | 0.2006 | 0.1938 | 0.1951 | 0.2050 | 0.2112 |
| Suzhou | 0.1657 | 0.1888 | 0.1870 | 0.1976 | 0.2205 | 0.2183 | 0.2477 |
| Dalian | 0.1672 | 0.1608 | 0.1657 | 0.1672 | 0.1614 | 0.1721 | 0.1735 |
| Kunming | 0.1341 | 0.1798 | 0.1682 | 0.1690 | 0.1718 | 0.1791 | 0.1685 |
| Zhengzhou | 0.1849 | 0.2043 | 0.1995 | 0.2282 | 0.2492 | 0.2397 | 0.2156 |
| Harbin | 0.1492 | 0.1326 | 0.1427 | 0.1544 | 0.1265 | 0.1310 | 0.1323 |
| Changsha | 0.1759 | 0.2007 | 0.1892 | 0.1758 | 0.1724 | 0.1721 | 0.1989 |
| Jinan | 0.1874 | 0.1918 | 0.2109 | 0.2387 | 0.2495 | 0.2558 | 0.2602 |
| Qingdao | 0.1941 | 0.2093 | 0.2294 | 0.2475 | 0.2563 | 0.2691 | 0.2650 |
| Shenyang | 0.1586 | 0.1771 | 0.1512 | 0.1626 | 0.1774 | 0.1804 | 0.1847 |
| Foshan | 0.1264 | 0.1328 | 0.1550 | 0.1678 | 0.1693 | 0.1720 | 0.1724 |
| Xi’an | 0.1534 | 0.1792 | 0.1460 | 0.1843 | 0.1785 | 0.1768 | 0.1984 |
| Dongguan | 0.2084 | 0.2049 | 0.1890 | 0.2048 | 0.2079 | 0.2230 | 0.2331 |
| 2016 | 2017 | 2018 | 2019 | 2020 | 2021 | 2022 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| C | D | C | D | C | D | C | D | C | D | C | D | C | D | |
| Beijing | 0.9535 | 0.6558 | 0.9584 | 0.6602 | 0.9581 | 0.6817 | 0.9574 | 0.6958 | 0.9553 | 0.7045 | 0.9596 | 0.7184 | 0.9535 | 0.7125 |
| Shanghai | 0.9747 | 0.5790 | 0.9563 | 0.5835 | 0.9565 | 0.6209 | 0.9565 | 0.6383 | 0.9668 | 0.6711 | 0.9532 | 0.6789 | 0.9610 | 0.6905 |
| Guangzhou | 0.9983 | 0.5559 | 0.9843 | 0.5582 | 0.9720 | 0.5753 | 0.9822 | 0.6112 | 0.9672 | 0.6064 | 0.9605 | 0.6162 | 0.9579 | 0.6422 |
| Shenzhen | 0.9920 | 0.5714 | 0.9927 | 0.5834 | 0.9780 | 0.6258 | 0.9815 | 0.6561 | 0.9782 | 0.6393 | 0.9685 | 0.6634 | 0.9682 | 0.6905 |
| Hangzhou | 0.9934 | 0.4454 | 0.9997 | 0.4571 | 0.9996 | 0.4780 | 0.9998 | 0.4999 | 0.9995 | 0.5125 | 0.9992 | 0.5462 | 0.9945 | 0.5420 |
| Chongqing | 0.9989 | 0.4708 | 0.9999 | 0.4835 | 0.9966 | 0.4975 | 0.9962 | 0.5075 | 0.9923 | 0.5164 | 0.9900 | 0.5338 | 0.9917 | 0.5419 |
| Chengdu | 0.9888 | 0.4304 | 0.9983 | 0.4781 | 0.9824 | 0.4733 | 0.9922 | 0.4836 | 0.9932 | 0.5035 | 0.9778 | 0.5199 | 0.9749 | 0.5182 |
| Tianjin | 0.9989 | 0.4190 | 0.9992 | 0.4233 | 0.9976 | 0.4358 | 0.9952 | 0.4520 | 0.9963 | 0.4686 | 0.9977 | 0.4841 | 0.9932 | 0.4753 |
| Nanjing | 0.9908 | 0.3736 | 0.9921 | 0.3927 | 0.9972 | 0.4212 | 0.9966 | 0.4360 | 0.9998 | 0.4345 | 0.9984 | 0.4518 | 0.9982 | 0.4575 |
| Wuhan | 0.9834 | 0.3857 | 0.9976 | 0.3935 | 0.9958 | 0.4278 | 0.9996 | 0.4343 | 0.9996 | 0.4359 | 0.9997 | 0.4580 | 0.9999 | 0.4632 |
| Suzhou | 0.9957 | 0.4265 | 0.9953 | 0.4561 | 0.9882 | 0.4671 | 0.9853 | 0.4845 | 0.9834 | 0.5147 | 0.9722 | 0.5265 | 0.9836 | 0.5452 |
| Dalian | 0.8590 | 0.3082 | 0.8673 | 0.3052 | 0.9067 | 0.3251 | 0.9251 | 0.3348 | 0.9523 | 0.3432 | 0.9614 | 0.3602 | 0.9664 | 0.3652 |
| Kunming | 0.7772 | 0.2529 | 0.8081 | 0.3024 | 0.8915 | 0.3213 | 0.8971 | 0.3243 | 0.9256 | 0.3397 | 0.9355 | 0.3519 | 0.9513 | 0.3500 |
| Zhengzhou | 0.9317 | 0.3555 | 0.9496 | 0.3843 | 0.9723 | 0.3965 | 0.9971 | 0.4962 | 0.9982 | 0.4846 | 0.9926 | 0.4606 | 0.9992 | 0.4549 |
| Harbin | 0.8464 | 0.2871 | 0.9170 | 0.2949 | 0.9015 | 0.2996 | 0.9003 | 0.3112 | 0.9462 | 0.3008 | 0.9590 | 0.3129 | 0.9631 | 0.3169 |
| Changsha | 0.9076 | 0.3354 | 0.9233 | 0.3659 | 0.9531 | 0.3721 | 0.9794 | 0.3785 | 0.9918 | 0.3894 | 0.9981 | 0.4024 | 0.9945 | 0.4233 |
| Jinan | 0.8988 | 0.3422 | 0.9073 | 0.3500 | 0.9155 | 0.3711 | 0.9237 | 0.3992 | 0.9358 | 0.4155 | 0.9615 | 0.4392 | 0.9642 | 0.4453 |
| Qingdao | 0.9451 | 0.3719 | 0.9394 | 0.3826 | 0.9356 | 0.3983 | 0.9418 | 0.4177 | 0.9562 | 0.4354 | 0.9603 | 0.4495 | 0.9687 | 0.4535 |
| Shenyang | 0.8892 | 0.3111 | 0.8626 | 0.3185 | 0.9247 | 0.3182 | 0.9261 | 0.3307 | 0.9191 | 0.3420 | 0.9400 | 0.3556 | 0.9405 | 0.3601 |
| Foshan | 0.9941 | 0.3367 | 0.9995 | 0.3588 | 0.9993 | 0.3862 | 0.9999 | 0.4129 | 0.9999 | 0.4143 | 0.9956 | 0.4347 | 0.9936 | 0.4394 |
| Xi’an | 0.9843 | 0.3583 | 0.9860 | 0.3892 | 0.9998 | 0.3782 | 0.9912 | 0.4016 | 0.9957 | 0.4033 | 0.9997 | 0.4151 | 0.9987 | 0.4345 |
| Dongguan | 0.9837 | 0.4169 | 0.9999 | 0.4495 | 0.9979 | 0.4211 | 0.9991 | 0.4433 | 0.9997 | 0.4503 | 0.9998 | 0.4775 | 0.9995 | 0.4902 |
| X1 | X2 | X3 | X4 | A1 | A2 | A3 | |
|---|---|---|---|---|---|---|---|
| 2016 | 0.569 | 0.826 | 0.48 | 0.528 | 0.498 | 0.716 | 0.552 |
| 2017 | 0.576 | 0.838 | 0.48 | 0.581 | 0.535 | 0.685 | 0.574 |
| 2018 | 0.52 | 0.673 | 0.451 | 0.437 | 0.395 | 0.46 | 0.414 |
| 2019 | 0.611 | 0.935 | 0.476 | 0.649 | 0.632 | 0.691 | 0.518 |
| 2020 | 0.607 | 0.88 | 0.5 | 0.671 | 0.506 | 0.688 | 0.469 |
| 2021 | 0.615 | 0.96 | 0.522 | 0.76 | 0.514 | 0.691 | 0.456 |
| 2022 | 0.614 | 0.965 | 0.517 | 0.778 | 0.485 | 0.698 | 0.496 |
| Evaluation Item | Degree of Correlation | Ranking |
|---|---|---|
| X1 | 0.587 | 4 |
| X2 | 0.853 | 1 |
| X3 | 0.49 | 7 |
| X4 | 0.629 | 3 |
| A1 | 0.509 | 5 |
| A2 | 0.661 | 2 |
| A3 | 0.497 | 6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, W.; Wang, Z.; Yin, S. Digital Maturity and Resilient Cities: A Coupling System for Sustainable Development of Chinese Cities. Sustainability 2025, 17, 9732. https://doi.org/10.3390/su17219732
Xu W, Wang Z, Yin S. Digital Maturity and Resilient Cities: A Coupling System for Sustainable Development of Chinese Cities. Sustainability. 2025; 17(21):9732. https://doi.org/10.3390/su17219732
Chicago/Turabian StyleXu, Wanxiao, Ziqiang Wang, and Simin Yin. 2025. "Digital Maturity and Resilient Cities: A Coupling System for Sustainable Development of Chinese Cities" Sustainability 17, no. 21: 9732. https://doi.org/10.3390/su17219732
APA StyleXu, W., Wang, Z., & Yin, S. (2025). Digital Maturity and Resilient Cities: A Coupling System for Sustainable Development of Chinese Cities. Sustainability, 17(21), 9732. https://doi.org/10.3390/su17219732

