Building Resilient Supply Chains: Evidence from Climate-Adaptive City Construction in China
Abstract
1. Introduction
2. Policy Context, Theoretical Analysis, and Hypotheses
2.1. Policy Context
2.2. Theoretical Analysis and Hypotheses
3. Methodology
3.1. Research Design and Data Source
3.2. Variable Selection
| Level 1 Indicators | Level 2 Indicators | Level 3 Indicators |
|---|---|---|
| Resistance | infrastructural support | Road freight volume (tons) |
| Railroad freight (tons) | ||
| Civil aviation cargo and mail traffic (tons) | ||
| industrial system | Value added of secondary and tertiary industries as a share of GDP (%) | |
| Resiliency | financial synergies | Balance of various bank loans (10,000 yuan) |
| industry benefits | Profit margin on total assets of industrial enterprises above designated size (%) | |
| government regulation | Fiscal expenditure per capita (10,000 yuan) | |
| industrial stability | Gross industrial output value above scale (10,000 yuan) | |
| market stability | Total retail sales of consumer goods (10,000 yuan) | |
| Creativity | innovative inputs share of fiscal expenditure on science and technology in total local fiscal expenditure (%) innovation outputs | Share of fiscal expenditure on science and technology in total local fiscal expenditure (%) |
| innovation outputs | Technology market turnover as a share of GDP (%) |
3.3. Model Setting
| Obs | Mean | SD | Min | Max | |
|---|---|---|---|---|---|
| 4482 | 0.021 | 0.024 | 0.002 | 0.151 | |
| 4482 | 0.027 | 0.161 | 0 | 1 | |
| 4482 | 0.005 | 0.010 | 0 | 0.068 | |
| 4482 | 3.005 | 0.748 | 1.174 | 4.884 | |
| 4482 | 5.842 | 0.842 | 2.890 | 7.167 | |
| 4482 | 0.170 | 0.074 | 0.064 | 0.423 | |
| 4482 | 10.155 | 1.559 | 6.415 | 14.080 | |
| 4482 | 0.919 | 0.678 | 0.003 | 9.565 | |
| 4482 | 0.508 | 0.216 | 0.104 | 3.206 | |
| 4482 | 1.596 | 2.066 | 0.021 | 10.985 |
4. Results and Discussion
4.1. Baseline Regression Results
| Explained Variable: Supply Chain Resilience (Res) | ||||
|---|---|---|---|---|
| (1) | (2) | (3) | (4) | |
| 0.023 *** | 0.010 *** | 0.010 *** | 0.009 *** | |
| (12.81) | (6.03) | (6.97) | (6.30) | |
| 0.096 *** | 0.095 *** | |||
| (22.11) | (22.12) | |||
| 0.004 *** | 0.004 *** | |||
| (25.87) | (22.96) | |||
| 0.012 | 0.011 | |||
| (1.49) | (1.39) | |||
| −0.001 | −0.000 | |||
| (−1.40) | (−0.92) | |||
| −0.027 *** | −0.022 *** | |||
| (−6.10) | (−3.52) | |||
| 0.001 *** | 0.002 *** | |||
| (2.64) | (4.67) | |||
| 0.006 *** | 0.007 *** | |||
| (7.58) | (4.69) | |||
| 0.021 *** | 0.010 *** | −0.645 *** | −0.666 *** | |
| (91.20) | (11.76) | (−25.94) | (−20.72) | |
| YES | YES | YES | YES | |
| NO | YES | NO | YES | |
| N | 4482 | 4482 | 4482 | 4482 |
| R2 | 0.0373 | 0.2810 | 0.4440 | 0.4506 |
4.2. Robustness Test
4.2.1. Parallel Trend Test
4.2.2. Placebo Testing
4.2.3. Propensity Score Matching (PSM)—DID Method
4.2.4. Instrumental Variable Approach
4.2.5. Winsorization
4.2.6. Exclusion of Other Policy Interferences
4.2.7. Addition of Control Variables
4.2.8. Changing the Time Window Period
| Variables | Winsor2 | PSM-DID | IV 2SLS | Other Policy Interference | Increase Control Variable | Adjustment Window | ||
|---|---|---|---|---|---|---|---|---|
| 1~99% | Zero-Waste City | Sponge City | 2010~ 2022 | 2012~ 2020 | ||||
| (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | |
| 0.008 *** | 0.0076 *** | 0.068 ** | 0.007 *** | 0.008 *** | 0.007 *** | 0.007 *** | 0.004 *** | |
| (7.89) | (7.66) | (2.14) | (6.89) | (7.50) | (7.21) | (7.14) | (5.14) | |
| −0.156 *** | −0.1726 ** | −0.306 *** | 0.010 *** | 0.010 *** | −0.280 *** | −0.300 *** | −0.307 *** | |
| (−20.51) | (−23.82) | (−19.01) | (18.16) | (17.09) | (−12.61) | (−10.25) | (−9.45) | |
| YES | YES | YES | YES | YES | YES | YES | YES | |
| YES | YES | YES | YES | YES | YES | YES | YES | |
| YES | YES | YES | YES | YES | YES | YES | YES | |
| N | 4482 | 4482 | 2683 | 4482 | 4482 | 4482 | 3237 | 2241 |
| R2 | 0.5179 | 0.4640 | 0.3952 | 0.5372 | 0.4970 | 0.4816 | ||
4.3. Mechanism Test
| Urban Sprawl | Green Technology Innovation | Environmental Concerns | |
|---|---|---|---|
| (1) | (2) | (3) | |
| 0.005 * | 0.169 ** | 3.921 ** | |
| (1.66) | (2.54) | (2.38) | |
| 1.393 *** | −4.320 * | 52.968 | |
| (11.78) | (−1.66) | (0.82) | |
| YES | YES | YES | |
| 2241 | 2241 | 2196 | |
| 0.4839 | 0.6605 | 0.1325 |
4.4. Heterogeneity Test
4.4.1. Heterogeneity of Urban Locations
4.4.2. Heterogeneity of Resource Endowments
| North-Western Provinces | South-Eastern Provinces | Resource-Based City | Non-Resource-Based Cities | “Two Control” Cities | Non-“Two-Control” Cities | |
|---|---|---|---|---|---|---|
| (1) | (2) | (3) | (4) | (5) | (6) | |
| 0.001 | 0.007 *** | −0.003 ** | 0.010 *** | 0.002 | 0.011 *** | |
| (0.002) | (0.001) | (0.001) | (0.001) | (0.002) | (0.001) | |
| −0.283 *** | −0.262 *** | −0.143 *** | −0.233 *** | −0.355 *** | −0.202 *** | |
| (0.029) | (0.033) | (0.025) | (0.037) | (0.045) | (0.026) | |
| YES | YES | YES | YES | YES | YES | |
| YES | YES | YES | YES | YES | YES | |
| YES | YES | YES | YES | YES | YES | |
| 1224 | 3258 | 1602 | 2880 | 1980 | 2502 | |
| 0.610 | 0.521 | 0.7820 | 0.4350 | 0.5700 | 0.4530 |
4.4.3. Heterogeneity of Environmental Regulation
4.5. Theoretical Implications and Boundary Conditions
5. Further Analysis
| Variable | SDM (1) | Direct (2) | Indirect (3) | Total (4) |
|---|---|---|---|---|
| 0.006 *** | 0.006 *** | 0.005 ** | 0.012 *** | |
| (6.47) 0.002 | (6.71) | (2.11) | (4.32) | |
| (0.90) | ||||
| 0.342 *** | ||||
| (13.54) | ||||
| 0.000 *** | ||||
| (47.00) | ||||
| YES | ||||
R2 | 4482 0.4211 |
6. Conclusions and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamani, E.D.; Smyth, C.; Gupta, S.; Dennehy, D. Artificial intelligence and big data analytics for supply chain resilience: A systematic literature review. Ann. Oper. Res. 2023, 327, 605–632. [Google Scholar] [CrossRef] [PubMed]
- Du, J.; Wang, J.; Liang, J. Research on the impact of smart logistics on the manufacturing industry chain resilience. Sci. Rep. 2025, 15, 9052. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.; Zheng, Y. Enhancing infrastructural dynamic responses to critical residents’ needs for urban resilience through machine learning and hypernetwork analysis. Sustain. Cities Soc. 2024, 106, 105366. [Google Scholar] [CrossRef]
- Yang, L.; Liu, Y. The impact of digital infrastructure on industrial chain resilience: Evidence from China’s manufacturing. Technol. Anal. Strateg. Manag. 2024, 37, 1112–1128. [Google Scholar] [CrossRef]
- Calabrese, R.; Dombrowski, T.; Mandel, A. Impacts of extreme weather events on mortgage risks and their evolution under climate change: A case study on Florida. Eur. J. Oper. Res. 2024, 314, 377–392. [Google Scholar] [CrossRef]
- Kochskämper, E.; Glass, L.M.; Haupt, W. Resilience and the Sustainable Development Goals: A scrutiny of urban strategies in the 100 Resilient Cities initiative. J. Environ. Plann. Manag. 2025, 68, 1691–1717. [Google Scholar] [CrossRef]
- Kotz, M.; Levermann, A.; Wenz, L. The economic commitment of climate change. Nature 2024, 628, 551–557. [Google Scholar] [CrossRef]
- Lin, Y.; Zuo, X.; Weng, A. Insight into the imbalance of forest cover change at county level in mainland China during 2000–2020: From the perspective of subdividing forest cover change into forest gain and loss. J. Clean. Prod. 2024, 453, 142238. [Google Scholar] [CrossRef]
- Teng, F.; Wang, P. The evolution of climate governance in China: Drivers, features, and effectiveness. Environ. Polit. 2021, 30, 141–161. [Google Scholar] [CrossRef]
- Díaz, C.G.; Zambrana-Vasquez, D.; Bartolomé, C. Building resilient cities: A comprehensive review of climate change adaptation indicators for urban design. Energies 2024, 17, 1959. [Google Scholar] [CrossRef]
- He, W.; Guo, X.; Zhang, C. Assessing the impact of climate-resilient city development on urban sustainability: Evidence from China. Sustainability 2025, 17, 4381. [Google Scholar] [CrossRef]
- Yuan, Y.; Zheng, Y.; Huang, X. Climate resilience of urban water systems: A case study of sponge cities in China. J. Clean. Prod. 2024, 451, 141781. [Google Scholar] [CrossRef]
- Ivanov, D. Two views of supply chain resilience. Int. J. Prod. Res. 2024, 62, 4031–4045. [Google Scholar] [CrossRef]
- Nüchter, V.; Abson, D.J.; von Wehrden, H.; Engler, J.-O. The concept of resilience in recent sustainability research. Sustainability 2021, 13, 2735. [Google Scholar] [CrossRef]
- Yan, J. Assessing the link between digital government development and urban industrial chain resilience: Evidence from public data openness. Environ. Impact Assess. Rev. 2024, 112, 107796. [Google Scholar] [CrossRef]
- Xu, J.; Yang, B.; Yuan, C. The impact of supply chain digitalization on urban resilience: Do industrial chain resilience, green total factor productivity and innovation matter? Energy Econ. 2025, 145, 108443. [Google Scholar] [CrossRef]
- Jebbor, I.; Benmamoun, Z.; Hachimi, H. Predicting Automotive Industry Supply Chain Disruptions Using Machine Learning: Challenges and Insights. In Progress in Intelligent Computing and Secure Communication Systems; Springer: Cham, Switzerland, 2025; pp. 213–229. [Google Scholar] [CrossRef]
- El Mokhi, C.; Hachimi, H.; Hmina, N.; Addaim, A. Progress in Intelligent Computing and Secure Communication Systems: Proceedings of ICASET 2025. In International Conference on Advanced Sustainability Engineering and Technology; Springer: Cham, Switzerland, 2025. [Google Scholar] [CrossRef]
- Min, X.; Xu, Z.; Zhuang, X.; Wang, Z. Analysis of enablers within environmental policy frameworks for facilitating circular economy practices in the sports products industry. J. Environ. Manag. 2024, 372, 123306. [Google Scholar] [CrossRef]
- Solangi, Y.A.; Alyamani, R.; Almakhles, D. Evaluating challenges and policy innovations for renewable energy development in a circular economy: A path to environmental resilience in Saudi Arabia. J. Environ. Manag. 2025, 375, 124124. [Google Scholar] [CrossRef]
- Westman, L.; Broto, V.C. Climate governance through partnerships: A study of 150 urban initiatives in China. Global Environ. Change 2018, 50, 212–221. [Google Scholar] [CrossRef]
- Carmona, R. Climate change governance and indigenous peoples participation: An analysis from the Chilean case. Environ. Polit. 2024, 33, 114–137. [Google Scholar] [CrossRef]
- Chen, Y.; Jiang, C.; Peng, L.; Zhao, S.; Chen, C. Digital infrastructure construction and urban industrial chain resilience: Evidence from the “Broadband China” strategy. Sustain. Cities Soc. 2025, 121, 106228. [Google Scholar] [CrossRef]
- Wang, X.; Wang, A.; Zhong, W. Analysis of international nickel flow based on the industrial chain. Resour. Policy 2022, 77, 102729. [Google Scholar] [CrossRef]
- Akram, M.U.; Islam, N.; Chauhan, C. Resilience and agility in sustainable supply chains: A relational and dynamic capabilities view. J. Bus. Res. 2024, 183, 114855. [Google Scholar] [CrossRef]
- Fu, K.Y.; Liu, Y.Z.; Lu, X.Y.; Chen, B.; Chen, Y.H. Health impacts of climate resilient city development: Evidence from China. Sustain. Cities Soc. 2024, 116, 105914. [Google Scholar] [CrossRef]
- Ping, W.; Pan, F.; Han, Y.; Huang, F.; Shi, H. Climate-resilient city pilot and green economy: A study of local and peer effects. J. Environ. Manag. 2025, 392, 126812. [Google Scholar] [CrossRef]
- Liu, M.; Lu, J.; Liu, Q.; Wang, H.; Yang, Y.; Fang, S. The impact of executive cognitive characteristics on a firm’s ESG performance: An institutional theory perspective. J. Manag. Gov. 2025, 29, 145–173. [Google Scholar] [CrossRef]
- Xi, M.; Liu, Y.; Fang, W.; Feng, T. Intelligent manufacturing for strengthening operational resilience during the COVID-19 pandemic: A dynamic capability theory perspective. Int. J. Prod. Econ. 2024, 267, 109078. [Google Scholar] [CrossRef]
- Luo, C.; Cai, D.; Xu, J. Resilient reserves: Climate adaptive pilot cities policy and firms’ cash holdings. Econ. Anal. Policy 2025, 86, 510–527. [Google Scholar] [CrossRef]
- Zhao, M.; Zhu, M.; Chen, Y.; Zhang, C.; Cai, W. The uneven impacts of climate change on China’s labor productivity and economy. J. Environ. Manag. 2024, 351, 119707. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Liu, M.; Lu, Q. Impact of climate change on household development resilience: Evidence from rural China. J. Clean. Prod. 2024, 434, 139689. [Google Scholar] [CrossRef]
- Zou, Y.; Liu, Z.; Chen, Y.; Wang, Y.; Feng, S. Crop rotation and diversification in China: Enhancing sustainable agriculture and resilience. Agriculture 2024, 14, 1465. [Google Scholar] [CrossRef]
- Ivanov, D. Supply chain resilience: Conceptual and formal models drawing from immune system analogy. Omega 2024, 127, 103081. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, Y.; Guo, J.; Yan, C. The impact of environment on enhancement of tourism system resilience in China: The moderating role of digital technology. Technol. Forecast. Soc. Change 2024, 206, 123492. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, J.; Zhang, M.; Guo, J. Research on Safety Vulnerability Assessment of Subway Station Construction Based on Evolutionary Resilience Perspective. Buildings 2025, 15, 2732. [Google Scholar] [CrossRef]
- Yan, J. Climate governance and industrial ecological transformation. Corp. Soc. Responsib. Environ. Manag. 2025, 32, 718–728. [Google Scholar] [CrossRef]
- Eitrem, A.; Meidell, A.; Modell, S. The use of institutional theory in social and environmental accounting research: A critical review. Account. Bus. Res. 2024, 54, 775–810. [Google Scholar] [CrossRef]
- Terwilliger, J.; Christie, I. Cities and governance for net-zero: Assessing procedures and tools for innovative design of urban climate governance in Europe. Sustainability 2025, 17, 2698. [Google Scholar] [CrossRef]
- Suárez, M.; Benayas, J.; Justel, A.; Sisto, R.; Montes, C.; Sanz-Casado, E. A holistic index-based framework to assess urban resilience: Application to the Madrid Region, Spain. Ecol. Indic. 2024, 166, 112293. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, Z.; Shi, M.; Liu, J.; Tan, Z. Public environmental concern, government environmental regulation and urban carbon emission reduction—Analyzing the regulating role of green finance and industrial agglomeration. Sci. Total Environ. 2024, 924, 171549. [Google Scholar] [CrossRef] [PubMed]
- Yan, Z.; Yu, Y.; Du, K.; Zhang, N. How does environmental regulation promote green technology innovation? Evidence from China’s total emission control policy. Ecol. Econ. 2024, 219, 108137. [Google Scholar] [CrossRef]
- Zhang, S.; Lei, J.; Zhang, X.; Tong, Y.; Lu, D.; Fan, L.; Duan, Z. Assessment and optimization of urban spatial resilience from the perspective of life circle: A case study of Urumqi, NW China. Sustain. Cities Soc. 2024, 109, 105527. [Google Scholar] [CrossRef]
- Hsieh, C.C.; Chen, S.L.; Huang, C.C. Investigating the role of supply chain environmental risk in shaping the nexus of supply chain agility, resilience, and performance. Sustainability 2023, 15, 15003. [Google Scholar] [CrossRef]
- Liu, X.; Xu, H.; Zhang, M. The effects of urban expansion on carbon emissions: Based on the spatial interaction and transmission mechanism. J. Clean. Prod. 2024, 434, 140019. [Google Scholar] [CrossRef]
- Gargiulo, V.; Sateriano, A.; Di Bartolomei, R. Urban sprawl and the environment. Geogr. Environ. Sustain. 2012, 5, 46–62. [Google Scholar] [CrossRef]
- Koster, H.R.; Thisse, J.F. Understanding spatial agglomeration: Increasing returns, land, and transportation costs. Annu. Rev. Econ. 2024, 16, 55–78. [Google Scholar] [CrossRef]
- Xu, Y.; Li, X.; Tao, C.; Zhou, X. Connected knowledge spillovers, technological cluster innovation and efficient industrial structure. J. Innov. Knowl. 2022, 7, 100195. [Google Scholar] [CrossRef]
- Baqa, M.F.; Chen, F.; Lu, L.; Qureshi, S.; Tariq, A.; Wang, S.; Li, Q. Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land 2021, 10, 700. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, H.; Zhou, J. Technological innovation paths toward green industry in China. Chin. J. Popul. Resour. Environ. 2018, 16, 97–108. [Google Scholar] [CrossRef]
- Du, K.; Cheng, Y.; Yao, X. Environmental regulation, green technology innovation, and industrial structure upgrading: The road to the green transformation of Chinese cities. Energy Econ. 2022, 98, 105247. [Google Scholar] [CrossRef]
- Zhong, W. The Impact of climate risk disclosure on corporate green technology innovation. Sustainability 2025, 17, 2699. [Google Scholar] [CrossRef]
- Chen, Y.; Nn, Y.; Luo, Z.; Han, M. The impact of stable customer relationships on enterprises’ technological innovation based on the mediating effect of the competitive advantage of enterprises. Sustainability 2021, 13, 3610. [Google Scholar] [CrossRef]
- Chen, X.; Huang, B.; Lin, C.T. Environmental awareness and environmental Kuznets curve. Econ. Model. 2019, 77, 2–11. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, X.; Yan, C.; Gozgor, G. Climate policy uncertainty and firm-level total factor productivity: Evidence from China. Energy Econ. 2022, 113, 106209. [Google Scholar] [CrossRef]
- Shu, C.; Zhao, J.; Yao, Q.; Zhou, K.Z. Green innovation and export performance in emerging market firms: A legitimacy-based view. Manag. Organ. Rev. 2024, 20, 85–110. [Google Scholar] [CrossRef]
- Tonin, S.; Benedetto, D. Exploring sustainability concerns and ecosystem services: The role of the new ecological paradigm scale in understanding public opinion. Sustainability 2024, 16, 1902. [Google Scholar] [CrossRef]
- Song, G.; Wang, F. Unveiling the Dual Mechanisms of Public Environmental Concern on Green Innovation Quality: The Interplay Between External Pressure and Internal Motivation. Sustainability 2025, 17, 6398. [Google Scholar] [CrossRef]
- Nasrollah, S.; Najafi, S.E.; Bagherzadeh, H.; Rostamy-Malkhalifeh, M. An enhanced PSO algorithm to configure a responsive-resilient supply chain network considering environmental issues: A case study of the oxygen concentrator device. Neural Comput. Appl. 2023, 35, 2647–2678. [Google Scholar] [CrossRef] [PubMed]
- Du, M.; Huang, C.; Liao, L. Trade liberalization and energy efficiency: Quasi-natural experiment evidence from the pilot free trade zones in China. Econ. Anal. Policy 2025, 85, 1739–1751. [Google Scholar] [CrossRef]
- Sharma, R.; Sundarakani, B.; Manikas, I. Integration of industry 4.0 technologies for agri-food supply chain resilience. Comput. Ind. 2025, 165, 104225. [Google Scholar] [CrossRef]
- Riad, M.; Naimi, M.; Okar, C. Enhancing supply chain resilience through artificial intelligence: Developing a comprehensive conceptual framework for AI implementation and supply chain optimization. Logistics 2024, 8, 111. [Google Scholar] [CrossRef]
- Zhu, X.; Wu, Y.J. How does supply chain resilience affect supply chain performance? The mediating effect of sustainability. Sustainability 2022, 14, 14626. [Google Scholar] [CrossRef]
- Atieh Ali, A.A.; Sharabati, A.A.A.; Allahham, M.; Nasereddin, A.Y. The relationship between supply chain resilience and digital supply chain and the impact on sustainability: Supply chain dynamism as a moderator. Sustainability 2024, 16, 3082. [Google Scholar] [CrossRef]
- Jebbor, I.; Benmamoun, Z.; Hachimi, H. Forecasting supply chain disruptions in the textile industry using machine learning: A case study. Ain Shams Eng. J. 2024, 15, 103116. [Google Scholar] [CrossRef]
- Ramesh, K.; Gunasekaran, K.; Srinivasan, K.; Sivasubramanian, K. A Study on Industrial Sustainability and the Growth of Environmental Stability: Path Towards Green Development: A Review. Technol. Driven Bus. Innov. 2024, 223, 401–407. [Google Scholar] [CrossRef]
- Kouskoura, A.; Kalliontzi, E.; Skalkos, D.; Bakouros, I. Assessing the key factors measuring regional competitiveness. Sustainability 2024, 16, 2574. [Google Scholar] [CrossRef]
- Duan, W.; Madasi, J.D.; Khurshid, A. Industrial structure conditions economic resilience. Technol. Forecast. Soc. Change 2022, 183, 121944. [Google Scholar] [CrossRef]
- Jiang, N.; Jiang, W. How does regional integration policy affect urban resilience? Evidence from urban agglomeration in China. Environ. Impact Assess. Rev. 2024, 104, 107298. [Google Scholar] [CrossRef]
- Guo, D.; Qiao, L. Government environmental concern and urban green development efficiency: Structural and technological perspectives. J. Clean. Prod. 2024, 450, 142016. [Google Scholar] [CrossRef]
- Zhang, W.; Li, G.; Guo, F. Does carbon emissions trading promote green technology innovation in China? Appl. Energy 2022, 315, 119012. [Google Scholar] [CrossRef]
- Lyu, S.; Huang, Y.; Sun, T. Urban sprawl, public transportation efficiency and carbon emissions. J. Clean. Prod. 2025, 489, 144652. [Google Scholar] [CrossRef]
- Gao, Q.; Sun, M.; Chen, L. The impact of digital inclusive finance on agricultural economic resilience. Financ. Res. Lett. 2024, 66, 105679. [Google Scholar] [CrossRef]
- Zhou, Q.; Qiao, Y.; Zhang, H. How does college scale affect urban resilience? Spatiotemporal evidence from China. Sustain. Cities Soc. 2022, 85, 104084. [Google Scholar] [CrossRef]
- Jianing, P.; Bai, K.; Solangi, Y.A. Examining the role of digitalization and technological innovation in promoting sustainable natural resource exploitation. Resour. Policy 2024, 92, 105036. [Google Scholar] [CrossRef]
- Marx, P.; Tamer, E.; Tang, X. Parallel trends and dynamic choices. J. Pol. Econ. Micro. 2024, 2, 129–171. [Google Scholar] [CrossRef]
- Zeng, S.; Tan, K. Can low-carbon city construction reduce carbon intensity? Empirical evidence from low-carbon city pilot policy in China. J. Environ. Manag. 2023, 332, 117363. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Chen, S. The effect of pilot climate-resilient city policies on urban climate resilience: Evidence from quasi-natural experiments. Cities 2024, 153, 105316. [Google Scholar] [CrossRef]
- Yang, J.; Liu, P.; Zhong, F. Subway opening enables urban green development: Evidence from difference-in-differences and double dual machine learning methods. J. Environ. Manag. 2025, 375, 124177. [Google Scholar] [CrossRef]
- Yang, Z.; Hong, Y.; Guo, Q.; Yu, X.; Zhao, M. The impact of topographic relief on population and economy in the southern Anhui mountainous area, China. Sustainability 2022, 14, 14332. [Google Scholar] [CrossRef]
- Yu, X.; Lien, D.; Zhang, X. Climate policy uncertainty and Chinese Commercial Banks’ Risk-Taking: Heterogeneous Effects on Passive, Active, and Insolvency Risks. Financ. Res. Open 2025, 1, 100035. [Google Scholar] [CrossRef]
- Zhou, Y. Analysis of Zero-Waste City Policy in China: Based on Three-Dimensional Framework. Sustainability 2024, 16, 11027. [Google Scholar] [CrossRef]
- Yin, D.; Chen, Y.; Jia, H. Sponge city practice in China: A review of construction, assessment, operational and maintenance. J. Clean. Prod. 2020, 280, 124963. [Google Scholar] [CrossRef]
- Zhang, C.; Zhou, Y.; Yin, S. Interaction mechanisms of urban ecosystem resilience based on pressure-state-response framework: A case study of the Yangtze River Delta. Ecol. Indic. 2024, 166, 112263. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, J.; Chen, H. Public attention, big data technology, and green innovation efficiency: Empirical analysis based on spatial metrology. J. Environ. Plann. Manag. 2025, 68, 1807–1833. [Google Scholar] [CrossRef]
- Kong, Z.; Du, J.; Kong, Y. Financial development, environmental regulation, and corporate green technology innovation: Evidence from Chinese listed companies. Financ. Res. Lett. 2024, 62, 105–122. [Google Scholar] [CrossRef]
- Ge, Y.; Wang, T. Digital economy, data resources and enterprise green technology Innovation: Evidence from A-listed Chinese Firms. Resour. Policy 2024, 92, 105035. [Google Scholar] [CrossRef]
- Jebbor, I.; Hachimi, H.; Benmamoun, Z. Artificial Intelligence in Predicting Automotive Supply Chain Disruptions: A Literature Review. In Advances in Intelligent Systems and Digital Applications; Springer: Cham, Switzerland, 2025; pp. 11–21. [Google Scholar] [CrossRef]
- Kuai, P.; Zhang, X.; Zhang, S. Environmental awareness and household energy saving of Chinese residents: Unity of knowing and doing or easier said than done? J. Asian Econ. 2022, 82, 101534. [Google Scholar] [CrossRef]
- Yan, J.; Ao, R.; Zhou, X. The evolution of ecological well-being performance and its effects on population longevity: A county-level spatiotemporal analysis of Hubei province, China. Sustainability 2025, 17, 5669. [Google Scholar] [CrossRef]
- Tang, J.; Li, W.; Hu, J. Can government digital transformation improve corporate energy efficiency in resource-based cities. Energy Econ. 2024, 141, 108043. [Google Scholar] [CrossRef]
- Zhang, H.; Di Maria, C.; Ghezelayagh, B. Climate policy in emerging economies: Evidence from China’s low-carbon city pilot. J. Environ. Econ. Manag. 2024, 124, 102943. [Google Scholar] [CrossRef]
- Liu, W.; Yan, D.; Yu, Z. Analysis of dynamic changes in vegetation net primary productivity and its driving factors in the two regions north and south of the Hu Huanyong line in China. Land 2024, 13, 722. [Google Scholar] [CrossRef]
- Chen, Y.; La Rosa, D.; Yue, W. Does urban sprawl lessen green space exposure? Evidence from Chinese cities. Landsc. Urban Plan. 2025, 257, 105319. [Google Scholar] [CrossRef]
- Alharbey, M.; Ben-Salha, O. Do institutions contribute to environmental sustainability? A global analysis using the dynamic spatial Durbin and threshold models. J. Environ. Manag. 2024, 357, 120681. [Google Scholar] [CrossRef] [PubMed]
- El Chami, D.; Daccache, A.; El Moujabber, M. How can sustainable agriculture increase climate resilience? A systematic review. Sustainability 2020, 12, 3119. [Google Scholar] [CrossRef]
- Pettit, T.J.; Croxton, K.L. Ensuring supply chain resilience: Development and implementation of an assessment tool. J. Bus. Logist. 2013, 4, 46–76. [Google Scholar] [CrossRef]
- Yao, R.; Ma, Z.; Wu, H. Mechanism and measurement of the effects of industrial agglomeration on agricultural economic resilience. Agriculture 2024, 14, 337. [Google Scholar] [CrossRef]
- Gong, M.; Huang, X. Progress in industry chain resilience research conferences. SHS Web Conf. 2023, 163, 02013. [Google Scholar] [CrossRef]
- Napper, I.E.; Davies, B.F.R.; Erskine, A. Citizen science reveals litter trends in the UK: Population density effects on coastal and inland regions. Mar. Pollut. Bull. 2025, 214, 117634. [Google Scholar] [CrossRef]
- Schleussner, C.F.; Pfleiderer, P.; Andrijevic, M. Pathways of climate resilience over the 21st century. Environ. Res. Lett. 2021, 16, 054058. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Z.; Wang, X.; Zhang, J.; Ma, J. Building Resilient Supply Chains: Evidence from Climate-Adaptive City Construction in China. Sustainability 2025, 17, 9411. https://doi.org/10.3390/su17219411
He Z, Wang X, Zhang J, Ma J. Building Resilient Supply Chains: Evidence from Climate-Adaptive City Construction in China. Sustainability. 2025; 17(21):9411. https://doi.org/10.3390/su17219411
Chicago/Turabian StyleHe, Zeyu, Xuecheng Wang, Junqi Zhang, and Jiawei Ma. 2025. "Building Resilient Supply Chains: Evidence from Climate-Adaptive City Construction in China" Sustainability 17, no. 21: 9411. https://doi.org/10.3390/su17219411
APA StyleHe, Z., Wang, X., Zhang, J., & Ma, J. (2025). Building Resilient Supply Chains: Evidence from Climate-Adaptive City Construction in China. Sustainability, 17(21), 9411. https://doi.org/10.3390/su17219411

