Enhancing the Resilience of Resource-Based Cities: A Dual Analysis of the Driving Mechanisms and Spatial Effects of the Digital Economy
Abstract
1. Introduction
2. Literature Review
2.1. Research on the Digital Economy
2.2. Research on RBCs Resilience
2.3. Research on the Digital Economy and Urban Resilience
2.4. Research Gaps and Contributions
3. Study Design
3.1. Research Hypotheses
3.1.1. Impact of the Digital Economy on RBC’s Resilience
3.1.2. Transmission Mechanisms
3.1.3. Spatial Impact
3.2. Data Sources
3.3. Variable Design
3.3.1. Explained Variable
3.3.2. Explanatory Variable
| Target | Subsystem | Indicator Measurement | Attributes | Abbreviation |
|---|---|---|---|---|
| Resilience of resource-based cities | Economic resilience | Per capita GDP | + | ECO |
| Per capita disposable income of urban residents | + | LIV | ||
| Trade dependence ratio | + | TRA | ||
| Social resilience | Urbanization rate | + | UR | |
| Basic medical insurance coverage rate | + | INS | ||
| Hospital beds per 10,000 population | + | HEA | ||
| Population density | − | POP | ||
| Ecological resilience | Per capita industrial wastewater discharge | − | WP | |
| Per capita industrial sulfur dioxide emissions | − | AP | ||
| Built-up area green coverage rate | + | GC | ||
| Harmless treatment rate of domestic waste | + | PTC | ||
| Infrastructure resilience | Graded highway mileage per 10,000 population | + | HWM | |
| Proportion of highway passenger volume to total population | + | HWP | ||
| Drainage pipeline density in built-up areas | + | DRA | ||
| Resource resilience | Energy productivity | + | ER | |
| Mining industry employment/Total employment | − | RD | ||
| Number of resource-based enterprises/Number of domestic and foreign enterprises | − | RIS | ||
| Digital economy | Digital infrastructure | Number of 4G and 5G base stations | + | STA |
| Number of International Internet Users | + | NET | ||
| Long-distance Optical Cable Density | + | CAB | ||
| Number of mobile telephone subscriptions | + | TEL | ||
| Digital industry development | E-commerce sales | + | ES | |
| Employees in information transmission, computer services and software industry | + | EIT | ||
| Digital financial inclusion index | + | DFI | ||
| Number of national high-tech enterprises | + | HTE | ||
| Digital technology development | Internal R&D expenditure | + | IRE | |
| Number of digital patents | + | DP | ||
| Technology contract transaction value | + | TCT |
3.3.3. Mediating Variables
3.3.4. Control Variables
3.4. Empirical Model
3.4.1. Baseline Regression Model
3.4.2. Mediating Effect Model
3.4.3. Spatial Econometric Model
4. Results
4.1. Measurements of the Digital Economy Development Level and Urban Resilience
4.2. Descriptive Statistics
4.3. Regression Analysis and Hypothesis Testing
4.3.1. Regression Analysis
4.3.2. Mediating Effects of GTI, TS, and TL
4.3.3. Spatial Effect Analysis
4.4. Regional Heterogeneity Analysis
4.5. Robustness Tests
5. Discussion
5.1. Effectiveness of Our Framework and Implications for Others
5.2. Recommendations
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Entropy Weight Method
| Variable | x | y | y1 | y2 | y3 | y4 | y5 | GOV |
|---|---|---|---|---|---|---|---|---|
| x | 1.000 | |||||||
| y | 0.193 *** | 1.000 | ||||||
| y1 | 0.313 *** | 0.669 *** | 1.000 | |||||
| y2 | 0.132 *** | 0.589 *** | 0.324 *** | 1.000 | ||||
| y3 | 0.030 | 0.386 *** | −0.120 *** | −0.088 *** | 1.000 | |||
| y4 | −0.246 *** | 0.392 *** | 0.028 | 0.011 | 0.151 *** | 1.000 | ||
| y5 | 0.261 *** | 0.155 *** | 0.163 *** | −0.162 *** | 0.089 *** | −0.068 *** | 1.000 | |
| GOV | −0.339 *** | −0.352 *** | −0.439 *** | −0.356 *** | 0.018 | 0.119 *** | 0.021 | 1.000 |
| HUM | 0.035 | 0.054 | 0.185 *** | −0.003 | −0.088 *** | −0.035 | 0.020 | −0.155 *** |
| FDI | 0.224 *** | 0.167 *** | 0.188 *** | 0.044 * | 0.081 *** | −0.011 | 0.226 *** | −0.278 *** |
| US | 0.562 *** | −0.205 *** | −0.149 *** | −0.223 *** | 0.138 *** | −0.306 *** | 0.236 *** | −0.165 *** |
| ENV | 0.152 *** | −0.027 | 0.084 *** | −0.011 | −0.077 *** | −0.062 ** | −0.025 | 0.084 *** |
| IGA | 0.415 *** | 0.126 *** | 0.295 *** | 0.076 *** | −0.023 | −0.229 *** | 0.245 *** | −0.386 *** |
| GTI | 0.724 *** | 0.279 *** | 0.409 *** | 0.159 *** | 0.037 | −0.227 *** | 0.285 *** | −0.329 *** |
| TS | −0.009 | −0.244 *** | −0.170 *** | −0.221 *** | −0.084 *** | −0.044 * | 0.123 *** | 0.556 |
| TL | 0.724 *** | −0.064 *** | −0.082 *** | −0.016 | −0.103 | 0.120 *** | −0.293 *** | 0.108 *** |
| Variable | HUM | FDI | US | ENV | IGA | GTI | TS | TL |
| x | ||||||||
| y | ||||||||
| y1 | ||||||||
| y2 | ||||||||
| y3 | ||||||||
| y4 | ||||||||
| y5 | ||||||||
| GOV | ||||||||
| HUM | 1.000 | |||||||
| FDI | −0.023 | 1.000 | ||||||
| US | −0.118 *** | 0.103 *** | 1.000 | |||||
| ENV | −0.045* | −0.100 *** | 0.082 *** | 1.000 | ||||
| IGA | 0.255 *** | 0.327 *** | 0.176 *** | 0.065 *** | 1.000 | |||
| GTI | 0.065 *** | 0.237 *** | 0.404 *** | 0.215 *** | 0.545 *** | 1.000 | ||
| TS | −0.067 *** | −0.174 *** | 0.009 | 0.265 *** | −0.104 *** | 0.032 | 1.000 | |
| TL | −0.020 | −0.288 *** | −0.216 *** | −0.075 *** | −0.365 *** | −0.275 *** | −0.239 *** | 1.000 |
| Variables | Regression Coefficients | p−Value |
|---|---|---|
| X | 0.257 *** | 0.000 |
| GOV | −0.0028 *** | 0.000 |
| HUM | −0.0058 | 0.069 |
| FDI | 0.0039 *** | 0.004 |
| US | −0.062 *** | 0.000 |
| ENV | −0.0014 | 0.727 |
| IGA | −0.00018 *** | 0.002 |
| cons | 1.221 *** | 0.000 |
| R2 | 0.274 | |
| Testing Methods | Statistics | p-value |
| LM test no spatial error | 483.171 *** | 0.000 |
| Robust LM test no spatial error | 466.057 *** | 0.000 |
| LM test no spatial lag | 29.288 *** | 0.000 |
| Robust LM test no spatial lag | 12.174 *** | 0.000 |
| Testing Methods | Chi2 | p-Value |
|---|---|---|
| LR Lag | 857.76 *** | 0.0000 |
| LR Err | 33.70 *** | 0.0000 |
| Wald Lag | 22.04 *** | 0.0025 |
| Wald Err | 22.31 *** | 0.0022 |
| LR Ind | 1573.79 *** | 0.0000 |
| LR Time | 1783.37 *** | 0.0000 |
References
- AghaKouchak, A.; Huning, L.S.; Chiang, F.; Sadegh, M.; Vahedifard, F.; Mazdiyasni, O.; Moftakhari, H.; Mallakpour, I. How do natural hazards cascade to cause disasters? Nature 2018, 561, 458–460. [Google Scholar] [CrossRef] [PubMed]
- Zhao, M.; Lv, L.; Wu, J.; Wang, S.; Zhang, N.; Bai, Z.; Luo, H. Total factor productivity of high coal-consuming industries and provincial coal consumption: Based on the dynamic spatial Durbin model. Energy 2022, 251, 123917. [Google Scholar] [CrossRef]
- Zhou, C.; Tao, Y.; Wang, W. Can green finance enhance urban economic resilience. Financ. Econ. 2024, 7, 70–80. [Google Scholar]
- He, W.-W.; He, S.-L.; Hou, H.-L. Digital economy, technological innovation, and sustainable development. PLoS ONE 2024, 19, e0305520. [Google Scholar] [CrossRef]
- Zhang, J. Digital economy, green finance, and economic resilience. PLoS ONE 2025, 20, e0314028. [Google Scholar] [CrossRef]
- Zhou, Q.; Wang, Y.; Yang, W. An empirical study of the impact of digital level on innovation performance: A study based on the panel data of 73 counties of Zhejiang Province. Sci. Res. Manag. 2020, 41, 120–129. [Google Scholar]
- Moulton, B.R. GDP and the Digital Economy: Keeping up with the Changes. Underst. Digit. Econ. Data Tools Res. 2000, 5, 34–48. [Google Scholar]
- Hu, J. Synergistic effect of pollution reduction and carbon emission mitigation in the digital economy. J. Environ. Manag. 2023, 337, 117755. [Google Scholar] [CrossRef]
- Jing, S.; Wu, F.; Shi, E.; Wu, X.; Du, M. Does the digital economy promote the reduction of urban carbon emission intensity? Int. J. Environ. Res. Public Health 2023, 20, 3680. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.; Wan, X.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef]
- Wang, J.; Dong, K.; Dong, X.; Taghizadeh-Hesary, F. Assessing the digital economy and its carbon-mitigation effects: The case of China. Energy Econ. 2022, 113, 106198. [Google Scholar] [CrossRef]
- Dong, F.; Hu, M.; Gao, Y.; Liu, Y.; Zhu, J.; Pan, Y. How does digital economy affect carbon emissions? Evidence from global 60 countries. Sci. Total Environ. 2022, 852, 158401. [Google Scholar] [CrossRef]
- Pan, M.; Zhao, X.; Rosak-Szyrocka, J.; Mentel, G.; Truskolaski, T. Internet development and carbon emission-reduction in the era of digitalization: Where will resource-based cities go? Resour. Policy 2023, 81, 103345. [Google Scholar] [CrossRef]
- Ye, L. Digital economy and high-quality agricultural development. Int. Rev. Econ. Financ. 2025, 99, 104028. [Google Scholar] [CrossRef]
- Jin, M.; Feng, Y.; Wang, S.; Chen, N.; Cao, F. Can the development of the rural digital economy reduce agricultural carbon emissions? A spatiotemporal empirical study based on China’s provinces. Sci. Total Environ. 2024, 939, 173437. [Google Scholar] [CrossRef] [PubMed]
- Du, Y.; Wang, Q.; Zhou, J. How does digital inclusive finance affect economic resilience: Evidence from 285 cities in China. Int. Rev. Financ. Anal. 2023, 88, 102709. [Google Scholar] [CrossRef]
- Simmie, J.; Martin, R. The economic resilience of regions: Towards an evolutionary approach. Camb. J. Reg. Econ. Soc. 2010, 3, 27–43. [Google Scholar] [CrossRef]
- Duan, W.; Madasi, J.D.; Khurshid, A.; Ma, D. Industrial structure conditions economic resilience. Technol. Forecast. Soc. Change 2022, 183, 121944. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, T.; Jiang, Y. Digital economy, technological innovation and urban resilience. Sustainability 2023, 15, 9250. [Google Scholar] [CrossRef]
- Zhou, S.; Diao, H.; Wang, M.; Jia, W.; Wang, Y.; Liu, Z.; Gan, W.; Zhou, M.; Wu, Z.; Zhao, Z. Knowledge mapping and emerging trends of urban resilient infrastructure research in urban studies: Precedent work, current progress and future perspectives. J. Clean. Prod. 2024, 452, 142087. [Google Scholar] [CrossRef]
- Simone, C.; Iandolo, F.; Fulco, I.; Loia, F. Rome was not built in a day. Resilience and the eternal city: Insights for urban management. Cities 2021, 110, 103070. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, H.; Ahmad, M.; Xue, C. Analysis of influencing factors of carbon emissions in resource-based cities in the Yellow River basin under carbon neutrality target. Environ. Sci. Pollut. Res. 2022, 29, 23847–23860. [Google Scholar] [CrossRef]
- Mallick, S.K.; Das, P.; Maity, B.; Rudra, S.; Pramanik, M.; Pradhan, B.; Sahana, M. Understanding future urban growth, urban resilience and sustainable development of small cities using prediction-adaptation-resilience (PAR) approach. Sustain. Cities Soc. 2021, 74, 103196. [Google Scholar] [CrossRef]
- Jiang, Q.; Li, J.; Si, H.; Su, Y. The impact of the digital economy on agricultural green development: Evidence from China. Agriculture 2022, 12, 1107. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, R.; Ibrahim, H.; Liu, P. Can the digital economy enable carbon emission reduction: Analysis of mechanisms and China’s experience. Sustainability 2023, 15, 10368. [Google Scholar] [CrossRef]
- Li, J.; Sun, W.; Song, H.; Li, R.; Hao, J. Toward the construction of a circular economy eco-city: An emergy-based sustainability evaluation of Rizhao city in China. Sustain. Cities Soc. 2021, 71, 102956. [Google Scholar] [CrossRef]
- Chen, X.; Di, Q.; Liang, C. The mechanism and path of pollution reduction and carbon reduction affecting high quality economic development-taking the Yangtze River Delta urban agglomeration as an example. Appl. Energy 2024, 376, 124340. [Google Scholar] [CrossRef]
- Li, X.; Liu, J.; Ni, P. The impact of the digital economy on CO2 emissions: A theoretical and empirical analysis. Sustainability 2021, 13, 7267. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L. Digital economy meets artificial intelligence: Forecasting economic conditions based on big data analytics. Mob. Inf. Syst. 2022, 2022, 7014874. [Google Scholar] [CrossRef]
- Pan, W.; Xie, T.; Wang, Z.; Ma, L. Digital economy: An innovation driver for total factor productivity. J. Bus. Res. 2022, 139, 303–311. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, X.; Shen, Y. Technology-driven carbon reduction: Analyzing the impact of digital technology on China’s carbon emission and its mechanism. Technol. Forecast. Soc. Change 2024, 200, 123124. [Google Scholar] [CrossRef]
- Cui, Z.; Li, E.; Li, Y.; Deng, Q.; Shahtahmassebi, A. The impact of poverty alleviation policies on rural economic resilience in impoverished areas: A case study of Lankao County, China. J. Rural Stud. 2023, 99, 92–106. [Google Scholar] [CrossRef]
- Okpalaoka, C.I. Research on the digital economy: Developing trends and future directions. Technol. Forecast. Soc. Change 2023, 193, 122635. [Google Scholar] [CrossRef]
- Wang, H.; Peng, G.; Du, H. Digital economy development boosts urban resilience—Evidence from China. Sci. Rep. 2024, 14, 2925. [Google Scholar] [CrossRef]
- Wang, L.; Shao, J. Digital economy, entrepreneurship and energy efficiency. Energy 2023, 269, 126801. [Google Scholar] [CrossRef]
- Wang, F.; Wu, M.; Du, X. Does industrial upgrading improve eco-efficiency? Evidence from China’s industrial sector. Energy Econ. 2023, 124, 106774. [Google Scholar] [CrossRef]
- Deng, H.; Bai, G.; Shen, Z.; Xia, L. Digital economy and its spatial effect on green productivity gains in manufacturing: Evidence from China. J. Clean. Prod. 2022, 378, 134539. [Google Scholar] [CrossRef]
- Li, J.; Chen, L.; Chen, Y.; He, J. Digital economy, technological innovation, and green economic efficiency—Empirical evidence from 277 cities in China. Manag. Decis. Econ. 2022, 43, 616–629. [Google Scholar] [CrossRef]
- Jiang, J.-X.; Wang, J.-J.; Cheng, Y. The impact of industrial transformation on green economic efficiency: New evidence based on energy use. Pet. Sci. 2024, 21, 3644–3655. [Google Scholar] [CrossRef]
- Guo, W.; Yang, B.; Ji, J.; Liu, X. Abundance of natural resources, government scale and green economic growth: An empirical study on urban resource curse. Resour. Policy 2023, 87, 104303. [Google Scholar] [CrossRef]
- Xiong, W.; Wu, D.D.; Yeung, J.H. Semiconductor supply chain resilience and disruption: Insights, mitigation, and future directions. Int. J. Prod. Res. 2025, 63, 3442–3465. [Google Scholar] [CrossRef]
- Deng, H.; Liu, K. Spatiotemporal Evolution of Urban Resilience and Spatial Spillover Effects in Guangdong Province, China. Land 2023, 12, 1800. [Google Scholar] [CrossRef]
- Chen, Z.; Yang, Y.; Zhou, L.; Hou, H.; Zhang, Y.; Liang, J.; Zhang, S. Ecological restoration in mining areas in the context of the Belt and Road initiative: Capability and challenges. Environ. Impact Assess. Rev. 2022, 95, 106767. [Google Scholar] [CrossRef]
- Wu, J.; Bai, Z. Spatial and temporal changes of the ecological footprint of China’s resource-based cities in the process of urbanization. Resour. Policy 2022, 75, 102491. [Google Scholar] [CrossRef]
- Zhang, M.-S.; Zhang, P.-Y.; Li, H. Characteristics and evaluation methods of economic transformation performance of resource-based cities: An empirical study of Northeast China. J. Nat. Resour. 2021, 36, 2051–2064. [Google Scholar] [CrossRef]
- Huang, L.; Wang, J.; Fang, Y.; Zhai, T.; Cheng, H. An integrated approach towards spatial identification of restored and conserved priority areas of ecological network for implementation planning in metropolitan region. Sustain. Cities Soc. 2021, 69, 102865. [Google Scholar] [CrossRef]
- Al-Banna, A.; Rana, Z.A.; Yaqot, M.; Menezes, B.C. Supply chain resilience, industry 4.0, and investment interplays: A review. Prod. Manuf. Res. 2023, 11, 2227881. [Google Scholar] [CrossRef]
- Sun, X.; Zhu, S.; Guo, J.; Peng, S.; Qie, X.; Yu, Z.; Wu, J.; Li, P. Exploring ways to improve China’s ecological well-being amidst air pollution challenges using mixed methods. J. Environ. Manag. 2024, 364, 121457. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Mao, Y.; Jiao, L.; Shuai, C.; Zhang, H. Eco-efficiency, eco-technology innovation and eco-well-being performance to improve global sustainable development. Environ. Impact Assess. Rev. 2021, 89, 106580. [Google Scholar] [CrossRef]
- Chari, A.; Niedenzu, D.; Despeisse, M.; Machado, C.G.; Azevedo, J.D.; Boavida-Dias, R.; Johansson, B. Dynamic capabilities for circular manufacturing supply chains—Exploring the role of Industry 4.0 and resilience. Bus. Strategy Environ. 2022, 31, 2500–2517. [Google Scholar] [CrossRef]
- Lemke, L.K.-G.; Sakdapolrak, P.; Trippl, M. Unresolved issues in regional economic resilience: Conceptual ways forward. Prog. Hum. Geogr. 2023, 47, 699–717. [Google Scholar] [CrossRef]





| Variable | Variable Name | Variable Symbol | Variable Measurement |
|---|---|---|---|
| Explanatory Variable | Digital Economy | DE | Entropy Method |
| Dependent Variable | Resource-based City Resilience | R-RBC’s | Entropy Method |
| Mediating Variables | Green Technological Innovation | GTI | Number of Green Patent Applications Received |
| Industrial Structure Sophistication | TS | Ratio of Tertiary Industry Value-added to Secondary Industry Value-added | |
| Industrial Structure Rationalization | TL | Ln (Theil Index) | |
| Control Variables | Government Intervention | GOV | Government General Public Budget Expenditure/GDP |
| Human Capital Level | HUM | Higher Education Enrolled Students/Total Population | |
| Foreign Investment Level | FDI | Actual Foreign Investment Used/GDP | |
| City Size | US | Ln (Urban Permanent Resident Population) | |
| Environmental Protection Level | ENV | Environmental Protection Fiscal Expenditure/GDP | |
| Industrial Agglomeration Level | IGA | Number of Employed Persons/Administrative Area |
| Variable | Obs. | Mean | Std. Dev. | Min | Max |
|---|---|---|---|---|---|
| x | 1610 | 0.109 | 0.125 | 0.011 | 0.644 |
| y | 1610 | 0.269 | 0.089 | 0.075 | 0.550 |
| y1 | 1610 | 0.169 | 0.129 | 0.019 | 0.710 |
| y2 | 1610 | 0.348 | 0.165 | 0.108 | 0.821 |
| y3 | 1610 | 0.759 | 0.231 | 0.012 | 0.944 |
| y4 | 1610 | 0.216 | 0.112 | 0.041 | 0.571 |
| y5 | 1610 | 0.500 | 0.151 | 0.170 | 0.929 |
| GOV | 1610 | 22.269 | 10.378 | 7.700 | 60.029 |
| HUM | 1610 | 0.412 | 0.632 | 0.001 | 4.432 |
| FDI | 1610 | 1.310 | 1.537 | 0.003 | 7.213 |
| US | 1610 | 14.801 | 0.663 | 13.049 | 16.130 |
| ENV | 1610 | 1.166 | 0.485 | 0.245 | 2.388 |
| IGA | 1610 | 36.067 | 38.228 | 0.824 | 198.423 |
| GTI | 1610 | 154.717 | 210.187 | 3.000 | 1119.000 |
| TS | 1610 | 0.977 | 0.491 | 0.262 | 2.810 |
| TL | 1610 | 0.299 | 0.203 | 0.014 | 1.002 |
| Variable | y | y1 | y2 | y3 | y4 | y5 |
|---|---|---|---|---|---|---|
| x | 0.117 ** | 0.179 *** | 0.392 *** | 0.085 ** | 0.090 ** | 0.095 *** |
| (2.38) | (4.9) | (−10.31) | (2.41) | (−2.25) | (−2.79) | |
| GOV | −0.020 | −0.001 | −0.006 *** | 0.143 *** | 0.078 | 0.032 |
| (−0.47) | (−0.05) | (−16.14) | (3.49) | (−1.2) | (−0.71) | |
| HUM | −0.147 *** | 0.011 | −0.029 *** | −0.052 | −0.144 ** | 0.109 |
| (−3.49) | (0.22) | (−4.85) | (−1.24) | (−2.24) | (−1.12) | |
| FDI | 0.109 ** | −0.019 | −0.007 *** | 0.113 ** | 0.063 | −0.068 |
| (2.13) | (−0.53) | (−2.74) | (2.35) | (−0.88) | (−1.07) | |
| US | 1.090 *** | 0.713 *** | −0.112 *** | 1.388 *** | 0.766 ** | −0.624 |
| (2.83) | (4.2) | (−17.17) | (3.04) | (−2.36) | (−1.56) | |
| ENV | −0.111 *** | 0.062*** | 0.002 | −0.186 *** | −0.098 ** | 0.075 *** |
| (−4.44) | (3.37) | (−0.32) | (−8.11) | (−2.47) | (−2.68) | |
| IGA | 0.018 | 0.182 *** | −0.001 *** | −0.219 *** | −0.119 ** | 0.051 |
| (0.39) | (7.42) | (−2.73) | (−4.45) | (−2.23) | (−0.81) | |
| Constant | 0.000 *** | 0.000 *** | 2.127 *** | 0.000 ** | 0.000 | 0.000 |
| (−3.1) | (−4.5) | (−22.17) | (−2.08) | (−1.28) | −0.87 | |
| Observations | 1610 | 1610 | 1610 | 1610 | 1610 | 1610 |
| Number of groups | 115 | 115 | 115 | 115 | 115 | 115 |
| R-squared | 0.071 | 0.198 | 0.111 | 0.082 | 0.069 | 0.067 |
| City FE | Yes | Yes | Yes | Yes | Yes | Yes |
| F | 15.98 | 20.93 | 12.28 | 52.83 | 7.28 | 4.35 |
| Variable | GTI | TS | TL |
|---|---|---|---|
| x | 943.824 *** | 0.578 *** | −0.161 *** |
| (26.61) | (5.55) | (−3.28) | |
| Controls | Yes | Yes | Yes |
| Constant | −128.136 | −0.016 | 0.917 *** |
| (−1.43) | (−0.06) | (7.42) | |
| Observations | 1610 | 1610 | 1610 |
| Number of groups | 115 | 115 | 115 |
| R-squared | 0.609 | 0.384 | 0.202 |
| City FE | Yes | Yes | Yes |
| a | b | a × b (Boot SE) | a × b (z Value) | a × b (p Value) | a × b (95% Boot CI) | |
|---|---|---|---|---|---|---|
| x→GTI→y | 943.8237 *** | 0.000 *** | 0.017 | 7.79 | 0.000 | 0.098~0.163 |
| x→TS→y | 0.5767 *** | −0.0162 *** | 0.003 | −2.88 | 0.004 | −0.016~−0.003 |
| x→TL→y | −0.1616 *** | −0.0189 | 0.002 | 1.47 | 0.140 | −0.001~0.007 |
| Test Conclusion | c Total Effect | a × b Indirect Effect | c′ Direct Effect | Calculation Formula | Effect Proportion | |
|---|---|---|---|---|---|---|
| x→GTI→y | Partial Mediation | 0.257 | 0.130 | 0.127 | a × b/c | 50.58% |
| x→TS→y | Suppression Effect | 0.257 | −0.009 | 0.267 | a × b/c | −3.64% |
| x→TL→y | Partial Mediation | 0.257 | 0.003 | 0.254 | a × b/c | 1.18% |
| w1 | w2 | w3 | |
|---|---|---|---|
| Spa-rho | 0.285 *** | −0.002 | −1.094 *** |
| (12.11) | (−0.50) | (−3.42) | |
| x | 0.032 ** | 0.061 *** | 0.025 |
| (2.04) | (3.66) | (1.52) | |
| Wx | 0.104 *** | 0.005 | −1.396 *** |
| (5.08) | (0.30) | (−3.44) | |
| Direct Effect | 0.046 *** | 0.062 *** | 0.036 *** |
| (2.87) | (3.60) | (2.10) | |
| Indirect Effect | 0.133 *** | 0.004 | −0.707 *** |
| (5.87) | (0.28) | (−3.06) | |
| Total Effect | 0.179 *** | 0.066 *** | −0.671 *** |
| (5.86) | (2.92) | (−2.87) | |
| Controls | Yes | Yes | Yes |
| City FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Observations | 1610 | 1610 | 1610 |
| R-squared | 0.233 | 0.176 | 0.196 |
| Log-L | 3285.613 | 3167.973 | 3232.342 |
| Variable | (1) Eastern | (2) Central | (3) Western |
|---|---|---|---|
| x | 0.210 *** | 0.218 *** | 0.264 *** |
| (2.61) | (5.22) | (2.68) | |
| Controls | Yes | Yes | Yes |
| Constant | 1.221 | 0.829 *** | 1.218 *** |
| (0.86) | (4.21) | (9.44) | |
| City FE | Yes | Yes | Yes |
| Year FE | Yes | Yes | Yes |
| Observations | 1610 | 1610 | 1610 |
| R-squared | 0.912 | 0.310 | 0.605 |
| Variable | (4) y | (5) y | (6) y |
|---|---|---|---|
| x | 0.071 *** | 0.092 *** | 0.257 *** |
| (3.72) | (3.23) | (12.58) | |
| Controls | Yes | Yes | Yes |
| Constant | 0.525 * | 1.114 *** | 1.221 *** |
| (1.72) | (2.74) | (23.63) | |
| Observations | 1380 | 1150 | 1610 |
| R-squared | 0.864 | 0.747 | 0.277 |
| Number of groups | 115 | 115 | - |
| City FE | Yes | Yes | No |
| Year FE | Yes | Yes | No |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, J.; Wu, M.; Liu, L. Enhancing the Resilience of Resource-Based Cities: A Dual Analysis of the Driving Mechanisms and Spatial Effects of the Digital Economy. Sustainability 2025, 17, 9511. https://doi.org/10.3390/su17219511
Kang J, Wu M, Liu L. Enhancing the Resilience of Resource-Based Cities: A Dual Analysis of the Driving Mechanisms and Spatial Effects of the Digital Economy. Sustainability. 2025; 17(21):9511. https://doi.org/10.3390/su17219511
Chicago/Turabian StyleKang, Jianming, Meiling Wu, and Liu Liu. 2025. "Enhancing the Resilience of Resource-Based Cities: A Dual Analysis of the Driving Mechanisms and Spatial Effects of the Digital Economy" Sustainability 17, no. 21: 9511. https://doi.org/10.3390/su17219511
APA StyleKang, J., Wu, M., & Liu, L. (2025). Enhancing the Resilience of Resource-Based Cities: A Dual Analysis of the Driving Mechanisms and Spatial Effects of the Digital Economy. Sustainability, 17(21), 9511. https://doi.org/10.3390/su17219511

