Emerging Passenger Archetypes: Profiling Potential Users of Autonomous Buses in Warsaw
Abstract
1. Introduction
- What users’ profiles can be identified for the potential application of autonomous vehicles?
- How does the main AVs adaptation user profile differ in terms of sociodemographic characteristics?
- To what extent does overall trust in technology determine the social acceptance of autonomous buses?
- Which population groups are more likely to use AVs in the future?
2. Literature Review
3. Research Method
3.1. Case Study Description
3.2. Research Data and Sample
3.3. Measurement
4. Research Results
5. Discussion
6. Conclusions
- Pilot deployments should be prioritized in districts with a high concentration of enthusiastic adopters (e.g., university campuses, cemeteries, business districts), where acceptance and willingness to test autonomous buses are already strong; examples of areas for consideration include The Warsaw University of Life Sciences, Powąski Cemetery in Warsaw or North Municipal Cemetery. For example, the campus of The Warsaw University of Life Sciences covers an area of 70 hectares, and the distance between its furthest points is 1300 m. The Powąski Cemetery covers an area of 43 hectares, and the distance between its furthest points is 2 km. North Municipal Cemetery covers area 143 hectares.
- Communication and educational strategies should be tailored specifically to sceptical opponents.
- Cautious optimists require transparent, evidence-based messaging; it is recommended to present real pilot data (e.g., number of incident-free kilometers, punctuality rates, congestion reduction) to strengthen trust through facts rather than promises.
- In parallel with pilot projects, public transport authorities should invest in trust-building initiatives, such as interactive demonstrations, supervised test rides, or temporary human operator presence, helping to mitigate concerns related to loss of control and unfamiliarity with the technology.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| AV | Autonomous vehicle |
| AVTAM | Autonomous Vehicles Technology Acceptance Model |
| CAWI | Computer-Assisted Web Interviewing |
| CAPI | Computer-Assisted Personal Interviewing |
| CATI | Computer-Assisted Telephone Interviewing |
| CNBC | Consumer News and Business Channel |
| CO2 | Carbon Dioxide |
| EEA | European Environment Agency |
| IoT | Internet of Things |
| SAVs | Shared Autonomous Vehicles |
| TAM | Technology Acceptance Model |
| UTAUT | Unified Theory of Acceptance and Use of Technology |
| V2I | Vehicle-to-Infrastructure Communication |
References
- Hieber, N.; Fischer-Pressler, D.; Pröbster, M.; Kutz, J.; Marsden, N. Beyond Acceptance Models: The Role of Social Perceptions in Autonomous Public Transportation Acceptance. In HCI in Mobility, Transport, and Automotive Systems; Krömker, H., Ed.; Springer Nature Switzerland: Cham, Switzerland, 2024; pp. 26–39. [Google Scholar]
- Jaszberenyi, M.; Asvanyi, K.; Csiszar, C.; Kokeny, L. Demographic and social differences in autonomous vehicle technology acceptance in Hungary. J. Eng. Technol. Manag. 2024, 72, 101813. [Google Scholar] [CrossRef]
- Ariza-Álvarez, A.M.; Eugenia, L.L.; Soria-Lara, J.A. Analysing the acceptance of autonomous buses in real-life traffic environments: Pilot project with tourists in Malaga, Spain. Transp. Plan. Technol. 2023, 46, 71–92. [Google Scholar] [CrossRef]
- Li, Z.; Tang, J.; Feng, T.; Liu, B.; Cao, J.; Yu, T.; Ji, Y. Investigating urban mobility through multi-source public transportation data: A multiplex network perspective. Appl. Geogr. 2024, 169, 103337. [Google Scholar] [CrossRef]
- Quinones, M.; Romero, J.; Schmitz, A.; Díaz-Martín, A.M. What factors determine the intention to use and recommend public autonomous shuttles in a real-life setting? Eur. J. Manag. Bus. Econ. 2024; ahead-of-print. [Google Scholar]
- Huang, G.; Hung, Y.H.; Proctor, R.W.; Pitts, B.J. Age is more than just a number: The relationship among age, non-chronological age factors, self-perceived driving abilities, and autonomous vehicle acceptance. Accid. Anal. Prev. 2022, 178, 106850. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Wang, Y.; Aaron Wyatt, D. How do age and gender influence the acceptance of automated vehicles?—Revealing the hidden mediating effects from the built environment and personal factors. Transp. Res. Part A Policy Pract. 2022, 165, 376–394. [Google Scholar] [CrossRef]
- Bęczkowska, S.; Czerepicki, A.; Grabarek, I.; Kozłowski, M.; Zysk, Z. Autonomous Vehicles as Viewed by Future Users in Poland. Sustainability 2023, 15, 16627. [Google Scholar] [CrossRef]
- Dudziak, A.; Stoma, M.; Kuranc, A.; Caban, J. Assessment of Social Acceptance for Autonomous Vehicles in Southeastern Poland. Energies 2021, 14, 5778. [Google Scholar] [CrossRef]
- Stoma, M.; Dudziak, A.; Caban, J.; Droździel, P. The Future of Autonomous Vehicles in the Opinion of Automotive Market Users. Energies 2021, 14, 6477. [Google Scholar] [CrossRef]
- WorldBank. Urban Development. Available online: https://www.worldbank.org/en/topic/urbandevelopment/overview (accessed on 29 September 2025).
- Central Statistical Office. Available online: https://bdl.stat.gov.pl/bdl/start (accessed on 29 September 2025).
- Szpilko, D.; Budna, K.; Drmeyan, H.; Remiszewska, A. Sustainable and smart mobility—Research directions. A systematic literature review. Econ. Environ. 2023, 86, 31–61. [Google Scholar] [CrossRef]
- Tomaszewska, E.J.; Florea, A. Urban smart mobility in the scientific literature—Bibliometric analysis. Eng. Manag. Prod. Serv. 2018, 10, 41–56. [Google Scholar] [CrossRef]
- Winkowska, J.; Szpilko, D.; Pejić, S. Smart city concept in the light of the literature review. Eng. Manag. Prod. Serv. 2019, 11, 70–86. [Google Scholar] [CrossRef]
- Semanjski, I.C. Introduction to smart mobility. In Smart Urban Mobility; Elsevier: Amsterdam, The Netherlands, 2023; pp. 9–23. [Google Scholar]
- Szpilko, D.; Naharro, F.J.; Lăzăroiu, G.; Nica, E.; de la Torre Gallegos, A. Artificial intelligence in the smart city—A literature review. Eng. Manag. Prod. Serv. 2023, 15, 53–75. [Google Scholar] [CrossRef]
- Gulc, A.; Budna, K. Classification of Smart and Sustainable Urban Mobility. Energies 2024, 17, 2148. [Google Scholar] [CrossRef]
- Li, H.; Jin, Z.; Cui, H.; Tu, H. An exploration of the preferences and mode choice behavior between autonomous demand-responsive transit and traditional buses. Int. J. Transp. Sci. Technol. 2024, 15, 81–101. [Google Scholar] [CrossRef]
- Distefano, N.; Leonardi, S. Fostering Urban Walking: Strategies Focused on Pedestrian Satisfaction. Sustainability 2023, 15, 16649. [Google Scholar] [CrossRef]
- Monteagudo, M.J.; Villatoro, F.; San Salvador del Valle, R.; Aranbarri, N. Use and Promotion of Bicycles for Sustainable Urban Mobility: The Case of Bizkaia. Sustainability 2025, 17, 1147. [Google Scholar] [CrossRef]
- Aguilera-García, Á.; Gomez, J.; Rangel, T.; Baeza, M.d.L.Á.; Vassallo, J.M. Which factors influence the use of shared and privately-owned e-scooters in the city of Madrid? Implications for urban mobility. Cities 2024, 147, 104785. [Google Scholar] [CrossRef]
- Gulc, A.; Budna, K. Czynniki determinujące wdrożenie rozwiązań z zakresu zrównoważonej i inteligentnej mobilności miejskiej. Przegląd Organ. 2023, 3, 24–36. [Google Scholar] [CrossRef]
- Munkácsy, A.; Földes, D.; Miskolczi, M.; Jászberényi, M. Urban mobility in the future: Text analysis of mobility plans. Eur. Transp. Res. Rev. 2024, 16, 29. [Google Scholar] [CrossRef]
- European Court of Auditors. Sustainable urban mobility in the EU—Without commitment from Member States, no significant improvement will be possible. 2020. Available online: https://op.europa.eu/webpub/eca/special-reports/urban-mobility-6-2020/pl/ (accessed on 28 September 2025).
- Hanusik, A. Charakterystyka kongestii transportowej w Katowicach. Inst. Rozw. Miast I Reg. 2017, 3, 11–16. [Google Scholar]
- European Parliament. Emisje CO2 z Samochodów: Fakty i Liczby. 2019. Available online: https://www.europarl.europa.eu/topics/pl/article/20190313STO31218/emisje-co2-z-samochodow-fakty-i-liczby-infografiki (accessed on 15 September 2025).
- World Health Organization. Air Pollution. 2025. Available online: https://www.who.int/health-topics/air-pollution#tab=tab_1 (accessed on 23 April 2025).
- Petropoulou, P.; Artopoulou, I.; Kalemikerakis, I.; Govina, O. Environment and Public Health: Air Pollution and Chronic Diseases. Environ. Sci. Proc. 2023, 26, 118. [Google Scholar]
- European Environment Agency. Noise. 2024. Available online: https://www.eea.europa.eu/en/topics/in-depth/noise (accessed on 15 April 2025).
- ISGlobal Ranking of Cities. Rankings. 2025. Available online: https://isglobalranking.org/ranking/#noise (accessed on 23 April 2025).
- Gulc, A. Mapping Smart and Sustainable Mobility Innovations in Modern Cities. In Proceedings of the Future Technologies Conference (FTC) 2024, Volume 2; Lecture Notes in Networks and Systems 1155; Springer: Cham, Switzerland, 2024; pp. 372–379. [Google Scholar]
- Gadziński, J.; Goras, E. Transport i Mobilność Miejska; Instytut Rozwoju Miast i Regionów: Warsaw, Poland, 2019. [Google Scholar]
- Yannis, G.; Chaziris, A. Transport System and Infrastructure. Transp. Res. Procedia 2022, 60, 6–11. [Google Scholar] [CrossRef]
- Ospina, J.P.; Duque, J.C.; Botero-Fernández, V.; Montoya, A. The maximal covering bicycle network design problem. Transp. Res. Part A Policy Pract. 2022, 159, 222–236. [Google Scholar] [CrossRef]
- Smith, M.L.; Fu, X. When bike lanes are not enough: The role of connected low-stress cycling infrastructure on cycle commuting in urban Aotearoa New Zealand. Cities 2025, 156, 105526. [Google Scholar] [CrossRef]
- Nieto-Combariza, M.J.; Galeano-Duque, V.; Mensah, S.L.; Frimpong, L.K.; Okyere, S.A.; Oviedo, D. Self-built infrastructure interventions to (un)walkable streets: Pedestrian accessibility, safety and enjoyment in a neighbourhood in Accra. Cities 2025, 161, 105911. [Google Scholar] [CrossRef]
- Filipe Teixeira, J.; Diogo, V.; Bernát, A.; Lukasiewicz, A.; Vaiciukynaite, E.; Stefania Sanna, V. Barriers to bike and e-scooter sharing usage: An analysis of non-users from five European capital cities. Case Stud. Transp. Policy 2023, 13, 101045. [Google Scholar] [CrossRef]
- Mayer, A. Motivations and barriers to electric bike use in the U.S.: Views from online forum participants. Int. J. Urban Sustain. Dev. 2020, 12, 160–168. [Google Scholar] [CrossRef]
- Eurostat. Passenger Cars per 1 000 Inhabitants Reached 560 in 2022. 2024. Available online: https://ec.europa.eu/eurostat/web/products-eurostat-news/w/ddn-20240117-1 (accessed on 23 April 2025).
- Paiva, S.; Ahad, M.A.; Tripathi, G.; Feroz, N.; Casalino, G. Enabling technologies for urban smart mobility: Recent trends, opportunities and challenges. Sensors 2021, 21, 2143. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Zhao, P.; Qiao, S. Smartness-induced transport inequality: Privacy concern, lacking knowledge of smartphone use and unequal access to transport information. Transp. Policy 2020, 99, 175–185. [Google Scholar] [CrossRef]
- Makahleh, H.Y.; Ferranti, E.J.S.; Dissanayake, D. Assessing the Role of Autonomous Vehicles in Urban Areas: A Systematic Review of Literature. Future Transp. 2024, 4, 321–348. [Google Scholar] [CrossRef]
- Bridgelall, R.; Stubbing, E. Forecasting the effects of autonomous vehicles on land use. Technol. Forecast. Soc. Change 2021, 163, 120444. [Google Scholar] [CrossRef]
- Budna, K.; Rogowska, W.; Szpilko, D. Autonomiczny transport przyszłości—Ocena ryzyka zagrożeń latających taksówek. Akad. Zarządzania 2025, 9, 224–253. [Google Scholar]
- CNBC. Electric and Hybrid Vehicles Will Account for Nearly Half the Cars on the Road by 2040, Goldman Predicts. 2022. Available online: https://www.cnbc.com/2022/04/04/electric-and-hybrid-vehicles-will-account-for-nearly-half-the-cars-on-the-road-by-2040-goldman-predicts.html (accessed on 23 April 2025).
- Qadir, Z.; Munir, A.; Ashfaq, T.; Munawar, H.S.; Khan, M.A.; Le, K. A prototype of an energy-efficient MAGLEV train: A step towards cleaner train transport. Clean. Eng. Technol. 2021, 4, 100217. [Google Scholar] [CrossRef]
- Singh, P.; Dulebenets, M.A.; Pasha, J.; Gonzalez, E.D.R.S.; Lau, Y.-Y.; Kampmann, R. Deployment of Autonomous Trains in Rail Transportation: Current Trends and Existing Challenges. IEEE Access 2021, 9, 91427–91461. [Google Scholar] [CrossRef]
- Trentesaux, D.; Dahyot, R.; Ouedraogo, A.; Arenas, D.; Lefebvre, S.; Schön, W.; Lussier, B.; Chéritel, H. The Autonomous Train. In Proceedings of the 13th Annual Conference on System of Systems Engineering, Paris, France, 19–22 June 2018; pp. 514–520. [Google Scholar]
- Tan, W.; Ho, S.S. Troubling autonomous public transport: Comparing people with ambulatory disability and older adults’ perceived barriers, identification, and communication preferences. Travel Behav. Soc. 2025, 40, 101029. [Google Scholar] [CrossRef]
- Mouratidis, K.; Serrano, V.C. Autonomous buses: Intentions to use, passenger experiences, and suggestions for improvement. Transp. Res. Part F Traffic Psychol. Behav. 2021, 76, 321–335. [Google Scholar] [CrossRef]
- Shen, J.; Liu, Q.; Ye, Z.; Jiang, W.; Ma, C. Autonomous bus services: Current research status and future recommendations. Digit. Transp. Saf. 2023, 2, 229–240. [Google Scholar] [CrossRef]
- Launonen, P.; Salonen, A.O.; Liimatainen, H. Icy roads and urban environments. Passenger experiences in autonomous vehicles in Finland. Transp. Res. Part F Traffic Psychol. Behav. 2021, 80, 34–48. [Google Scholar] [CrossRef]
- Zefreh, M.M.; Edries, B.; Esztergár-Kiss, D.; Torok, A. Intention to use private autonomous vehicles in developed and developing countries: What are the differences among the influential factors, mediators, and moderators? Travel Behav. Soc. 2023, 32, 100592. [Google Scholar] [CrossRef]
- Karolemeas, C.; Tsigdinos, S.; Moschou, E.; Kepaptsoglou, K. Shared autonomous vehicles and agent based models: A review of methods and impacts. Eur. Transp. Res. Rev. 2024, 16, 25. [Google Scholar] [CrossRef]
- Tu, H.; Zhao, L.; Tu, R.; Li, H. The energy-saving effect of early-stage autonomous vehicles: A case study and recommendations in a metropolitan area. Energy 2024, 297, 131274. [Google Scholar] [CrossRef]
- Panasewicz, K.; Alonso Jorge, A. Perspective of future use of autonomous robotaxes in cities. Acad. Manag. 2023, 7, 213–232. [Google Scholar]
- Zoox. 2025. Available online: https://zoox.com/ (accessed on 23 April 2025).
- Hyundai. 2025. Available online: https://www.hyundai.com/pl/pl/o-hyundai/o-marce/robotics/robotaxi.html (accessed on 23 April 2025).
- Hu, B.; Brandstätter, G.; Müller, J.; Stern, P.; Schaffenberger, A.; Fallast, A.; Lesak, S.; Meinhard, D. Assessing automated air-taxis for urban mobility. Eur. Transp. Res. Rev. 2024, 16, 37. [Google Scholar] [CrossRef]
- Naveen, P.; Antony, M.P.; Ramasamy, B.V.; Sah, D.K.; Maheswar, R. Unlocking the Potential: How Flying Taxis Will Shape the Future of Transportation. Sustainability 2024, 16, 10795. [Google Scholar] [CrossRef]
- Chen, C.; Demir, E.; Huang, Y.; Qiu, R. The adoption of self-driving delivery robots in last mile logistics. Transp. Res. Part E Logist. Transp. Rev. 2021, 146, 102214. [Google Scholar] [CrossRef]
- Panasewicz, K. Perspective of future use of autonomous robots in e-commerce. Scientific Papers of Silesian University of Technology. Organ. Manag. Ser. 2022, 158, 473–487. [Google Scholar]
- Budna, K.; Dąbrowska, K.; Kowalczuk, E.M. Innowacje w robotyce w Polsce—Stan obecny i przyszłe perspektywy. Zesz. Nauk. Politech. Częstochowskiej. Zarządzanie 2024, 55, 17–31. [Google Scholar] [CrossRef]
- Engeber, V.; Rombaut, E.; Vanhaverbeke, L.; Lebeau, P. Autonomous Delivery Robots for Urban Last-mile Logistics Operations: A modified UTAUT framework. Transp. Res. Procedia 2023, 72, 1816–1823. [Google Scholar] [CrossRef]
- SmartCity Korea. 2025. Available online: https://smartcity.go.kr/en/2024/12/13/%EC%9E%90%EC%9C%A8%EC%A3%BC%ED%96%89%EC%88%9C%EC%B0%B0%EB%A1%9C%EB%B4%87/ (accessed on 22 April 2025).
- Ejdys, J.; Strojny, P.; Zazulka, N. Społeczna akceptacja rozwiązań inteligentnej mobilności miejskiej na przykładzie autonomicznych autobusów w Białymstoku. Akad. Zarządzania 2024, 8, 242–253. [Google Scholar]
- European Commission. Report From The Commission To The European Parliament And The Council Saving Lives: Improving Car Safety in the EU. 2016. Available online: https://eur-lex.europa.eu/legal-content/PL/TXT/HTML/?uri=CELEX:52016DC0787&from=PL (accessed on 22 April 2025).
- Sever, T.; Contissa, G. Automated driving regulations—Where are we now? Transp. Res. Interdiscip. Perspect. 2024, 24, 101033. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Xi, H.; Wu, N. Analysing public acceptance of autonomous buses based on an extended TAM model. IET Intell. Transp. Syst. 2021, 15, 1318–1330. [Google Scholar] [CrossRef]
- Tu, L.; Xu, M. An Analysis of the Use of Autonomous Vehicles in the Shared Mobility Market: Opportunities and Challenges. Sustainability 2024, 16, 6795. [Google Scholar] [CrossRef]
- Ercan, T.; Onat, N.C.; Keya, N.; Tatari, O.; Eluru, N.; Kucukvar, M. Autonomous electric vehicles can reduce carbon emissions and air pollution in cities. Transp. Res. Part D Transp. Environ. 2022, 112, 103472. [Google Scholar] [CrossRef]
- Almusawi, A.; Albdairi, M.; Qadri, S.S.S.M. Integrating Autonomous Vehicles (AVs) into Urban Traffic: Simulating Driving and Signal Control. Appl. Sci. 2024, 14, 8851. [Google Scholar] [CrossRef]
- Lu, Q.; Tamás, T.; Dániel, H.; Varga, I. The impact of autonomous vehicles on urban traffic network capacity: An experimental analysis by microscopic traffic simulation. Transp. Lett. 2020, 12, 540–549. [Google Scholar] [CrossRef]
- Zhong, H.; Li, W.; Burris, M.W.; Talebpour, A.; Sinha, K.C. Will autonomous vehicles change auto commuters’ value of travel time? Transp. Res. Part D Transp. Environ. 2020, 83, 102303. [Google Scholar] [CrossRef]
- Othman, K. Exploring the implications of autonomous vehicles: A comprehensive review. Innov. Infrastruct. Solut. 2022, 7, 165. [Google Scholar] [CrossRef]
- Choi, J.K.; Ji, Y.G. Investigating the importance of trust on adopting an autonomous vehicle. Int. J. Hum.-Comput. Interact. 2015, 31, 692–702. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Zhang, W.; Evans, R. Why people adopt smart transportation services: An integrated model of TAM, trust and perceived risk. Transp. Plan. Technol. 2021, 44, 543–560. [Google Scholar] [CrossRef]
- Seuwou, P.; Chrysoulas, C.; Banissi, E.; Ubakanma, G. Measuring consumer behavioural intention to accept technology: Towards autonomous vehicles technology acceptance model (AVTAM). Adv. Intell. Syst. Comput. 2020, 1159, 623–633. [Google Scholar]
- Golbabaei, F.; Yigitcanlar, T.; Paz, A.; Bunker, J. Individual predictors of autonomous vehicle public acceptance and intention to use: A systematic review of the literature. J. Open Innov. Technol. Mark. Complex. 2020, 6, 106. [Google Scholar] [CrossRef]
- Nordhoff, S.; De Winter, J.; Kyriakidis, M.; Van Arem, B.; Happee, R. Acceptance of driverless vehicles: Results from a large cross-national questionnaire study. J. Adv. Transp. 2018, 2018, 5382192. [Google Scholar] [CrossRef]
- Brell, T.; Philipsen, R.; Ziefle, M. Suspicious minds? Users’ perceptions of autonomous and connected driving. Theor. Issues Ergon. Sci. 2019, 20, 261–282. [Google Scholar] [CrossRef]
- Hegner, S.M.; Beldad, A.D.; Brunswick, G.J. In automatic we trust: Investigating the impact of trust, control, personality characteristics, and extrinsic and intrinsic motivations on the acceptance of autonomous vehicles. Int. J. Hum.-Comput. Interact. 2019, 35, 1769–1780. [Google Scholar] [CrossRef]
- Rahman, M.M.; Thill, J.C. What drives people’s willingness to adopt autonomous vehicles? A review of internal and external factors. Sustainability 2023, 15, 11541. [Google Scholar] [CrossRef]
- Mara, M.; Meyer, K. Acceptance of autonomous vehicles: An overview of user-specific, car-specific and contextual determinants. In User Experience Design in the Era of Automated Driving; Studies in Computational Intelligence; Springer: Cham, Switzerland, 2022; Volume 980. [Google Scholar]
- Classen, S.; Sisiopiku, V.P.; Mason, J.R.; Yang, W.; Hwangbo, S.W.; McKinney, B.; Li, Y. Experience of drivers of all age groups in accepting autonomous vehicle technology. J. Intell. Transp. Syst. Technol. Plan. Oper. 2024, 28, 651–667. [Google Scholar] [CrossRef]
- Titov, W.; Schlegel, T. Promoting user acceptance in autonomous driving. In Proceedings of the 7th International Conference on Smart and Sustainable Technologies 2022, Bol, Croatia, 5–8 July 2022. [Google Scholar]
- Habib, A.; Alsmadi, D.; Prybutok, V.R. Factors that determine residents’ acceptance of smart city technologies. Behav. Inf. Technol. 2020, 39, 610–623. [Google Scholar] [CrossRef]
- Neupane, C.; Wibowo, S.; Grandhi, S.; Deng, H. A trust-based model for the adoption of smart city technologies in Australian regional cities. Sustainability 2021, 13, 9316. [Google Scholar] [CrossRef]
- Ejdys, J.; Gulc, A.; Budna, K.; Esparteiro Garcia, J. Steering into the Future: Public Perceptions and Acceptance of Autonomous Buses. Econ. Environ. 2025, 92, 1140. [Google Scholar] [CrossRef]
- Beştepe, F.; Yildirim, S.Ö. Acceptance of IoT-based and sustainability-oriented smart city services: A mixed methods study. Sustain. Cities Soc. 2022, 80, 103794. [Google Scholar] [CrossRef]
- Julsrud, D.T.E.; Krogstad, D.J.R. Is there enough trust for the smart city? Exploring acceptance for use of mobile phone data in Oslo and Tallinn. Technol. Forecast. Soc. Change 2020, 161, 120314. [Google Scholar] [CrossRef]
- Bruckes, M.; Grotenhermen, J.G.; Cramer, F.; Schewe, G. Paving the way for the adoption of autonomous driving: Institution-based trust as a critical success factor. In Proceedings of the 27th European Conference on Information Systems (ECIS): Information Systems for a Sharing Society 2019, Stockholm and Uppsala, Sweden, 8–14 June 2019. [Google Scholar]
- Dirsehan, T.; Can, C. Examination of trust and sustainability concerns in autonomous vehicle adoption. Technol. Soc. 2020, 63, 101361. [Google Scholar] [CrossRef]
- Liu, H.; Yang, R.; Wang, L.; Liu, P. Evaluating initial public acceptance of highly and fully autonomous vehicles. Int. J. Hum. Comput. Interact. 2019, 35, 919–931. [Google Scholar] [CrossRef]
- Thomas, E.; McCrudden, C.; Wharton, Z.; Behera, A. Perception of autonomous vehicles by the modern society: A survey. IET Intell. Transp. Syst. 2020, 14, 1228–1239. [Google Scholar] [CrossRef]
- Trende, A.; Gräfing, D.; Weber, L. Personalized user profiles for autonomous vehicles. In Proceedings of the 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications (AutomotiveUI) 2019, Utrecht, The Netherlands, 21–25 September 2019. [Google Scholar]
- Schandl, F.; Fischer, P.; Hudecek, M.F.C. Predicting acceptance of autonomous shuttle buses by personality profiles: A latent profile analysis. Transportation 2023, 52, 1015–1038. [Google Scholar] [CrossRef]
- Rahimi, A.; Azimi, G.; Asgari, H.; Jin, X. Adoption and willingness to pay for autonomous vehicles: Attitudes and latent classes. Transp. Res. Part D Transp. Environ. 2020, 89, 102611. [Google Scholar] [CrossRef]
- Gangadharaiah, R.; Mims, L.; Jia, Y.; Brooks, J. Opinions from users across the lifespan about fully autonomous and rideshare vehicles with associated features. SAE Int. J. Adv. Curr. Pract. Mobil. 2023, 6, 309–323. [Google Scholar]
- Mercep, L. Efficient profiling and distributed synchronization of statistical user models for content-targeting and real-time applications. In Proceedings of the 38th International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO) 2015, Opatija, Croatia, 25–29 May 2015. [Google Scholar]
- Statistical Office. 2025. Available online: https://warszawa.stat.gov.pl/warszawa/ (accessed on 24 April 2025).
- Miasto Stołeczne Warszawa; Stowarzyszenie Metropolia Warszawa; Trako. Sustainable Urban Mobility Plan for the Warsaw Metropolis 2030+. 2023. Warszawa, Wrocław, Poland. Available online: https://share.google/PtafpamHOWzNir7ga (accessed on 24 May 2025).
- Korkmaz, H.; Fidanoglu, A.; Ozcelik, S.; Okumus, A. User acceptance of autonomous public transport systems: Extended UTAUT2 model. J. Public Transp. 2022, 24, 100013. [Google Scholar] [CrossRef]
- Wu, X.; Cao, J.; Douma, F. The impacts of vehicle automation on transport-disadvantaged people. Transp. Res. Interdiscip. Perspect. 2021, 11, 100447. [Google Scholar] [CrossRef]
- Cai, L.; Yuen, K.F.; Wang, X. Explore public acceptance of autonomous buses: An integrated model of UTAUT, TTF and trust. Travel Behav. Soc. 2023, 31, 120–130. [Google Scholar] [CrossRef]
- Chen, Y.; Khalid Khan, S.; Shiwakoti, N.; Stasinopoulos, P.; Aghabayk, K. Analysis of Australian public acceptance of fully automated vehicles by extending technology acceptance model. Case Stud. Transp. Policy 2023, 14, 101072. [Google Scholar] [CrossRef]
- Huang, D.; Hu, Z.; Tian, J.; Tu, R. Improving conventional transit services with modular autonomous vehicles: A bi-level programming approach. Travel Behav. Soc. 2025, 39, 100939. [Google Scholar] [CrossRef]
- Cheng, Y.-H.; Lai, Y.-C. Exploring autonomous bus users’ intention: Evidence from positive and negative effects. Transp. Policy 2024, 146, 91–101. [Google Scholar] [CrossRef]
- WVS. World Values Survey Wave 7: 2017–2022. 2022. Available online: https://www.worldvaluessurvey.org/wvs.jsp (accessed on 23 April 2025).
- Greifenstein, M. Factors influencing the user behaviour of shared autonomous vehicles (SAVs): A systematic literature review. Transp. Res. Part F Traffic Psychol. Behav. 2024, 100, 323–345. [Google Scholar] [CrossRef]
- Charness, N.; Yoon, J.S.; Souders, D.; Stothart, C.; Yehnert, C. Predictors of Attitudes Toward Autonomous Vehicles: The Roles of Age, Gender, Prior Knowledge, and Personality. Front. Psychol. 2018, 9, 2589. [Google Scholar] [CrossRef]
- Xiao, J.; Goulias, K.G. Perceived usefulness and intentions to adopt autonomous vehicles. Transp. Res. Part A Policy Pract. 2022, 161, 170–185. [Google Scholar] [CrossRef]
- Weigl, K.; Marco, S.; Riener, A. Gender and age differences in the anticipated acceptance of automated vehicles: Insights from a questionnaire study and potential for application. Gend. Technol. Dev. 2023, 27, 88–108. [Google Scholar] [CrossRef]
- Schandl, F.; Lermer, E.; Hudecek, M.F.C. If It Concerns Me: An Experimental Investigation of the Influence of Psychological Distance on the Acceptance of Autonomous Shuttle Buses. Collabra Psychol. 2024, 10, 118770. [Google Scholar] [CrossRef]
- ZTM. Raport 2024. Zarząd Transportu Miejskiego w Warszawie Raport 2024. 2025. Available online: https://www.ztm.waw.pl/wp-content/uploads/2025/03/raport_ZTM_2024.pdf (accessed on 25 April 2025).
- Acheampong, R.; Cugurullo, F.; Guériau, M.; Dusparic, I. Can autonomous vehicles enable sustainable mobility in future cities? Insights and policy challenges from user preferences over different urban transport options. Cities 2021, 112, 103134. [Google Scholar] [CrossRef]
- Chng, S.; Anowar, S.; Cheah, L. Understanding Shared Autonomous Vehicle Preferences: A Comparison between Shuttles, Buses, Ridesharing and Taxis. Sustainability 2022, 14, 13656. [Google Scholar] [CrossRef]



| Variables | Source |
|---|---|
| S1. I believe that in the future, autonomous buses will be common on our streets | [104,105] |
| S2. I believe that autonomous buses can be more environmentally friendly than traditional combustion engine buses | [106] |
| S3. I believe that the introduction of autonomous buses will reduce traffic congestion and increase road capacity | [107] |
| S4. I believe that the introduction of autonomous buses would solve staffing issues related to the shortage of drivers | Own elaboration of authors |
| S5. I believe that autonomous buses will be more punctual and will run more frequently than traditional buses | [51,108] |
| S6. I believe that autonomous buses can be a safe means of transportation | [105,109] |
| S7. In the future, I will use autonomous city buses | [107] |
| S8. I would feel comfortable riding an autonomous city bus [without a driver] | [109] |
| S9. Autonomous city buses could be a significant source of road hazards | [105,106] |
| T1. Thanks to science and technology, the world is a better place | [110] |
| T2. Science and technology make our lives easier and more comfortable | [110] |
| T3. Science and technology create more opportunities for societal development | [110] |
| Statements | Cluster 1 | Cluster 2 | Cluster 3 | p-Value |
|---|---|---|---|---|
| S1. I believe that in the future, autonomous buses will be common on our streets | 4.63 | 2.92 | 3.64 | <0.001 |
| S2. I believe that autonomous buses can be more environmentally friendly than traditional combustion engine buses | 4.49 | 2.29 | 3.45 | <0.001 |
| S3. I believe that the introduction of autonomous buses will reduce traffic congestion and increase road capacity | 4.39 | 2.33 | 3.14 | <0.001 |
| S4. I believe that the introduction of autonomous buses would solve staffing issues related to the shortage of drivers | 4.33 | 2.92 | 3.74 | <0.001 |
| S5. I believe that autonomous buses will be more punctual and will run more frequently than traditional buses | 4.33 | 2.18 | 3.02 | <0.001 |
| S6. I believe that autonomous buses can be a safe means of transportation | 4.22 | 2.07 | 2.91 | <0.001 |
| S7. In the future, I will use autonomous city buses | 4.20 | 1.83 | 3.05 | <0.001 |
| S8. I would feel comfortable riding an autonomous city bus [without a driver] | 3.98 | 1.53 | 2.36 | <0.001 |
| S9. Autonomous city buses could be a significant source of road hazards | 2.38 | 4.25 | 3.62 | <0.001 |
| Clusters | Age Distribution of Respondents Across Clusters | |||||
|---|---|---|---|---|---|---|
| Below 18 | 18–28 Years | 29–44 Years | 45–59 Years | Over 60 Years Old | Total | |
| Cluster 1. Enthusiastic Adopters | 9.8% | 23.2% | 43.9% | 11.0% | 12.2% | 100.0% |
| Cluster 2. Sceptical Opponents | 0.0% | 3.0% | 26.3% | 25.6% | 45.1% | 100.0% |
| Cluster 3. Cautious Optimists | 1.8% | 10.6% | 37.6% | 24.7% | 25.3% | 100.0% |
| Clusters | Gender Distribution of Respondents Across Clusters | Total | |
|---|---|---|---|
| Female | Male | ||
| Cluster 1. Enthusiastic Adopters | 51.2% | 48.8% | 100.0% |
| Cluster 2. Sceptical Opponents | 45.1% | 54.9% | 100.0% |
| Cluster 3. Cautious Optimists | 61.8% | 38.2% | 100.0% |
| Clusters | Education Level Distribution of Respondents Across Clusters | ||||
|---|---|---|---|---|---|
| Primary | Secondary | Vocational | Higher | Total | |
| Cluster 1. Enthusiastic Adopters | 12.2% | 17.1% | 9.8% | 61.0% | 100.0% |
| Cluster 2. Sceptical Opponents | 3.8% | 34.6% | 21.8% | 39.8% | 100.0% |
| Cluster 3. Cautious Optimists | 3.5% | 36.5% | 12.4% | 47.6% | 100.0% |
| Clusters | Employment Status Distribution of Respondents Across Clusters | |||||
|---|---|---|---|---|---|---|
| Student | Employed | Retired or on a Pension | Unemployed | Other | Total | |
| Cluster 1. Enthusiastic Adopters | 18.3% | 63.4% | 7.3% | 2.4% | 8.5% | 100.0% |
| Cluster 2. Sceptical Opponents | 0.0% | 50.4% | 41.4% | 5.3% | 3.0% | 100.0% |
| Cluster 3. Cautious Optimists | 5.3% | 65.9% | 20.6% | 2.4% | 5.9% | 100.0% |
| Cluster 1. Enthusiastic Adopters (The Future-First) | Cluster 2. Sceptical Opponents (Technology Sceptics) | Cluster 3. Cautious Optimists (Open-Minded Sceptics) |
|---|---|---|
| Female | Male | Female |
| 29–44 years and 18–28 years | Over 60 years old and 29–44 years | 29–44 years and over 60 years old |
| Higher education level | Higher and secondary education levels | Higher and secondary education levels |
| Employed | Employed, retired or on a pension | Employed |
| Statements | Cluster 1 Tech-Optimists | Cluster 2 Tech-Sceptics |
|---|---|---|
| Thanks to science and technology, the world is a better place | 4.11 | 2.05 |
| Science and technology make our lives easier and more comfortable | 4.37 | 3.55 |
| Science and technology create more opportunities for societal development | 4.32 | 2.41 |
| AV Adaptation Clusters | Trust in Technology Clusters | Total | |
|---|---|---|---|
| Cluster 1 Tech-Optimists | Cluster 2 Tech-Sceptics | ||
| Cluster 1. Enthusiastic Adopters | 90.2% | 9.8% | 100.0% |
| Cluster 2. Sceptical Opponents | 47.4% | 52.6% | 100.0% |
| Cluster 3. Cautious Optimists | 78.8% | 21.2% | 100.0% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ejdys, J.; Gulc, A.; Budna, K. Emerging Passenger Archetypes: Profiling Potential Users of Autonomous Buses in Warsaw. Sustainability 2025, 17, 9585. https://doi.org/10.3390/su17219585
Ejdys J, Gulc A, Budna K. Emerging Passenger Archetypes: Profiling Potential Users of Autonomous Buses in Warsaw. Sustainability. 2025; 17(21):9585. https://doi.org/10.3390/su17219585
Chicago/Turabian StyleEjdys, Joanna, Aleksandra Gulc, and Klaudia Budna. 2025. "Emerging Passenger Archetypes: Profiling Potential Users of Autonomous Buses in Warsaw" Sustainability 17, no. 21: 9585. https://doi.org/10.3390/su17219585
APA StyleEjdys, J., Gulc, A., & Budna, K. (2025). Emerging Passenger Archetypes: Profiling Potential Users of Autonomous Buses in Warsaw. Sustainability, 17(21), 9585. https://doi.org/10.3390/su17219585

