Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Topographical and Geological Conditions
2.1.2. Hydrological and Climatic Conditions
2.2. Data Sources
2.2.1. Landslide Relic Data Sources
2.2.2. Data Sources of Landslide Conditioning Factors
2.3. Mapping Units
2.4. Landslide Conditioning Factors
2.5. Data Correlation Analysis Method
2.6. Landslide Susceptibility Assessment Method
2.6.1. IOE Model
2.6.2. SVM Model
2.6.3. LDA Model
2.6.4. RF Model
2.6.5. ET Model
2.6.6. Landslide Sample Optimization Methods
2.6.7. Non-Landslide Sample Optimization Methods
2.6.8. SHAP Feature Interpretation Method
2.6.9. Validation Metrics
2.7. Landslide Susceptibility Assessment Workflow
2.7.1. Assessment Steps
- (a)
- Landslide Inventory Compilation: A landslide inventory is constructed by integrating multiple data sources, including historical records, remote sensing interpretation, and field investigation data.
- (b)
- Construction of Conditioning Factor System: A set of conditioning factors was established, covering topographic, hydrological, geological, and environmental attributes (e.g., slope, rainfall, lithology, NDVI).
- (c)
- Screen conditioning factors: Use multicollinearity detection, Pearson correlation coefficients, and collinearity diagnostics to select key factors affecting landslides and eliminate highly correlated factors such as cutting depth and relief amplitude.
- (d)
- Construct the model dataset: Expand the landslide database by increasing the number of landslide points through a 30-m buffer zone and construct the non-landslide dataset using random sampling and non-landslide sample selection methods.
- (e)
- Model Evaluation and Selection: The four machine learning models (SVM, LDA, RF, and ET) were evaluated and compared. The evaluation was based on a suite of indicators, including ROC curves, AUC values, and confusion matrices, to facilitate the selection of the superior model and dataset.
- (f)
- Susceptibility Mapping and Accuracy Assessment: A landslide susceptibility map was generated using the selected optimal model. The accuracy of the prediction was assessed by comparing the statistical outcomes of the susceptibility zoning.
2.7.2. Technical Approach
3. Result
3.1. Multicollinearity Diagnosis and Pearson Correlation Analysis
3.2. Relationship Between Conditioning Factors and Landslide Relics
3.3. Analysis of Different Sample Optimization Methods
3.4. Analysis of Model Performance and Effectiveness
3.4.1. Analysis of Model Performance
3.4.2. Analysis of Model Effectiveness
3.5. Model Interpretability via SHAP
3.5.1. Global Interpretation
3.5.2. Local Interpretation
4. Discussion
4.1. Hybrid Optimisation of Non-Landslide Samples
4.2. Mechanistic Attribution of Landslide Susceptibility Using SHAP
4.3. Spatial Heterogeneity of Landslide Susceptibility and Its Primary Drivers
4.4. Comparison with Other Studies
4.5. Future Research Directions
5. Conclusions
- (1)
- To counteract the paucity and spatial bias of landslide inventories, we devise and validate the Slope-IOE-O hybrid sampling protocol, integrating low-slope thresholds with IOE-delineated extremely low-susceptibility zones to maximise the purity and representativeness of non-landslide samples. The strategy elevates the RF AUC from 0.907 to 0.965, markedly surpassing both traditional buffer techniques and single-criterion alternatives.
- (2)
- Across SVM, LDA, RF and ET, RF delivers the highest performance across AUC, accuracy, precision, F1 and recall (AUC = 0.965), attesting to its reliability and stability for landslide prediction in Guiyang County.
- (3)
- SHAP interpretability identifies slope, monthly maximum rainfall, surface roughness and elevation as the four dominant drivers of regional landslide susceptibility. Each exhibits pronounced non-linear effects and interactions: slope contributions peak at 20–30°, monthly rainfall displays a threshold at 225 mm, and the synergistic effect of high roughness and road density markedly amplifies risk.
- (4)
- Landslide susceptibility exhibits a north–south-high, central-low pattern; high-susceptibility areas are mainly distributed in the northern and southern mountains, the southern urban core and their surrounding areas—regions closely linked to topography, hydrology and anthropogenic forcing. Very-low susceptibility zones occupy the central hills and plains, characterised by gentle topography and high geotechnical stability.
- (5)
- The proposed sample-optimization framework and modelling pipeline provide a transferable protocol for landslide assessment in geologically complex, data-scarce regions, especially in the heavy-rainfall zones of southern China.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seçkin, F.; Hakan, T.; Abdullah, A.; Luigi, L.; Petley, D.N.; Tolga, G. Understanding Fatal Landslides at Global Scales: A Summary of Topographic, Climatic, and Anthropogenic Perspectives. Nat. Hazards 2024, 120, 6437–6455. [Google Scholar] [CrossRef]
- Wen, H.; Li, W.; Xu, C.; Daimaru, H. Landslides in Forests around the World: Causes and Mitigation. Forests 2023, 14, 629. [Google Scholar] [CrossRef]
- Capobianco, V.; Choi, C.E.; Crosta, G.; Hutchinson, D.J.; Jaboyedoff, M.; Lacasse, S.; Nadim, F.; Reeves, H. Effective Landslide Risk Management in Era of Climate Change, Demographic Change, and Evolving Societal Priorities. Landslides 2025, 22, 2915–2933. [Google Scholar] [CrossRef]
- Mateja, J.A.; Nejc, B.; Ela, Š.; Peter, F.; Luigi, G.S.; Anže, M.; Tina, P. Climate Change Increases the Number of Landslides at the Juncture of the Alpine, Pannonian and Mediterranean Regions. Sci. Rep. 2023, 13, 23085. [Google Scholar] [CrossRef] [PubMed]
- Ministry of Natural Resources. Natural Resources Bulletin of China, 2024; China Natural Resources News; Ministry of Natural Resources: Beijing, China, 2025. [Google Scholar]
- Tao, Z.; Luo, S.; Zhu, C.; He, M. Dynamie Mechanical Monitoring of Landslide and Case Analysis of Failure Process. J. Eng. Geol. 2022, 30, 177–186. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, X.; Cai, Y.; Fu, J.; Yue, Z.; Yang, R.; Han, C. The Evolution Pattern and Influence of Human Activities of Landslide Driving Factors in Wulong Section of the Three Gorges Reservoir Area. Chin. J. Geol. Hazard Control 2022, 33, 39–50. [Google Scholar] [CrossRef]
- Somogyvári, M.; Chicas, S.D.; Li, H.; Mizoue, N.; Ota, T.; Du, Y. Landslide Susceptibility Mapping Core-Base Factors and Models’ Performance Variability: A Systematic Review. Nat. Hazards 2024, 120, 1–21. [Google Scholar] [CrossRef]
- Jia, Z.; Cheng, Z.; Chang, Z.; Li, Q.; Peng, Y.; Jiang, B.; Huang, F. Modeling and Uncertainty in Landslide Susceptibility Prediction Considering the Coupling Mode of Landslide Types. Earth Sci. 2025, 50, 2311–2329. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, S. Data Driven Weight Model for Reqional Landslide Susceptibility Assessment and Its Application. Hydrogeol. Eng. Geol. 2004, 6, 33–36. Available online: https://www.zhangqiaokeyan.com/academic-journal-cn_hydrogeology-engineering-geology_thesis/0201254217118 (accessed on 3 October 2025).
- Al-Najjar, H.A.H.; Pradhan, B.; He, X.; Sheng, D.; Alamri, A.; Gite, S.; Park, H.-J. Integrating Physical and Machine Learning Models for Enhanced Landslide Prediction in Data-Scarce Environments. Earth Syst. Environ. 2024. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, Y.; Wei, S.; Li, C.; Wang, Y.; Qi, H. Landslide Susceptibility Assessment Based on Weighted Information Value Model: A Case Study of Chongqing City. Sci. Soil Water Conserv. 2023, 21, 53–62. [Google Scholar] [CrossRef]
- Lu, Y.; Xu, H.; Wang, C.; Yan, G.; Huo, Z.; Peng, Z.; Liu, B.; Xu, C. A Novel Strategy Coupling Optimised Sampling with Heterogeneous Ensemble Machine-Learning to Predict Landslide Susceptibility. Remote Sens. 2024, 16, 3663. [Google Scholar] [CrossRef]
- Marzini, L.; D’Addario, E.; Papasidero, M.P.; Chianucci, F.; Disperati, L. Influence of Root Reinforcement on Shallow Landslide Distribution: A Case Study in Garfagnana (Northern Tuscany, Italy). Geosciences 2023, 13, 326. [Google Scholar] [CrossRef]
- Vanani, A.A.G.; Shoaei, G.; Zare, M. Landslide Susceptibility Mapping in North Tehran, Iran: Linear Regression, Neural Networks, and Fuzzy Logic Approaches. Geotech. Geol. Eng. 2024, 42, 7159–7186. [Google Scholar] [CrossRef]
- Xu, C.; Xu, X. Logistic Regression Model and Its Validation for Hazardmapping of Landslides Triggered by Yushu Earthquake. J. Eng. Geol. 2012, 20, 326–333. Available online: http://www.gcdz.org/en/article/id/11136 (accessed on 3 October 2025).
- Xu, C.; Dai, F.; Xu, S.; Xu, X.; He, H.; Wu, X.; Shi, F. Application of Logistic Regression Model on the Wenchuan Earthquaketriggered Landslide Hazard Mapping and Its Validation. Hydrogeol. Eng. Geol. 2013, 40, 98–104. [Google Scholar] [CrossRef]
- Kavzoglu, T.; Sahin, E.K.; Colkesen, I. Landslide Susceptibility Mapping Using GIS-Based Multi-Criteria Decision Analysis, Support Vector Machines, and Logistic Regression. Landslides 2014, 11, 425–439. [Google Scholar] [CrossRef]
- Li, M.X.; Wang, H.Y.; Chen, J.L.; Zheng, K. Assessing Landslide Susceptibility Based on the Random Forest Model and Multi-Source Heterogeneous Data. Ecol. Indic. 2024, 158, 111600. [Google Scholar] [CrossRef]
- Yang, K.; Niu, R.; Song, Y.; Dong, J.; Zhang, H.; Chen, J. Dynamic Hazard Assessment of Rainfall Induced Landslides Using Gradient Boosting Decision Tree with Google Earth Engine in Three Gorges Reservoir Area, China. Water 2024, 16, 1638. [Google Scholar] [CrossRef]
- Wen, H.; Liu, B.; Di, M.; Li, J.; Zhou, X. A SHAP-Enhanced XGBoost Model for Interpretable Prediction of Coseismic Landslides. Adv. Space Res. 2024, 74, 3826–3854. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Gu, Q. A LightGBM-Based Landslide Susceptibility Model Considering the Uncertainty of Non-Landslide Samples. Geomat. Nat. Hazards Risk 2023, 14, 2213807. [Google Scholar] [CrossRef]
- Song, Y.; Song, Y.; Wang, C.; Wu, L.; Wu, W.; Li, Y.; Li, S.; Chen, A. Landslide Susceptibility Assessment through Multi-Model Stacking and Meta-Learning in Poyang County, China. Geomat. Nat. Hazards Risk 2024, 15, 2354499. [Google Scholar] [CrossRef]
- Shruti, S.; Tarunpreet, B.; Verma, A.K. A Novel Voting Ensemble Model for Spatial Prediction of Landslides Using GIS. Int. J. Remote Sens. 2020, 41, 929–952. [Google Scholar] [CrossRef]
- Zhang, R.; Guan, Y. Application of CNN-LSTM Hybrid Model in Predicting Surface Displacement of Accumula Ted Landslide Sites. North China Farthquake Sci. 2025, 43, 1–8. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Zhou, K.; Lin, G.; Peng, B.; Zhice, F. Integrating a Multi-Dimensional Deep Convolutional Neural Network with Optimized Sample Selection for Landslide Susceptibility Assessment. Geo-Spat. Inf. Sci. 2025, 15, 1–21. [Google Scholar] [CrossRef]
- Huang, F.; Xiong, H.; Jiang, S.H.; Yao, C.; Fan, X.; Catani, F.; Chang, Z.; Zhou, X.; Huang, J.; Liu, K. Modelling Landslide Susceptibility Prediction: A Review and Construction of Semi-Supervised Imbalanced Theory. Earth-Sci. Rev. 2024, 250, 104700. [Google Scholar] [CrossRef]
- Wu, H.Y.; Zhou, C.; Liang, X.; Wang, Y.; Yuan, P.C.; Wu, L.X. Evaluation of landslide susceptilbility based on sample optimization strategy research. Geomat. Inf. Sci. Wuhan Univ. 2023, 49, 1–15. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C.; He, Q.; Li, K. Landslide Susceptibility Evaluation Considering Positive and Negative Sample Optimization. Acta Geod. Cartogr. Sin. 2025, 54, 308–320. [Google Scholar] [CrossRef]
- Ge, Q.; Li, J.; Lacasse, S.; Sun, H.; Liu, Z. Data-Augmented Landslide Displacement Prediction Using Generative Adversarial Network. J. Rock Mech. Geotech. Eng. 2024, 16, 4017–4033. [Google Scholar] [CrossRef]
- Liu, M.M. Landslide Susceptibility Analysis Method Considering Sample Optimization and Spatial Characteristics. Ph.D. Thesis, Liaoning Technical University, Fuxin, China, 2024. [Google Scholar]
- Miao, Y.; Zhu, A.; Yang, L.; Bai, S.; Liu, J.; Deng, Y. Sensitivity of BCS for Sampling Landslide Absence Datain Andslide Susceptibility Assessment. Mt. Res. 2016, 34, 432–441. [Google Scholar] [CrossRef]
- Yao, X.; Tham, L.G.; Dai, F.C. Landslide Susceptibility Mapping Based on Support Vector Machine: A Case Study on Natural Slopes of Hong Kong, China. Geomorphology 2008, 101, 572–582. [Google Scholar] [CrossRef]
- Miao, Y.; Zhu, A.; Yang, L.; Bai, S.; Zeng, C. A New Method of Pseudo Absence Data Generation in Landslide Susceptibility Mapping. Geogr. Geo-Inf. Sci. 2016, 32, 61–67+127. [Google Scholar] [CrossRef]
- Cui, Y.; Zhu, L.; Xu, M.; Miao, H. Optimizing TSES Method Based on the Environmental Factors to Select Negative Samples and Its Application in Landslide Susceptibility Evaluation. Bull. Geol. Sci. Technol. 2024, 43, 192–199. [Google Scholar] [CrossRef]
- Guo, Y.; Dou, J.; Xiang, Z.; Ma, H.; Dong, A.; Luo, W. Susceptibility Evaluation of Wenchuan Coseismic Landslides by Gradientboosting Decision Tree and Random Forest Based on Optimal Negative Samplesampling Strategies. Bull. Geol. Sci. Technol. 2024, 43, 251–265. [Google Scholar] [CrossRef]
- Zhou, X.; Huang, F.; Wu, W.; Zhou, C.; Zeng, S.; Pan, L. Regional Landslide Susceptibility Prediction Based on Negative Sample Selected by Coupling Information Value Method. Adv. Eng. Sci. 2022, 54, 25–35. [Google Scholar] [CrossRef]
- Fu, Y.; Fan, Z.; Li, X.; Wang, P.; Sun, X.; Ren, Y.; Cao, W. The Influence of Non-Landslide Sample Selection Methods on Landslide Susceptibility Prediction. Land 2025, 14, 722. [Google Scholar] [CrossRef]
- Gu, T.; Duan, P.; Wang, M.; Li, J.; Zhang, Y. Effects of Non-Landslide Sampling Strategies on Machine Learning Models in Landslide Susceptibility Mapping. Sci. Rep. 2024, 14, 7201. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Wu, H.; Xu, C.; Sun, J.; Zhu, K.; Zhang, C.; Zhou, J.; Xu, T.; Su, T.; Zhang, Z.; et al. Landslide Susceptibility Mapping Using an Entropy Index-Based Negative Sample Selection Strategy: A Case Study of Luolong County. PLoS ONE 2025, 20, e0322566. [Google Scholar] [CrossRef]
- Zhang, L. Research on the Mode of Mineland Reclamation in the County of Guiyang. Master’s Thesis, Hunan Normal University, Changsha, China, 2013. [Google Scholar]
- Wang, P. Research on Guiyang County HV Distribution Network Planning. Master’s Thesis, Hunan University, Changsha, China, 2016. [Google Scholar]
- Zhang, Y.; Ming, D.; Zhao, W.; Xu, L.; Zhao, Z.; Liu, R. The Extraction and Analysis of Luding Earthquake—Induced Landslide Based on High- Resolution Optical Satellite Images. Remote Sens. Nat. Resour. 2023, 35, 161–170. [Google Scholar] [CrossRef]
- Liu, P.; Wei, Y.; Wang, Q.; Chen, Y.; Xie, J. Research on Post-Earthquake Landslide Extraction Algorithm Based on Improved U-Net Model. Remote Sens. 2020, 12, 894. [Google Scholar] [CrossRef]
- Zhu, Y.; Sun, D.; Wen, H.; Zhang, Q.; Ji, Q.; Li, C.; Zhou, P.; Zhao, J. Considering the Effect of Non-Landslide Sample Selection on Landslide Susceptibility Assessment. Geomat. Nat. Hazards Risk 2024, 15, 2392778. [Google Scholar] [CrossRef]
- Cui, Y.L.; Yang, W.H.; Xu, C.; Wu, S. Distribution of Ancient Landslides and Landslide Hazard Assessment in the Western Himalayan Syntaxis Area. Front. Earth Sci. 2023, 11, 1135018. [Google Scholar] [CrossRef]
- Lu, C.; Bo, Z. A New Slope Unit Extraction Method Based on Improved Marked Watershed. Matec Web Conf. 2018, 232, 04070. [Google Scholar] [CrossRef]
- Yu, C.; Chen, J. Application of a GIS-Based Slope Unit Method for Landslide Susceptibility Mapping in Helong City: Comparative Assessment of ICM, AHP, and RF Model. Symmetry 2020, 12, 1848. [Google Scholar] [CrossRef]
- Liu, S.; Zhu, J.; Yang, D.; Ma, B. Comparative Study of Geological Hazard Evaluation Systems Using Grid Units and Slope Units under Different Rainfall Conditions. Sustainability 2022, 14, 16153. [Google Scholar] [CrossRef]
- GB/T 50218-2014; Standard for Engineering Classification of Rock Mass. China Planning Press: Beijing, China, 2014.
- Riaz, M.T.; Basharat, M.; Ahmed, K.S.; Sirfraz, Y.; Shahzad, A.; Shah, N.A. Failure Mechanism of a Massive Fault–Controlled Rainfall–Triggered Landslide in Northern Pakistan. Landslides 2024, 21, 2741–2767. [Google Scholar] [CrossRef]
- Yu, L.B.; Wang, Y.; Pradhan, B. Enhancing Landslide Susceptibility Mapping Incorporating Landslide Typology via Stacking Ensemble Machine Learning in Three Gorges Reservoir, China. Geosci. Front. 2024, 15, 101802. [Google Scholar] [CrossRef]
- Zhao, P.; Wen, G.; He, Z.; Wang, G.; Chen, L.; Shen, X.; Wang, K.; Tang, H. Shallow Landslide Susceptibility Assessment in Jinsha River Basin Based on Machine Learning Models. Water Resour. Hydropower Eng. 2024, 55, 53–70. [Google Scholar] [CrossRef]
- Kumar, D.; Thakur, M.; Dubey, C.S.; Shukla, D.P. Landslide Susceptibility Mapping & Prediction Using Support Vector Machine for Mandakini River Basin, Garhwal Himalaya, India. Geomorphology 2017, 295, 115–125. [Google Scholar] [CrossRef]
- Alfonso, M.R.-C.; Luis, F.P.-S.; Mario, G.T.-V.; Juan, P.M.; Ana, C.S.-R. Linear Discriminant Analysis to Describe the Relationship between Rainfall and Landslides in Bogota, Colombia. Landslides 2016, 13, 671–681. [Google Scholar] [CrossRef]
- Du, P.; Chen, N.S.; Wu, K.N.; Li, Z.; Zhang, Y.Y.L. Evaluation of landslide susceptibility in southeast tibet based on a random forest model. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2024, 51, 328–344. [Google Scholar] [CrossRef]
- Halder, K.; Srivastava, A.K.; Ghosh, A.; Das, S.; Banerjee, S.; Pal, S.C.; Chatterjee, U.; Bisai, D.; Ewert, F.; Gaiser, T. Improving Landslide Susceptibility Prediction through Ensemble Recursive Feature Elimination and Meta-Learning Framework. Sci. Rep. 2025, 15, 5170. [Google Scholar] [CrossRef]
- Shapley, L.S. A Value for N-Person Games; RAND Corporation: Santa Monica, CA, USA, 1952. [Google Scholar]
- Lundberg, S.M.; Lee, S.-I. A Unified Approach to Interpreting Model Predictions. In Proceedings of the 31st International Conference on Neural Information Processing Systems, Auckland, New Zealand, 2–6 December 2024; Curran Associates Inc.: Red Hook, NY, USA, 2017; pp. 4768–4777. [Google Scholar]
- Kanwar, M.; Pokharel, B.; Lim, S. A New Random Forest Method for Landslide Susceptibility Mapping Using Hyperparameter Optimization and Grid Search Techniques. Int. J. Environ. Sci. Technol. 2025, 22, 10635–10650. [Google Scholar] [CrossRef]
- Xu, C.; Dai, F.C.; Yao, X.; Chen, J.; Tu, X.B.; Sun, Y.; Wang, Z.Y. Gis-based landslide susceptibility assessment using analytical hierarchy process in wenchuan earthquake region. Chin. Joural Rock Mech. Eng. 2009, 28, 3978–3985. [Google Scholar] [CrossRef]
- Rahman, A.S.A.; A’kif, A.F.; Mohamed, K.K.; Nouh, M.A.; Rida, A.A. Spatial Mapping of Landslide Susceptibility in Jerash Governorate of Jordan Using Genetic Algorithm-Based Wrapper Feature Selection and Bagging-Based Ensemble Model. Geomat. Nat. Hazards Risk 2022, 13, 2252–2282. [Google Scholar] [CrossRef]
- Zheng, D.; Li, Y.; Yan, C.; Wu, H.; Yamashiki, Y.A.; Gao, B.; Nian, T. Landslide Susceptibility Assessment Using AutoML-SHAP Method in the Southern Foothills of Changbai Mountain, China. Landslides 2025, 22, 1855–1875. [Google Scholar] [CrossRef]
- Zhang, T.; Li, L.; Liu, F.; Hong, Z.; Qian, F.; Hu, B.; Zhang, M. Evaluation of Loess Landslide Susceptibility Based on Optimised Max Ent Model: A Case Study of Wuqi County in Shaanxi Province. Northwestern Geol. 2025, 58, 172–185. [Google Scholar] [CrossRef]
- Cheng, J.; Xu, C.; Xu, X.; Zhang, S.; Zhu, P. Modeling Seismic Hazard and Landslide Occurrence Probabilities in Northwestern Yunnan, China: Exploring Complex Fault Systems with Multi-Segment Rupturing in a Block Rotational Tectonic Zone. Nat. Hazards Earth Syst. Sci. 2025, 25, 857–877. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, C. Landslide Susceptibility Evaluation Method Considering Spatial Heterogeneity and Feature Selection. Acta Geod. Artographica Sin. 2024, 53, 1417–1428. [Google Scholar] [CrossRef]
- Wang, S.; Zhuang, J.; Fan, H.; Niu, P.; Jia, K.; Wang, J. Evaluation of Landslide Suseeplibilitly Based on Frequeney Raio and Ensemble Leaming Taking theBalang-Dege Seion in the Upstream of Jinsha River as an Example. J. Eng. Geol. 2022, 30, 817–828. [Google Scholar] [CrossRef]
- Liu, L.; Xiao, H.; Wang, C.; Yao, T. Landslide Analysis Based on Susceptibility to Factors Causing Geological Disasters in Red Beds Area of Hunan Province. Min. Metall. Eng. 2024, 44, 169–174. [Google Scholar] [CrossRef]
- Liu, R.; Xu, Q.; Pu, C.; Xu, F.; Wang, X.; Zhao, H.; Zhu, X.; He, N. Characteristics of Landslides Induced by Typhoon “GaeMi” in Zixing, Hunan, July 2024, and Their Geological Control Factors. Geomat. Inf. Sci. Wuhan Univ. 2025, 1–22. [Google Scholar] [CrossRef]
- Yang, J. Uncertainty Analysis of Rainfall-Induced Landslide Susceptibility Prediction and Risk Assessment Modeling. Master’s Thesis, Nanchang University, Nanchang, China, 2022. [Google Scholar]
- Xu, Z.; Xiao, N.; Liu, Z.; Li, Y. Research on Geological Disaster-Prone Area Basedon Susceptibility Index Method in Guiyang County. J. Chang. Inst. Technol. (Nat. Sci. Ed.) 2012, 13, 54–59. [Google Scholar] [CrossRef]
- Hong, H.; Miao, Y.; Liu, J.; Zhu, A.-X. Exploring the Effects of the Design and Quantity of Absence Data on the Performance of Random Forest-Based Landslide Susceptibility Mapping. Catena 2019, 176, 45–64. [Google Scholar] [CrossRef]
- Reza, P.H.; Aiding, K.; Norman, K.; Farzin, S. Investigating the Effects of Different Landslide Positioning Techniques, Landslide Partitioning Approaches, and Presence-Absence Balances on Landslide Susceptibility Mapping. Catena 2020, 187, 104364. [Google Scholar] [CrossRef]
- Sun, D.; Wen, H.; Wang, D.; Xu, J. A Random Forest Model of Landslide Susceptibility Mapping Based on Hyperparameter Optimization Using Bayes Algorithm. Geomorphology 2020, 362, 107201. [Google Scholar] [CrossRef]
- Li, Y. Method for the Warning of Precipitation Induced Landslides. Ph.D. Thesis, China University of Geosciences (Beijing), Beijing, China, 2005. [Google Scholar]










| No. | Date | Type | V. (m3) | No. | Date | Type | V. (m3) | No. | Date | Type | V. (m3) | No. | Date | Type | V. (m3) | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | 2001/5/ | Soil | 4500 | 38 | 2006/7/ | Soil | 24,000 | 75 | 2014/6/ | Soil | 1200 | 112 | 2005/5/ | Soil | 14,000 | 
| 2 | 2004/5/ | Soil | 2250 | 39 | 2014/3/ | Rock | 5200 | 76 | 2001/5/ | Soil | 28,800 | 113 | 2013/5/ | Soil | 1500 | 
| 3 | 2013/5/ | Soil | 4500 | 40 | 2002/8/ | Soil | 24,000 | 77 | 2008/6/ | Soil | 8000 | 114 | 2014/5/ | Soil | 100 | 
| 4 | 2012/7/ | Soil | 6000 | 41 | 2002/8/ | Soil | 12,000 | 78 | 2004/6/ | Soil | 12,800 | 115 | 2013/6/ | Soil | 200 | 
| 5 | 2008/6/ | Soil | 8000 | 42 | 2014/6/ | Rock | 1440 | 79 | 2014/5/ | Soil | 120 | 116 | 2012/6/ | Soil | 50 | 
| 6 | 2013/6/ | Soil | 108 | 43 | 2014/3/ | Soil | 3000 | 80 | 1996/5/ | Soil | 4440 | 117 | 2013/5/ | Soil | 320 | 
| 7 | 2014/4/ | Soil | 720 | 44 | 2014/6/ | Soil | 1950 | 81 | 2010/4/ | Soil | 1200 | 118 | 2013/5/ | Soil | 150 | 
| 8 | 2006/7/ | Soil | 12,000 | 45 | 2014/5/ | Soil | 2550 | 82 | 2014/3/ | Soil | 150 | 119 | 2013/5/ | Soil | 8000 | 
| 9 | 2007/7/ | Soil | 720 | 46 | 2002/5/ | Soil | 5400 | 83 | 2013/3/ | Soil | 300 | 120 | 2007/3/ | Soil | 300 | 
| 10 | 2004/5/ | Soil | 3600 | 47 | 2001/6/ | Soil | 20,000 | 84 | 2002/6/ | Soil | 42,970 | 121 | 2013/6/ | Soil | 9600 | 
| 11 | 2006/7/ | Soil | 3000 | 48 | 2002/6/ | Soil | 24,000 | 85 | 2003/6/ | Soil | 1200 | 122 | 2013/6/ | Soil | 2400 | 
| 12 | 2006/7/ | Soil | 5000 | 49 | 2002/4/ | Soil | 28,800 | 86 | 2003/6/ | Soil | 18,000 | 123 | 2010/6/ | Soil | 19,200 | 
| 13 | 2000/6/ | Soil | 1000 | 50 | 2006/7/ | Soil | 5400 | 87 | 2010/6/ | Soil | 9600 | 124 | 2002/4/ | Soil | 8000 | 
| 14 | 2008/2/ | Soil | 1360 | 51 | 2002/6/ | Soil | 22,000 | 88 | 2005/5/ | Soil | 4935 | 125 | 2001/3/ | Soil | 21,600 | 
| 15 | 1998/5/ | Soil | 225 | 52 | 2012/3/ | Soil | 2400 | 89 | 2014/4/ | Soil | 8000 | 126 | 2003/5/ | Soil | 28,000 | 
| 16 | 2005/5/ | Soil | 400 | 53 | 2010/6/ | Soil | 4800 | 90 | 2010/6/ | Soil | 4500 | 127 | 2013/4/ | Rock | 2100 | 
| 17 | 1997/5/ | Soil | 1800 | 54 | 2002/6/ | Soil | 40,000 | 91 | 2012/6/ | Soil | 16,000 | 128 | 2012/6/ | Soil | 16,800 | 
| 18 | 2005/5/ | Soil | 5250 | 55 | 2013/6/ | Soil | 3600 | 92 | 2006/7/ | Soil | 147,450 | 129 | 2001/6/ | Soil | 12,800 | 
| 19 | 2003/7/ | Rock | 1000 | 56 | 2002/8/ | Soil | 30,600 | 93 | 2005/6/ | Soil | 9600 | 130 | 2006/7/ | Soil | 3400 | 
| 20 | 2001/5/ | Soil | 3600 | 57 | 1992/4/ | Soil | 3200 | 94 | 1996/8/ | Soil | 15,000 | 131 | 1998/6/ | Soil | 12,000 | 
| 21 | 2004/5/ | Soil | 6240 | 58 | 2013/6/ | Soil | 3120 | 95 | 1998/5/ | Soil | 1800 | 132 | 2002/6/ | Soil | 8820 | 
| 22 | 2012/4/ | Soil | 18,800 | 59 | 2005/5/ | Soil | 7500 | 96 | 2006/7/ | Soil | 3600 | 133 | 2002/6/ | Soil | 14,640 | 
| 23 | 2014/3/ | Soil | 400 | 60 | 2002/6/ | Soil | 19,200 | 97 | 1997/8/ | Soil | 3000 | 134 | 2002/6/ | Soil | 3200 | 
| 24 | 2014/4/ | Soil | 28,710 | 61 | 2002/6/ | Soil | 460 | 98 | 2003/5/ | Soil | 16,000 | 135 | 2002/6/ | Soil | 14,000 | 
| 25 | 2014/3/ | Soil | 140 | 62 | 2011/4/ | Soil | 720 | 99 | 1994/6/ | Soil | 10,000 | 136 | 1998/6/ | Soil | 1720 | 
| 26 | 2014/4/ | Soil | 24,000 | 63 | 1999/7/ | Soil | 3080 | 100 | 2007/6/ | Soil | 12,800 | 137 | 2002/6/ | Soil | 28,000 | 
| 27 | 2014/3/ | Rock | 1050 | 64 | 1992/5/ | Soil | 11,200 | 101 | 2007/5/ | Soil | 400 | 138 | 2002/6/ | Soil | 11,200 | 
| 28 | 2014/4/ | Soil | 7050 | 65 | 2002/5/ | Soil | 600 | 102 | 1992/7/ | Soil | 1360 | 139 | 1998/5/ | Soil | 14,400 | 
| 29 | 2014/5/ | Soil | 3000 | 66 | 1987/5/ | Soil | 1200 | 103 | 2004/6/ | Soil | 3360 | 140 | 1998/6/ | Soil | 7200 | 
| 30 | 2014/5/ | Soil | 2100 | 67 | 2004/6/ | Soil | 1600 | 104 | 2006/6/ | Soil | 13,200 | 141 | 2002/6/ | Soil | 8000 | 
| 31 | 2014/6/ | Soil | 1950 | 68 | 1979/6/ | Soil | 2400 | 105 | 1998/5/ | Soil | 1400 | 142 | 2002/6/ | Soil | 12,000 | 
| 32 | 2003/12/ | Soil | 8160 | 69 | 1980/7/ | Soil | 1050 | 106 | 1992/4/ | Soil | 4560 | 143 | 2002/6/ | Soil | 4000 | 
| 33 | 2006/7/ | Soil | 10,800 | 70 | 2012/6/ | Soil | 1080 | 107 | 1996/6/ | Soil | 2500 | 144 | 1998/6/ | Soil | 9600 | 
| 34 | 2006/7/ | Soil | 8800 | 71 | 1997/6/ | Soil | 1500 | 108 | 2014/5/ | Soil | 3200 | 145 | 2014/5/ | Soil | 338 | 
| 35 | 2006/7/ | Soil | 19,200 | 72 | 2002/7/ | Soil | 10,000 | 109 | 1998/3/ | Soil | 1,920,000 | 146 | 2013/9/ | Soil | 2280 | 
| 36 | 1996/8/ | Soil | 4000 | 73 | 1972/5/ | Soil | 60,000 | 110 | 1991/5/ | Soil | 9600 | ||||
| 37 | 2006/7/ | Soil | 8000 | 74 | 2004/6/ | Soil | 16,000 | 111 | 2012/4/ | Soil | 2000 | 
| Conditioning Factor | Name of the Data | Resolution/Scale | Data Type | Data Source | 
|---|---|---|---|---|
| Density of fault (DOF), Lithology Type | Geological map of China | 1:50,000 | Vector | https://www.ngac.cn/ | 
| Elevation, Slope, Aspect, Profile Curvature, Plane Curvature, Terrain Wetness Index (TWI), Stream Power Index (SPI): Roughness, Cutting-Depth, Relief, Elevation Coefficient of Variation (CV) | Spatial resolution DEM data for China | 30 m | Raster | http://www.gscloud.cn/ | 
| Density of road (DOR), Density of steam (DOS) | Basic geographic data of river systems, roads, and administrative boundaries | 1:1,000,000 | Vector | http://www.gscloud.cn/ | 
| Rainfall | The dataset of precipitation in China from 1991 to 2020 | 30 m | Raster | http://www.gisrs.cn/ | 
| Normalized Difference Vegetation Index (NDVI) | NDVI data for China in 2020 | 30 m | Raster | http://www.nesdc.org.cn/ | 
| Land use | Land cover data for China in 2020 | 30 m | Raster | https://www.ncdc.ac.cn/ | 
| Factors | Tolerances | VIF | Factors | Tolerances | VIF | Factors | Tolerances | VIF | 
|---|---|---|---|---|---|---|---|---|
| Aspect | 0.940 | 1.063 | DOS | 0.968 | 1.033 | Lithology type | 0.580 | 1.723 | 
| CV | 0.583 | 1.715 | DOR | 0.570 | 1.755 | Relief | 0.250 | 3.993 | 
| DOF | 0.968 | 1.033 | Roughness | 0.602 | 1.660 | Cutting depth | 0.236 | 4.244 | 
| DEM | 0.611 | 1.636 | Slope | 0.246 | 4.062 | Plane curvature | 0.812 | 1.231 | 
| Landuse | 0.608 | 1.644 | SPI | 0.709 | 1.411 | Profile curvature | 0.928 | 1.077 | 
| NDVI | 0.749 | 1.335 | TWI | 0.708 | 1.412 | Rainfall | 0.590 | 1.695 | 
| Factors | Classes | No. of Landslides | No. of Raster | a | b | FRij* | Pij | Hi | Hi,max | Ii | Pi | Wi | Wi* | 
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Slope | 0–6.86 | 23 | 1,147,291 | 0.1575 | 0.3487 | 0.4518 | 0.0716 | 0.2723 | 2.3219 | 0.0543 | 1.2624 | 0.0686 | 0.0277 | 
| 6.86–13.73 | 46 | 979,935 | 0.3151 | 0.2979 | 1.0579 | 0.1676 | 0.4319 | ||||||
| 13.73–21.79 | 42 | 647,322 | 0.2877 | 0.1968 | 1.4621 | 0.2316 | 0.4888 | ||||||
| 21.79–32.53 | 23 | 377,973 | 0.1575 | 0.1149 | 1.3713 | 0.2173 | 0.4785 | ||||||
| 32.53–76.10 | 12 | 137,353 | 0.0822 | 0.0418 | 1.9688 | 0.3119 | 0.5243 | ||||||
| Plane Curvature | −25.78–−2.96 | 3 | 56,199 | 0.0205 | 0.0171 | 1.2030 | 0.2016 | 0.4658 | 2.3219 | 0.0130 | 1.1934 | 0.0156 | 0.0063 | 
| −2.96–−0.98 | 24 | 366,651 | 0.1644 | 0.1114 | 1.4751 | 0.2472 | 0.4984 | ||||||
| 0.98–0.33 | 61 | 1,795,141 | 0.4178 | 0.5457 | 0.7658 | 0.1283 | 0.3801 | ||||||
| 0.33–2.09 | 50 | 935,136 | 0.3425 | 0.2842 | 1.2049 | 0.2019 | 0.4661 | ||||||
| 2.09–30.18 | 8 | 136,747 | 0.0548 | 0.0416 | 1.3184 | 0.2209 | 0.4813 | ||||||
| DOS | 0–0.26 | 128 | 2,889,251 | 0.8767 | 0.8782 | 0.9984 | 0.2100 | 0.4729 | 2.3219 | 0.0194 | 0.9507 | 0.0184 | 0.0074 | 
| 0.26–0.79 | 5 | 120,621 | 0.0342 | 0.0367 | 0.9342 | 0.1965 | 0.4613 | ||||||
| 0.79–1.24 | 7 | 141,948 | 0.0479 | 0.0431 | 1.1113 | 0.2338 | 0.4902 | ||||||
| 1.24–1.79 | 5 | 95,776 | 0.0342 | 0.0291 | 1.1765 | 0.2475 | 0.4986 | ||||||
| 1.79–3.28 | 1 | 42,278 | 0.0068 | 0.0129 | 0.5331 | 0.1121 | 0.3540 | ||||||
| DOF | 0–0.25 | 98 | 2,127,293 | 0.6712 | 0.6466 | 1.0382 | 0.2091 | 0.4721 | 2.3219 | 0.0187 | 0.9928 | 0.0185 | 0.0075 | 
| 0.25–0.76 | 17 | 265,940 | 0.1164 | 0.0808 | 1.4405 | 0.2902 | 0.5180 | ||||||
| 0.76–1.23 | 22 | 655,917 | 0.1507 | 0.1994 | 0.7559 | 0.1523 | 0.4135 | ||||||
| 1.23–1.76 | 5 | 147,171 | 0.0342 | 0.0447 | 0.7657 | 0.1542 | 0.4160 | ||||||
| 1.76–3.16 | 4 | 93,553 | 0.0274 | 0.0284 | 0.9635 | 0.1941 | 0.4591 | ||||||
| DOR | 0–0.49 | 97 | 2,477,520 | 0.6644 | 0.7531 | 0.8823 | 0.0712 | 0.2714 | 2.3219 | 0.1561 | 2.4788 | 0.3869 | 0.1562 | 
| 0.49–1.52 | 17 | 493,559 | 0.1164 | 0.1500 | 0.7762 | 0.0626 | 0.2503 | ||||||
| 1.52–2.99 | 17 | 237,857 | 0.1164 | 0.0723 | 1.6106 | 0.1300 | 0.3826 | ||||||
| 2.99–5.81 | 13 | 72,027 | 0.0890 | 0.0219 | 4.0671 | 0.3282 | 0.5275 | ||||||
| 5.81–11.39 | 2 | 8911 | 0.0137 | 0.0027 | 5.0575 | 0.4081 | 0.5277 | ||||||
| Rainfall | 2051–2118 | 40 | 1,210,437 | 0.2740 | 0.3679 | 0.7447 | 0.1167 | 0.3616 | 2.3219 | 0.2059 | 1.2765 | 0.2628 | 0.1061 | 
| 2118–2169 | 36 | 1,190,378 | 0.2466 | 0.3618 | 0.6816 | 0.1068 | 0.3446 | ||||||
| 2169–2251 | 38 | 532,952 | 0.2603 | 0.1620 | 1.6068 | 0.2517 | 0.5010 | ||||||
| 2251–2362 | 31 | 219,354 | 0.2123 | 0.0667 | 3.1846 | 0.4990 | 0.5005 | ||||||
| 2362–2567 | 1 | 136,753 | 0.0068 | 0.0416 | 0.1649 | 0.0258 | 0.1363 | ||||||
| TWI | 3.97–7.60 | 73 | 1,305,235 | 0.5000 | 0.3967 | 1.2604 | 0.2853 | 0.5162 | 2.3219 | 0.0324 | 0.8834 | 0.0286 | 0.0116 | 
| 7.60–9.65 | 45 | 1,171,820 | 0.3082 | 0.3562 | 0.8654 | 0.1959 | 0.4607 | ||||||
| 9.65–12.60 | 21 | 491,509 | 0.1438 | 0.1494 | 0.9629 | 0.2180 | 0.4791 | ||||||
| 12.60–16.81 | 5 | 272,014 | 0.0342 | 0.0827 | 0.4143 | 0.0938 | 0.3202 | ||||||
| 16.81–28.97 | 2 | 49,296 | 0.0137 | 0.0150 | 0.9143 | 0.2070 | 0.4704 | ||||||
| NDVI | −1649–4246 | 12 | 90,541 | 0.0822 | 0.0275 | 2.9866 | 0.3535 | 0.5303 | 2.3219 | 0.0878 | 1.6897 | 0.1483 | 0.0599 | 
| 4246–6115 | 20 | 199,141 | 0.1370 | 0.0605 | 2.2632 | 0.2679 | 0.5091 | ||||||
| 6115–7378 | 35 | 472,658 | 0.2397 | 0.1437 | 1.6687 | 0.1975 | 0.4622 | ||||||
| 7378–8260 | 40 | 915,188 | 0.2740 | 0.2782 | 0.9850 | 0.1166 | 0.3615 | ||||||
| 8260–9999 | 39 | 1,612,346 | 0.2671 | 0.4901 | 0.5451 | 0.0645 | 0.2551 | ||||||
| DEM | 59–249 | 35 | 1,316,776 | 0.2397 | 0.4003 | 0.5990 | 0.1061 | 0.3435 | 2.3219 | 0.1055 | 1.1287 | 0.1190 | 0.0481 | 
| 249–393 | 49 | 1,147,025 | 0.3356 | 0.3487 | 0.9627 | 0.1706 | 0.4352 | ||||||
| 393–584 | 41 | 426,851 | 0.2808 | 0.1297 | 2.1645 | 0.3835 | 0.5303 | ||||||
| 584–826 | 19 | 276,005 | 0.1301 | 0.0839 | 1.5513 | 0.2749 | 0.5121 | ||||||
| 826–1400 | 2 | 123,217 | 0.0137 | 0.0375 | 0.3659 | 0.0648 | 0.2559 | ||||||
| Lithology type | Harder Rock | 22 | 312,971 | 0.1507 | 0.0951 | 1.5841 | 0.2786 | 0.5136 | 2.3219 | 0.1710 | 1.1373 | 0.1944 | 0.0785 | 
| Hard Rock | 76 | 2,359,103 | 0.5205 | 0.7171 | 0.7260 | 0.1277 | 0.3791 | ||||||
| Weak Rock | 46 | 538,857 | 0.3151 | 0.1638 | 1.9237 | 0.3383 | 0.5290 | ||||||
| Weaker Rock | 2 | 31,022 | 0.0137 | 0.0094 | 1.4528 | 0.2555 | 0.5030 | ||||||
| Loose Rock | 0 | 47,909 | 0.0000 | 0.0146 | 0.0001 | 0.0000 | 0.0003 | ||||||
| Land use | Cropland | 46 | 1,220,474 | 0.3151 | 0.3710 | 0.8494 | 0.0865 | 0.3054 | 2.3219 | 0.2723 | 1.9646 | 0.5350 | 0.2160 | 
| Forest | 88 | 1,955,766 | 0.6027 | 0.5945 | 1.0140 | 0.1032 | 0.3382 | ||||||
| Others | 1 | 4998 | 0.0068 | 0.0015 | 4.5086 | 0.4590 | 0.5157 | ||||||
| Water | 0 | 36,807 | 0.0000 | 0.0112 | 0.0001 | 0.0000 | 0.0002 | ||||||
| Buildup | 11 | 71,829 | 0.0753 | 0.0218 | 3.4509 | 0.3513 | 0.5302 | ||||||
| Aspect | North | 12 | 459,635 | 0.0822 | 0.1397 | 0.5884 | 0.0725 | 0.2745 | 3.0000 | 0.0109 | 1.0141 | 0.0111 | 0.0045 | 
| Northeast | 17 | 334,051 | 0.1164 | 0.1015 | 1.1468 | 0.1414 | 0.3990 | ||||||
| East | 18 | 466,401 | 0.1233 | 0.1418 | 0.8697 | 0.1072 | 0.3454 | ||||||
| Southeast | 21 | 401,912 | 0.1438 | 0.1222 | 1.1775 | 0.1451 | 0.4041 | ||||||
| South | 22 | 410,405 | 0.1507 | 0.1247 | 1.2080 | 0.1489 | 0.4091 | ||||||
| Southwest | 20 | 367,835 | 0.1370 | 0.1118 | 1.2253 | 0.1510 | 0.4119 | ||||||
| West | 21 | 466,432 | 0.1438 | 0.1418 | 1.0146 | 0.1251 | 0.3751 | ||||||
| Northwest | 15 | 383,203 | 0.1027 | 0.1165 | 0.8821 | 0.1087 | 0.3481 | ||||||
| SPI | 2.75–6.55 | 1 | 263,540 | 0.0068 | 0.0801 | 0.0856 | 0.0187 | 0.1072 | 2.3219 | 0.1106 | 0.9174 | 0.1015 | 0.0410 | 
| 6.55–8.68 | 37 | 1,104,319 | 0.2534 | 0.3357 | 0.7551 | 0.1646 | 0.4285 | ||||||
| 8.68–10.63 | 67 | 1,231,618 | 0.4589 | 0.3744 | 1.2259 | 0.2672 | 0.5088 | ||||||
| 10.63–13.23 | 35 | 571,961 | 0.2397 | 0.1739 | 1.3790 | 0.3006 | 0.5213 | ||||||
| 13.23–26.40 | 6 | 118,436 | 0.0411 | 0.0360 | 1.1416 | 0.2489 | 0.4994 | ||||||
| Roughness | 1–1.04 | 81 | 2,292,192 | 0.5548 | 0.6967 | 0.7964 | 0.1159 | 0.3604 | 2.3219 | 0.1909 | 1.3738 | 0.2623 | 0.1059 | 
| 10.4–1.12 | 45 | 722,696 | 0.3082 | 0.2197 | 1.4032 | 0.2043 | 0.4681 | ||||||
| 1.12–1.26 | 19 | 210,869 | 0.1301 | 0.0641 | 2.0304 | 0.2956 | 0.5197 | ||||||
| 1.26–1.50 | 0 | 55,578 | 0.0000 | 0.0169 | 0.0001 | 0.0000 | 0.0002 | ||||||
| 1.50–4.16 | 1 | 8539 | 0.0068 | 0.0026 | 2.6390 | 0.3842 | 0.5302 | ||||||
| Cutting depth | 0–2.05 | 24 | 1,272,842 | 0.1644 | 0.3869 | 0.4250 | 0.0744 | 0.2788 | 2.3219 | 0.0522 | 1.1427 | 0.0597 | 0.0241 | 
| 2.05–4.78 | 65 | 1,139,489 | 0.4452 | 0.3464 | 1.2855 | 0.2250 | 0.4842 | ||||||
| 4.78–8.19 | 38 | 599,351 | 0.2603 | 0.1822 | 1.4288 | 0.2501 | 0.5000 | ||||||
| 8.19–13.19 | 17 | 227,622 | 0.1164 | 0.0692 | 1.6830 | 0.2946 | 0.5194 | ||||||
| 13.19–58 | 2 | 50,570 | 0.0137 | 0.0154 | 0.8913 | 0.1560 | 0.4181 | ||||||
| Relief | 0–5 | 32 | 1,608,874 | 0.2192 | 0.4890 | 0.4483 | 0.0751 | 0.2804 | 2.3219 | 0.0848 | 1.1945 | 0.1013 | 0.0409 | 
| 5–10 | 60 | 937,863 | 0.4110 | 0.2851 | 1.4417 | 0.2414 | 0.4950 | ||||||
| 10–17 | 38 | 524,499 | 0.2603 | 0.1594 | 1.6326 | 0.2733 | 0.5115 | ||||||
| 17–26 | 15 | 176,589 | 0.1027 | 0.0537 | 1.9142 | 0.3205 | 0.5261 | ||||||
| 26–132 | 1 | 42,049 | 0.0068 | 0.0128 | 0.5360 | 0.0897 | 0.3121 | ||||||
| Profile Curvature | −37.08–−4.65 | 3 | 86,895 | 0.0205 | 0.0264 | 0.7781 | 0.1667 | 0.4309 | 2.3219 | 0.0243 | 0.9335 | 0.0227 | 0.0092 | 
| −4.65–−1.44 | 18 | 415,162 | 0.1233 | 0.1262 | 0.9771 | 0.2093 | 0.4723 | ||||||
| −1.44–0.81 | 81 | 1,991,942 | 0.5548 | 0.6055 | 0.9164 | 0.1963 | 0.4611 | ||||||
| 0.81–3.70 | 40 | 645,598 | 0.2740 | 0.1962 | 1.3962 | 0.2991 | 0.5208 | ||||||
| 3.70–44.81 | 4 | 150,277 | 0.0274 | 0.0457 | 0.5999 | 0.1285 | 0.3804 | ||||||
| CV | 0–0.0051 | 37 | 1,224,790 | 0.2534 | 0.3723 | 0.6808 | 0.0954 | 0.3233 | 2.3219 | 0.0853 | 1.4279 | 0.1218 | 0.0492 | 
| 0.0051–0.0096 | 56 | 1,119,905 | 0.3836 | 0.3404 | 1.1269 | 0.1578 | 0.4204 | ||||||
| 0.0096–0.0162 | 38 | 689,186 | 0.2603 | 0.2095 | 1.2425 | 0.1740 | 0.4390 | ||||||
| 0.0162–0.0278 | 11 | 225,863 | 0.0753 | 0.0687 | 1.0975 | 0.1537 | 0.4153 | ||||||
| 0.0278–0.1289 | 4 | 30,130 | 0.0274 | 0.0092 | 2.9916 | 0.4190 | 0.5258 | 
| No. | Model | Parameters | 
|---|---|---|
| 1 | SVM | C = 10, gamma = scale, and kernel = rbf (all other parameters as default). | 
| 2 | LDA | shrinkage = None, and solver = lsqr (all other parameters as default). | 
| 3 | RF | max_depth = 20, min_samples_leaf = 1, min_samples_split = 2, and n_estimators = 200 (all other parameters as default). | 
| 4 | ET | max_depth = 20, min_samples_leaf = 1, min_samples_split = 2, and n_estimators = 100 (all other parameters as default). | 
| Model | AUC | ACC | Precision | F1 | Recall | |||||
|---|---|---|---|---|---|---|---|---|---|---|
| Value | CI. | Value | CI. | Value | CI. | Value | CI. | Value | CI. | |
| SVM | 0.933 | [0.871, 0.946] | 0.872 | [0.784, 0.885] | 0.908 | [0.773, 0.964] | 0.861 | [0.781, 0.880] | 0.818 | [0.681, 0.833] | 
| LDA | 0.922 | [0.862, 0.958] | 0.840 | [0.768, 0.900] | 0.875 | [0.765, 0.994] | 0.826 | [0.743, 0.893] | 0.782 | [0.622, 0.827] | 
| RF | 0.965 | [0.912, 0.983] | 0.906 | [0.858, 0.943] | 0.925 | [0.848, 0.994] | 0.900 | [0.859, 0.942] | 0.876 | [0.783, 0.923] | 
| ET | 0.961 | [0.923, 0.979] | 0.909 | [0.843, 0.936] | 0.916 | [0.820, 0.994] | 0.905 | [0.840, 0.937] | 0.894 | [0.749, 0.928] | 
| Model | Landslide Susceptibility Zone Levels | Number of Grid Cells | Area Proportion | Number of Landslides | Landslide Number Ratio | Landslide Frequency Ratio | 
|---|---|---|---|---|---|---|
| ET | Very low | 982,144 | 0.30 | 2 | 0.01 | 0.05 | 
| low | 638,882 | 0.19 | 2 | 0.01 | 0.07 | |
| middle | 292,052 | 0.09 | 6 | 0.04 | 0.46 | |
| high | 321,124 | 0.10 | 11 | 0.08 | 0.77 | |
| Very high | 1,055,672 | 0.32 | 125 | 0.86 | 2.67 | |
| RF | Very low | 912,176 | 0.28 | 2 | 0.01 | 0.05 | 
| low | 660,851 | 0.20 | 1 | 0.01 | 0.03 | |
| middle | 334,600 | 0.10 | 3 | 0.02 | 0.20 | |
| high | 224,453 | 0.07 | 23 | 0.16 | 2.31 | |
| Very high | 1,157,794 | 0.35 | 117 | 0.80 | 2.28 | |
| SVM | Very low | 1,124,243 | 0.34 | 8 | 0.05 | 0.16 | 
| low | 499,757 | 0.15 | 11 | 0.08 | 0.50 | |
| middle | 237,673 | 0.07 | 8 | 0.05 | 0.76 | |
| high | 382,477 | 0.12 | 7 | 0.05 | 0.41 | |
| Very high | 1,045,724 | 0.32 | 112 | 0.77 | 2.41 | |
| LDA | Very low | 1,550,851 | 0.47 | 17 | 0.12 | 0.25 | 
| low | 272,606 | 0.08 | 10 | 0.07 | 0.83 | |
| middle | 163,123 | 0.05 | 8 | 0.05 | 1.11 | |
| high | 161,655 | 0.05 | 4 | 0.03 | 0.56 | |
| Very high | 1,141,639 | 0.35 | 107 | 0.73 | 2.11 | 
| Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. | 
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kong, Y.; Zhu, K.; Wu, H.; Xu, C.; Meng, Z.; Kong, H.; Tan, W.; Kong, X.; Chen, X.; Chen, L.; et al. Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China. Sustainability 2025, 17, 9575. https://doi.org/10.3390/su17219575
Kong Y, Zhu K, Wu H, Xu C, Meng Z, Kong H, Tan W, Kong X, Chen X, Chen L, et al. Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China. Sustainability. 2025; 17(21):9575. https://doi.org/10.3390/su17219575
Chicago/Turabian StyleKong, Yuzhong, Kangcheng Zhu, Hua Wu, Chong Xu, Ze Meng, Hui Kong, Wen Tan, Xiangyun Kong, Xingwang Chen, Linna Chen, and et al. 2025. "Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China" Sustainability 17, no. 21: 9575. https://doi.org/10.3390/su17219575
APA StyleKong, Y., Zhu, K., Wu, H., Xu, C., Meng, Z., Kong, H., Tan, W., Kong, X., Chen, X., Chen, L., & Xu, T. (2025). Towards Sustainable Development: Landslide Susceptibility Assessment with Sample Optimization in Guiyang County, China. Sustainability, 17(21), 9575. https://doi.org/10.3390/su17219575
 
        



 
       