Research on the Coordinated Development of Green Technological Innovation in the Yangtze River Economic Belt Urban Agglomerations from the Perspective of Sustainable Development
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Methods
2.1.1. Measuring Green Technological Innovation Efficiency
2.1.2. Gravity Model
2.1.3. GMM Model
2.2. Data Sources
2.2.1. Input and Output Variables for Green Technological Innovation Efficiency
2.2.2. Control Variables of the GMM Model
3. Results
3.1. Measuring Green Technological Innovation Efficiency and Spatial Patterns in the YREB
3.1.1. Measuring Green Technological Innovation Development Efficiency in the YREB
3.1.2. Spatial–Temporal Evolution of Synergistic Development Between TIE and GCP
3.2. Metric Inspection and Regression Analysis
3.2.1. Descriptive Statistics
3.2.2. Empirical Research and Result Analysis
- (1)
- Benchmark Regression Results
- (2)
- Analysis of Heterogeneity Based on Industrial Structure
- (3)
- Robustness Test
4. Discussion
5. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, D.; Sun, P.; Bi, C.; Shi, Z. Whether the development strategy of the Yangtze River Economic Belt can achieve the double welfare effects of synergistic governance of pollution control and carbon reduction? Urban Clim. 2024, 56, 102083. [Google Scholar] [CrossRef]
- Chen, D.; Li, Y.; Zhang, C.; Zhang, Y.; Hou, J.; Lin, Y.; Wu, S.; Lang, Y.; Hu, W. Regional coordinated development policy as an instrument for alleviating land finance dependency: Evidence from the urban agglomeration development. Land Use Policy 2024, 143, 107182. [Google Scholar] [CrossRef]
- Wang, Q.; Ren, S. Evaluation of green technology innovation efficiency in a regional context: A dynamic network slacks-based measuring approach. Technol. Forecast. Soc. Change 2022, 182, 121836. [Google Scholar]
- Liu, P.; Zhao, Y.; Zhu, J.; Yang, C. Technological industry agglomeration, green innovation efficiency, and development quality of city cluster. Green Financ. 2022, 4, 411. [Google Scholar]
- Xu, X.; He, Y.; Tan, Q.; Chen, X. Measurement and driving mechanisms of water use efficiency in the three major urban agglomerations in China from the perspective of green and sustainable development. Ecol. Indic. 2025, 178, 114094. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, L.; Chen, X.; Ling, L. Energy-biased technological progress and green innovation: Evidence from Chinese cities. Renew. Energy 2025, 256, 124079. [Google Scholar] [CrossRef]
- Chen, X.; Chen, Y.; Huang, W.; Zhang, X. A new Malmquist-type green total factor productivity measure: An application to China. Energy Econ. 2023, 117, 106408. [Google Scholar]
- Yang, K.; Kuang, J. Can green location-oriented policy enhance urban green innovation efficiency? Evidence from national ecological industrial demonstration parks. J. Clean. Prod. 2025, 524, 146469. [Google Scholar] [CrossRef]
- Zuo, Z.; Guo, H.; Li, Y.; Cheng, J. A two-stage DEA evaluation of Chinese mining industry technological innovation efficiency and eco-efficiency. Environ. Impact Assess. Rev. 2022, 94, 106762. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, X.; Liu, B.; Huang, Y. Evaluation of green low-carbon innovation development efficiency: An improved two-stage non-cooperative DEA model. J. Clean. Prod. 2023, 400, 136662. [Google Scholar] [CrossRef]
- Wu, J.; Wang, S.; Zhang, R.; Zhao, M.; Sun, X.; Qie, X.; Wang, Y. Measurement of green innovation efficiency in Chinese listed energy-intensive enterprises based on the three stage Super-SBM model. Int. Rev. Econ. Financ. 2025, 97, 103819. [Google Scholar] [CrossRef]
- Jie, H. Overall optimization model of efficiency and performance of green technology innovation. Sustain. Comput. Inform. Syst. 2021, 30, 100501. [Google Scholar] [CrossRef]
- Kao, C.; Huang, S.N. Efficiency decomposition in two-stage data envelopment analysis: An application to non-life insurance companies in Taiwan. Oper. Res. 1995, 180, 418–429. [Google Scholar] [CrossRef]
- Lin, T.; Chen, Z. Does market integration promote green technology innovation? Evidence from China. Front. Environ. Sci. 2022, 10, 1097616. [Google Scholar] [CrossRef]
- Wang, M.; Li, Y.; Wang, Z.; Shi, Y. The synergy impact of external environmental pressures and corporate environmental commitment on innovations in green technology. Corp. Soc. Responsib. Environ. Manag. 2024, 31, 854–878. [Google Scholar] [CrossRef]
- Bataineh, M.J.; Sánchez-Sellero, P.; Ayad, F. Green is the new black: How research and development and green innovation provide businesses a competitive edge. Bus. Strategy Environ. 2024, 33, 1004–1023. [Google Scholar] [CrossRef]
- Sun, Y.M.; Mei, X.; Zhan, S.M. A Study on the Temporal and spatial pattern and driving forces of green technology innovation in Yangtze River Delta urban agglomeration. J. Jianghuai Trib. 2021, 1, 13–22, 61. (In Chinese) [Google Scholar]
- Wang, L.; Zhang, F.; Zang, Y.; Duan, J. Understanding the regional integration process from the perspective of agglomeration and urban networks: Case study in central China. Int. J. Environ. Res. Public Health 2022, 19, 12834. [Google Scholar] [CrossRef]
- Chai, D.; Du, J.; Yu, Z.; Zhang, D. City network mining in China’s Yangtze river economic belt based on “two-way time distance” modified gravity model and social network analysis. Front. Phys. 2022, 10, 1018993. [Google Scholar] [CrossRef]
- Tian, Y.; Mao, Q. The effect of regional integration on urban sprawl in urban agglomeration areas: A case study of the Yangtze River Delta, China. Habitat Int. 2022, 130, 102695.20. [Google Scholar] [CrossRef]
- Li, Y.J.; Chen, Y.; Liang, L.; Xian, J.H. DEA models for extended two-stage network structures. Omega 2012, 40, 611–618. [Google Scholar] [CrossRef]
- Ma, J.F.; Qi, L.N.; Deng, L.Z. DEA efficiency evaluation of hybrid two-stage system with additive inputs. J. Syst. Eng. 2020, 35, 276–288. (In Chinese) [Google Scholar]
- Liu, L.; Luo, J.; Xiao, X.; Hu, B.; Qi, S.; Lin, H.; Zu, X. Spatio-Temporal Evolution of Urban Innovation Networks: A Case Study of the Urban Agglomeration in the Middle Reaches of the Yangtze River, China. Land 2022, 11, 597. [Google Scholar] [CrossRef]
- Lu, L.W.; Song, D.Y.; Huang, C. Measurement on the green total factor productivity of YREB: Taking 108 cities for example. J. Urban Probl. 2017, 01, 61–67. (In Chinese) [Google Scholar]
- Lu, X.J.; Shi, P.F.; Deng, Z.W.; Li, X.; Hu, Y. Calculation of green production efficiency of tourism in YREB and analysis of its spatial and temporal evolution. China Popul. Resour. Environ. 2019, 29, 19–30. (In Chinese) [Google Scholar]
- Yin, H.; Zhang, Z.; Wan, Y.; Gao, Z.; Guo, Y.; Xiao, R. Sustainable network analysis and coordinated development simulation of urban agglomerations from multiple perspectives. J. Clean. Prod. 2023, 413, 137378. [Google Scholar] [CrossRef]
- Li, Y.; Fang, Y.; Meng, Q. Spatial pattern evolution and driving factors of urban green technology innovation in China. J. Geogr. Sci. 2024, 34, 289–308. [Google Scholar] [CrossRef]
- Li, M.; Chen, Y. Evaluation and spatiotemporal evolution of green innovation efficiency in China: A two-stage value chain perspective. Eng. Manag. Prod. Serv. 2024, 16, 48–68. [Google Scholar] [CrossRef]



| Variable | Obs | Mean | Std. Dev. | Min. | Max. |
|---|---|---|---|---|---|
| TIE | 1050 | 0.340 | 0.236 | 0.028 | 1.000 |
| GCP | 1050 | 0.840 | 0.159 | 0.362 | 1.000 |
| GTIE | 1050 | 0.289 | 0.219 | 0.028 | 1.000 |
| NSS_ECO | 1050 | 0.064 | 0.051 | 0.004 | 0.187 |
| NSS_TIE | 1050 | 0.064 | 0.042 | 0.013 | 0.152 |
| NSS_GCP | 1050 | 0.064 | 0.022 | 0.029 | 0.110 |
| Ur | 1050 | 54.837 | 13.288 | 21.300 | 89.6 |
| Dig | 1050 | 1.234 | 0.963 | 0.108 | 8.609 |
| Gov | 1050 | 0.155 | 0.057 | 0.057 | 0.675 |
| Out | 1050 | 0.025 | 0.020 | 0.000 | 0.117 |
| Mar | 1050 | 1.310 | 0.931 | 0.052 | 17.141 |
| Variable | GTIE | TIE | GCP | TIE | GCP |
|---|---|---|---|---|---|
| L.GTIE | 0.660 *** | ||||
| (0.089) | |||||
| L.TIE | 0.667 *** | 0.691 *** | |||
| (0.098) | (0.104) | ||||
| L.GCP | 0.660 *** | 0.578 ** | |||
| (0.089) | (0.086) | ||||
| NSS_ECO | 0.701 *** | 0.720 *** | 0.276 ** | ||
| (0.201) | (0.228) | (0.134) | |||
| NSS_TIE | 0.353 ** | ||||
| (0.140) | |||||
| NSS_GCP | 1.574 *** | ||||
| (0.545) | |||||
| Control Variables | Yes | Yes | Yes | Yes | Yes |
| Constants | Yes | Yes | Yes | Yes | Yes |
| AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| AR(2) | 0.300 | 0.209 | 0.119 | 0.248 | 0.115 |
| Sargan | 0.710 | 0.490 | 0.784 | 0.980 | 0.918 |
| Variable | High-Advanced Industrial Structure | Low-Advanced Industrial Structure | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|
| GTIE | TIE | GCP | TIE | GCP | GTIE | TIE | GCP | TIE | GCP | |
| L.GTIE | 0.582 *** | 0.627 *** | ||||||||
| (0.129) | (0.121) | |||||||||
| L.TIE | 0.618 *** | 0.646 *** | 0.641 *** | 0.635 *** | ||||||
| (0.129) | (0.126) | (0.138) | (0.141) | |||||||
| L.GCP | 0.651 *** | 0.362 ** | 0.566 *** | 1.324 ** | 0.578 *** | |||||
| (0.142) | (0.151) | (0.123) | (0.553) | (0.124) | ||||||
| NSS_ECO | 0.651 ** | 0.570 ** | 0.341 * | 0.764 *** | 0.750 ** | 0.248 | ||||
| (0.267) | (0.289) | (0.186) | (0.275) | (0.328) | (0.179) | |||||
| NSS_TIE | 0.454 ** | 0.273 | ||||||||
| (0.219) | (0.179) | |||||||||
| NSS_GCP | 1.506 *** | |||||||||
| (0.539) | ||||||||||
| Control Variables | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| Constants | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
| AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| AR(2) | 0.663 | 0.157 | 0.802 | 0.191 | 0.865 | 0.272 | 0.249 | 0.918 | 0.261 | 0.877 |
| Hansen | 0.787 | 0.850 | 0.922 | 0.697 | 0.853 | 0.387 | 0.292 | 0.889 | 0.280 | 0.895 |
| Variable | GTIE | TIE | GCP | TIE | GCP |
|---|---|---|---|---|---|
| L.GTIE | 0.574 *** | ||||
| (0.064) | |||||
| L.TIE | 0.539 *** | 0.506 *** | |||
| (0.066) | (0.072) | ||||
| L.GCP | 0.603 *** | 0.752 *** | |||
| (0.128) | (0.196) | ||||
| NSS | 0.461 *** | 0.496 *** | 0.472 ** | ||
| (0.149) | (0.168) | (0.211) | |||
| NSS_TIE | 0.425 *** | ||||
| (0.232) | |||||
| NSS_GCP | 1.426 *** | ||||
| (0.316) | |||||
| Control Variables | Yes | Yes | Yes | Yes | Yes |
| Constants | Yes | Yes | Yes | Yes | Yes |
| AR(1) | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
| AR(2) | 0.439 | 0.318 | 0.234 | 0.352 | 0.231 |
| Hansen | 0.811 | 0.884 | 0.199 | 0.698 | 0.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ding, W.; Dong, Y. Research on the Coordinated Development of Green Technological Innovation in the Yangtze River Economic Belt Urban Agglomerations from the Perspective of Sustainable Development. Sustainability 2025, 17, 9689. https://doi.org/10.3390/su17219689
Ding W, Dong Y. Research on the Coordinated Development of Green Technological Innovation in the Yangtze River Economic Belt Urban Agglomerations from the Perspective of Sustainable Development. Sustainability. 2025; 17(21):9689. https://doi.org/10.3390/su17219689
Chicago/Turabian StyleDing, Wangwang, and Ying Dong. 2025. "Research on the Coordinated Development of Green Technological Innovation in the Yangtze River Economic Belt Urban Agglomerations from the Perspective of Sustainable Development" Sustainability 17, no. 21: 9689. https://doi.org/10.3390/su17219689
APA StyleDing, W., & Dong, Y. (2025). Research on the Coordinated Development of Green Technological Innovation in the Yangtze River Economic Belt Urban Agglomerations from the Perspective of Sustainable Development. Sustainability, 17(21), 9689. https://doi.org/10.3390/su17219689
