Seasonal Sensitivity of Drought Indices in Northern Kazakhstan: A Comparative Evaluation and Selection of Optimal Indicators
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Dataset
2.2.1. In Situ Data
2.2.2. Satellite Data
2.3. Methodology
2.3.1. Calculation of Meteorological and Remote Sensing-Based Vegetation Indices
2.3.2. Mann–Kendall Trend Test and Sen’s Slope
2.3.3. Pearson Correlation Analysis
3. Results
3.1. Correlation Analysis Between Meteorological and Vegetation Drought Indices
3.2. Temporal Evolution and Trend Analysis of Drought
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| SPI | Standardized Precipitation Index |
| SPEI | Standardized Precipitation Evapotranspiration Index |
| HTC | Hydrothermal Coefficient of Selyaninov |
| MCZI | Modified China-Z Index |
| VCI | Vegetation Condition Index |
| TCI | Temperature Condition Index |
| VHI | Vegetation Health Index |
| WMO | World Meteorological Organization |
| CMIP | Coupled Model Intercomparison Project |
| NK | Northern Kazakhstan |
| GEE | Google Earth Engine |
| MS | Meteorological stations |
| MMK | Modified Mann–Kendall |
Appendix A




Appendix B




| Region | Index | Z | p-Value | Sen’s Slope |
|---|---|---|---|---|
| North Kazakhstan | TCI | −0.476 | 0.634 | −0.000067 |
| VCI | −0.549 | 0.583 | −0.000042 | |
| VHI | −2.363 | 0.018 | −0.000078 |
References
- OECD. Climate Change, Water and Agriculture: Towards Resilient Systems; OECD Publishing: Paris, France, 2014; ISBN 9789264209121.
- IPCC. Climate Change 2021—The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2023; ISBN 9781009157896.
- United Nations Convention to Combat Desertification. Drought in Numbers 2022; United Nations Convention to Combat Desertification: Bonn, Germany, 2023.
- Chen, Y.; Li, Z.; Fang, G.; Li, W. Large Hydrological Processes Changes in the Transboundary Rivers of Central Asia. J. Geophys. Res. Atmos. 2018, 123, 5059–5069. [Google Scholar] [CrossRef]
- Qi, J.; Kulmatov, R. An Overview of Environmental Issues in Central Asia. In Proceedings of the Environmental Problems of Central Asia and Their Economic, Social and Security Impacts, Tashkent, Uzbekistan, 1–5 October 2007; Springer: Dordrecht, The Netherlands, 2008; pp. 3–14. [Google Scholar]
- Murzakulova, A. Climate Change Concerns in Central Asia Public Discourse; Policy Brief; University of Central Asia: Khorog, Tajikistan, 2023. [Google Scholar]
- Lickley, M.; Solomon, S. Drivers, Timing and Some Impacts of Global Aridity Change. Environ. Res. Lett. 2018, 13, 104010. [Google Scholar] [CrossRef]
- Takeshima, A.; Kim, H.; Shiogama, H.; Lierhammer, L.; Scinocca, J.F.; Seland, Ø.; Mitchell, D. Global Aridity Changes Due to Differences in Surface Energy and Water Balance between 1.5 °C and 2 °C Warming. Environ. Res. Lett. 2020, 15, 0940a7. [Google Scholar] [CrossRef]
- Mirzabaev, A.; Stringer, L.C.; Benjaminsen, T.A.; Gonzalez, P.; Harris, R.; Jafari, M.; Stevens, N.; Tirado, C.M.; Zakieldeen, S. Deserts, Semiarid Areas and Desertification. In Climate Change 2022–Impacts, Adaptation and Vulnerability; Cambridge University Press: Cambridge, UK, 2023; pp. 2195–2232. [Google Scholar]
- Lioubimtseva, E.; Cole, R. Uncertainties of Climate Change in Arid Environments of Central Asia. Rev. Fish. Sci. 2006, 14, 29–49. [Google Scholar] [CrossRef]
- Lioubimtseva, E.; Henebry, G.M. Climate and Environmental Change in Arid Central Asia: Impacts, Vulnerability, and Adaptations. J. Arid Environ. 2009, 73, 963–977. [Google Scholar] [CrossRef]
- World Meteorological Organization (WMO); Global Water Partnership (GWP). Handbook of Drought Indicators and Indices; Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and Guidelines Series 2; WMO: Geneva, Switzerland; GWP: Stockholm, Sweden, 2016.
- Yin, G.; Hu, Z.; Chen, X.; Tiyip, T. Vegetation Dynamics and Its Response to Climate Change in Central Asia. J. Arid Land 2016, 8, 375–388. [Google Scholar] [CrossRef]
- Leng, G.; Hall, J. Crop Yield Sensitivity of Global Major Agricultural Countries to Droughts and the Projected Changes in the Future. Sci. Total Environ. 2019, 654, 811–821. [Google Scholar] [CrossRef]
- Nechaev, V.; Paptsov, A.; Mikhailushkin, P. Public-Private Partnership as the Basis for Creating a Crossborder Cluster (Russia-Kazakhstan) for Deep Grain Processing: The Essence and Specifics of the Formation. IOP Conf. Ser. Earth Environ. Sci. 2021, 650, 012095. [Google Scholar] [CrossRef]
- Babkenov, A.; Babkenova, S.; Abdullayev, K.; Kairzhanov, Y. Breeding Spring Soft Wheat for Productivity, Grain Quality, and Resistance to Adverse External Factors in Nothern Kazakhstan. J. Ecol. Eng. 2020, 21, 8–12. [Google Scholar] [CrossRef] [PubMed]
- Moustafa, S.M.N.; Alhaithloul, H.A.S.; Abdelzaher, H.M.A. Challenges to Safe Wheat Storage. In Global Wheat Production; InTech: London, UK, 2018. [Google Scholar]
- Parker, B.A.; Lisonbee, J.; Ossowski, E.; Prendeville, H.R.; Todey, D. Drought Assessment in a Changing Climate: Priority Actions and Research Needs; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2023. [Google Scholar]
- World Meteorological Organization; Global Water Partnership. National Drought Management Policy Guidelines: A Template for Action. In Drought and Water Crises; Integrated Drought Management Programme Tools and Guidelines Series 1; Taylor & Francis: Stockholm, Sweden, 2014. [Google Scholar]
- Douris, J.; Kim, G. Atlas of Mortality and Economic Losses from Weather, Climate and Water Extremes (1970–2019); WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Kim, W.; Iizumi, T.; Nishimori, M. Global Patterns of Crop Production Losses Associated with Droughts from 1983 to 2009. J. Appl. Meteorol. Clim. 2019, 58, 1233–1244. [Google Scholar] [CrossRef]
- do Rego, T.F.C.; Santos, M.P.; Cabral, G.B.; de Moura Cipriano, T.; de Sousa, N.L.; de Souza Neto, O.A.; Aragão, F.J.L. Expression of a DREB 5-A Subgroup Transcription Factor Gene from Ricinus Communis (RcDREB1) Enhanced Growth, Drought Tolerance and Pollen Viability in Tobacco. Plant Cell Tissue Organ. Cult. 2021, 146, 493–504. [Google Scholar] [CrossRef]
- Gupta, S. Central Asia and Caucasus Disaster Risk Management Initiative: Risk Assessment for Central Asia and Caucasus Desk Study Review. 2009. Available online: https://www.unisdr.org/files/11641_CentralAsiaCaucasusDRManagementInit.pdf (accessed on 4 November 2009).
- Fu, P.; Jaiswal, D.; McGrath, J.M.; Wang, S.; Long, S.P.; Bernacchi, C.J. Drought Imprints on Crops Can Reduce Yield Loss: Nature’s Insights for Food Security. Food Energy Secur. 2022, 11, e332. [Google Scholar] [CrossRef]
- Baysholanov, S.O. Povtoryaemosti zasukh v zernoseyushchikh oblastyakh Kazakhstana (On the Recurrence of Droughts in Grain-Producing Regions of Kazakhstan). Hydrometeorol. Ecol. 2010, 3, 27–37. [Google Scholar]
- Birch, E.L. A Review of “Climate Change 2014: Impacts, Adaptation, and Vulnerability” and “Climate Change 2014: Mitigation of Climate Change”. J. Am. Plan. Assoc. 2014, 80, 184–185. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Hayes, M.J. Drought: Management. In Atmosphere and Climate; CRC Press: Boca Raton, FL, USA, 2020; Volume 4. [Google Scholar]
- Tadesse, T.; Wall, N.; Hayes, M.; Svoboda, M.; Bathke, D. Improving National and Regional Drought Early Warning Systems in the Greater Horn of Africa. Bull. Am. Meteorol. Soc. 2018, 99, ES135–ES138. [Google Scholar] [CrossRef]
- Lloyd-Hughes, B. The Impracticality of a Universal Drought Definition. Theor. Appl. Clim. 2014, 117, 607–611. [Google Scholar] [CrossRef]
- Yihdego, Y.; Vaheddoost, B.; Al-Weshah, R.A. Drought Indices and Indicators Revisited. Arab. J. Geosci. 2019, 12, 69. [Google Scholar] [CrossRef]
- Erhardt, T.M.; Czado, C. Standardized Drought Indices: A Novel Uni- and Multivariate Approach. J. R. Stat. Soc. Ser. C Appl. Stat. 2018, 67, 643–664. [Google Scholar] [CrossRef]
- Liu, X.; Wang, S.; Wu, Y. Remote Sensing Identification and the Spatiotemporal Variation of Drought Characteristics in Inner Mongolia, China. Forests 2023, 14, 1679. [Google Scholar] [CrossRef]
- Ta, Z.; Yu, R.; Chen, X.; Mu, G.; Guo, Y. Analysis of the Spatio-Temporal Patterns of Dry and Wet Conditions in Central Asia. Atmosphere 2018, 9, 7. [Google Scholar] [CrossRef]
- Ojha, S.S.; Singh, V.; Roshni, T. Comparison of Meteorological Drought Using SPI and SPEI. Civ. Eng. J. 2021, 7, 2130–2149. [Google Scholar] [CrossRef]
- Bouko, A.-A.B.S.D.; Gao, B.; Abubakar, J.; Annan, R.F.; Mutelo, A.M.; El–Saadani, Z.; Djessou, R.D.; Lekoueiry, D. Comparative Analysis of Drought Indices for Different Climatic Zones in Benin. 2024. Available online: https://www.researchsquare.com/article/rs-5221113/v1 (accessed on 16 December 2024).
- Liu, Z.; Wang, Y.; Shao, M.; Jia, X.; Li, X. Spatiotemporal Analysis of Multiscalar Drought Characteristics across the Loess Plateau of China. J. Hydrol. 2016, 534, 281–299. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wang, Q.; Shi, P.; Lei, T.; Geng, G.; Liu, J.; Mo, X.; Li, X.; Zhou, H.; Wu, J. The Alleviating Trend of Drought in the Huang-Huai-Hai Plain of China Based on the Daily SPEI. Int. J. Climatol. 2015, 35, 3760–3769. [Google Scholar] [CrossRef]
- Guo, H.; Bao, A.; Liu, T.; Jiapaer, G.; Ndayisaba, F.; Jiang, L.; Kurban, A.; De Maeyer, P. Spatial and Temporal Characteristics of Droughts in Central Asia during 1966–2015. Sci. Total Environ. 2018, 624, 1523–1538. [Google Scholar] [CrossRef]
- Ryssaliyeva, L.; Salnikov, V. Study of Atmospheric Drought in Central Asia. Geogr. Bull. 2021, 2, 110–120. [Google Scholar] [CrossRef]
- Yang, T.-H.; Liu, W.-C. A General Overview of the Risk-Reduction Strategies for Floods and Droughts. Sustainability 2020, 12, 2687. [Google Scholar] [CrossRef]
- PaiMazumder, D.; Sushama, L.; Laprise, R.; Khaliq, M.N.; Sauchyn, D. Canadian RCM Projected Changes to Short- and Long-term Drought Characteristics over the Canadian Prairies. Int. J. Climatol. 2013, 33, 1409–1423. [Google Scholar] [CrossRef]
- Borth, H.; Tao, H.; Fraedrich, K.; Schneidereit, A.; Zhu, X. Hydrological Extremes in the Aksu-Tarim River Basin: Mid-Latitude Dynamics. Clim. Dyn. 2016, 46, 2039–2050. [Google Scholar] [CrossRef]
- Ionita, M.; Scholz, P.; Chelcea, S. Spatio-temporal Variability of Dryness/Wetness in the Danube River Basin. Hydrol. Process 2015, 29, 4483–4497. [Google Scholar] [CrossRef]
- Zhai, J.; Su, B.; Krysanova, V.; Vetter, T.; Gao, C.; Jiang, T. Spatial Variation and Trends in PDSI and SPI Indices and Their Relation to Streamflow in 10 Large Regions of China. J. Clim. 2010, 23, 649–663. [Google Scholar] [CrossRef]
- Wu, Z.; Qin, Z.; Lin, Z. Characteristics of Extreme Drought in Central and Western Asia and Its Relationship with Tropical Sea Surface Temperature. Plateau Meteorol. 2022, 41, 1141–1152. [Google Scholar] [CrossRef]
- Dike, V.N.; Lin, Z.; Fei, K.; Langendijk, G.S.; Nath, D. Evaluation and Multimodel Projection of Seasonal Precipitation Extremes over Central Asia Based on CMIP6 Simulations. Int. J. Climatol. 2022, 42, 7228–7251. [Google Scholar] [CrossRef]
- Tefera, A.S.; Ayoade, J.O.; Bello, N.J. Comparative Analyses of SPI and SPEI as Drought Assessment Tools in Tigray Region, Northern Ethiopia. SN Appl. Sci. 2019, 1, 1265. [Google Scholar] [CrossRef]
- Kingston, D.G.; Treadwell, E.J. Trends in National and Regional Scale Drought in New Zealand. Proc. Int. Assoc. Hydrol. Sci. 2020, 383, 307–314. [Google Scholar] [CrossRef]
- Mirmohammadhosseini, T.S.; Hosseini, S.A.; Ghermezcheshmeh, B.; Sharafati, A. Impact of Meteorological Drought on Vegetation in Non-Irrigated Lands. Időjárás 2021, 125, 463–476. [Google Scholar] [CrossRef]
- Rousta, I.; Olafsson, H.; Moniruzzaman, M.; Zhang, H.; Liou, Y.-A.; Mushore, T.D.; Gupta, A. Impacts of Drought on Vegetation Assessed by Vegetation Indices and Meteorological Factors in Afghanistan. Remote Sens. 2020, 12, 2433. [Google Scholar] [CrossRef]
- Zeybekoglu, U.; Hezarani, A.B.; Keskin, A.U. Comparison of Four Precipitation Based Meteorological Drought Indices in Yesilirmak Basin, Turkey 2021. IDŐJÁRÁS/Q. J. Hung. Meteorol. Serv. 2023, 127, 123–142. [Google Scholar]
- Mahmoudi, P.; Rigi, A.; Miri Kamak, M. Evaluating the Sensitivity of Precipitation-Based Drought Indices to Different Lengths of Record. J. Hydrol. 2019, 579, 124181. [Google Scholar] [CrossRef]
- Wang, H.; Vicente-serrano, S.M.; Tao, F.; Zhang, X.; Wang, P.; Zhang, C.; Chen, Y.; Zhu, D.; Kenawy, A. El Monitoring Winter Wheat Drought Threat in Northern China Using Multiple Climate-Based Drought Indices and Soil Moisture during 2000–2013. Agric. Meteorol. 2016, 228–229, 1–12. [Google Scholar] [CrossRef]
- Mirzadinov, R.R.I. Regional’nyye Podkhody v Bor’be s Peschanymi i Pyl’nymi Buryami i Zasukhoy v Tsentral’noy Azii. Situatsionnyy Analiz, Zasukha v Tsentral’noy Azii. [Regional Approaches to Combating Sand and Dust Storms and Drought in Central Asia. Situational Analysis Drought in Central Asia]; Almaty, 2021. Available online: https://carececo.org/publications/zasuha/Russian/c1r/C1R%20-%20Drought%20-%20%D0%A1%D0%B8%D1%82%D1%83%D0%B0%D1%86%D0%B8%D0%BE%D0%BD%D0%BD%D1%8B%D0%B9%20%D0%B0%D0%BD%D0%B0%D0%BB%D0%B8%D0%B7%20%D0%BF%D0%BE%20%D0%B7%D0%B0%D1%81%D1%83%D1%85%D0%B5%20%D0%B2%20%D0%A6%D0%90%20(Russian%20only).pdf (accessed on 25 August 2021).
- RSE «Kazhydromet». Issledovaniye i Prognozirovaniye Zasukh v Kazakhstane (Investigation and Forecasting of Droughts in Kazakhstan); RSE «Kazhydromet»: Astana, Kazakhstan, 2010. [Google Scholar]
- Cherednichenko, V.S.; Cherednichenko, A.V. Regional′nyye Meteorologicheskiye Protsessy (Mezometeorologiya) [Regional Meteorological Processes (Mesometeorology)]; Al-Farabi Kazakh National University: Almaty, Kazakhstan, 2014; 386p. [Google Scholar]
- Cherednichenko, A.V.; Cherednichenko, V.S. Dinamika Izmeneniya Klimata [Dynamics of Climate Change in Kazakhstan]; Al-Farabi Kazakh National University: Almaty, Kazakhstan, 2020; 499p. [Google Scholar]
- Fedorenko, E.N.; Lutchenko, Z.I.; Artys, A.Y. Evaluation of the Lines of the Control Nursery of Spring Soft Wheat in Arid Conditions North of Kazakhstan. Agrar. Sci. 2023, 7, 97–101. [Google Scholar] [CrossRef]
- Khamzina, B.; Bulashev, B.; Nurmanov, Y.; Tultabayeva, T.; Nurmukhanbetova, N.; Toimbayeva, D.; Igimbay, A.; Myrzabayeva, G. The Effects of Ammonium Phosphate Fertilization on Yield and Yield Components of Mustard Varieties in Chernozem Soil. Eurasian J. Soil Sci. (EJSS) 2023, 12, 169–176. [Google Scholar] [CrossRef]
- United States Department of Agriculture. Foreign Agricultural Service Kazakhstan: Grain and Feed Annual; United States Department of Agriculture: Washington, DC, USA, 2021.
- Vicente-Serrano, S. The Climate Data Guide: Standardized Precipitation Evapotranspiration Index (SPEI). Available online: https://climatedataguide.ucar.edu/climate-data/standardized-precipitation-evapotranspiration-index-spei (accessed on 29 April 2025).
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef]
- Musei, S.K.; Nyaga, J.M.; Dubow, A.Z. SPEI-Based Spatial and Temporal Evaluation of Drought in Somalia. J. Arid Environ. 2021, 184, 104296. [Google Scholar] [CrossRef]
- Selyaninov, G.T. Zasuxi v SSSR, ix proisxozhdenie, povtoryaemost` i vliyanie na urozhaj (Droughts in the USSR: Their Origin, Recurrence, and Impact on Crop Yields); Gidrometeoizdat: Leningrad, Russia, 1958; pp. 36–44. [Google Scholar]
- Wu, H.; Hayes, M.J.; Weiss, A.; Hu, Q. An Evaluation of the Standardized Precipitation Index, the China-Z Index and the Statistical Z-Score. Int. J. Climatol. 2001, 21, 745–758. [Google Scholar] [CrossRef]
- Kogan, F.N. Application of Vegetation Index and Brightness Temperature for Drought Detection. Adv. Space Res. 1995, 15, 91–100. [Google Scholar] [CrossRef]
- Rhee, J.; Im, J.; Carbone, G.J. Monitoring Agricultural Drought for Arid and Humid Regions Using Multi-Sensor Remote Sensing Data. Remote Sens. Environ. 2010, 114, 2875–2887. [Google Scholar] [CrossRef]
- Li, Y.; Dong, Y.; Yin, D.; Liu, D.; Wang, P.; Huang, J.; Liu, Z.; Wang, H. Evaluation of Drought Monitoring Effect of Winter Wheat in Henan Province of China Based on Multi-Source Data. Sustainability 2020, 12, 2801. [Google Scholar] [CrossRef]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Reinhold Company: New York, NY, USA, 1987; Volume 330. [Google Scholar]
- Kendall, M.G. Rank Correlation Methods; Charles Griffin: London, UK, 1948. [Google Scholar]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245. [Google Scholar] [CrossRef]
- Daufresne, M.; Lengfellner, K.; Sommer, U. Global Warming Benefits the Small in Aquatic Ecosystems. Proc. Natl. Acad. Sci. USA 2009, 106, 12788–12793. [Google Scholar] [CrossRef]
- Shmelev, S.E.; Salnikov, V.; Turulina, G.; Polyakova, S.; Tazhibayeva, T.; Schnitzler, T.; Shmeleva, I.A. Climate Change and Food Security: The Impact of Some Key Variables on Wheat Yield in Kazakhstan. Sustainability 2021, 13, 8583. [Google Scholar] [CrossRef]
- Karatayev, M.; Clarke, M.; Salnikov, V.; Bekseitova, R.; Nizamova, M. Monitoring Climate Change, Drought Conditions and Wheat Production in Eurasia: The Case Study of Kazakhstan. Heliyon 2022, 8, e08660. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Lin, H.; Liu, D. Remotely Sensed Drought Index and Its Responses to Meteorological Drought in Southwest China. Remote Sens. Lett. 2014, 5, 413–422. [Google Scholar] [CrossRef]
- Baisholanov, S.; Akshalov, K.; Mukanov, Y.; Zhumabek, B.; Karakulov, E. Agro-Climatic Zoning of the Territory of Northern Kazakhstan for Zoning of Agricultural Crops Under Conditions of Climate Change. Climate 2024, 13, 3. [Google Scholar] [CrossRef]
- Amalo, L.F.; Hidayat, R. Haris Comparison between Remote-Sensing-Based Drought Indices in East Java. IOP Conf. Ser. Earth Environ. Sci. 2017, 54, 012009. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, X.; Yu, Y.; Qian, J.; Wang, M.; Huang, S.; Xing, X.; Song, S.; Sun, X. Spatiotemporal Characteristics of Drought in Central Asia from 1981 to 2020. Atmosphere 2022, 13, 1496. [Google Scholar] [CrossRef]
- Farooq, I.; Shah, A.R.; Sahana, M.; Ehsan, M.A. Assessment of Drought Conditions Over Different Climate Zones of Kazakhstan Using Standardised Precipitation Evapotranspiration Index. Earth Syst. Environ. 2023, 7, 283–296. [Google Scholar] [CrossRef]
- Pei, Z.; Fang, S.; Wang, L.; Yang, W. Comparative Analysis of Drought Indicated by the SPI and SPEI at Various Timescales in Inner Mongolia, China. Water 2020, 12, 1925. [Google Scholar] [CrossRef]
- Ali, S.; Basit, A.; Umair, M.; Makanda, T.A.; Shaik, M.R.; Ibrahim, M.; Ni, J. The Role of Climate Change and Its Sensitivity on Long-Term Standardized Precipitation Evapotranspiration Index, Vegetation and Drought Changing Trends over East Asia. Plants 2024, 13, 399. [Google Scholar] [CrossRef] [PubMed]
- Salnikov, V.; Turulina, G.; Polyakova, S.; Skakova, A. Krupnomasshtabnye Atmosfernye Processy i Zasushlivost’ v Kazahstane (Large-Scale Atmospheric Processes and Drought in Kazakhstan). Bull. KazNu. Ecol. Ser. 2013, 2, 125–131. (In Russian) [Google Scholar]
- Sarsembayeva, A.; Ryssaliyeva, L. Solar Magnetic Activity and Its Terrestrial Impact through Correlations with Drought Indices. Phys. Sci. Technol. 2025, 12, 38–44. [Google Scholar] [CrossRef]







| Station | Latitude (°N) | Longitude (°E) | Elevation (m) | Established |
|---|---|---|---|---|
| Torgai | 49.70 | 63.50 | 123 | 1874 |
| Amangeldy | 50.10 | 65.20 | 142 | 1935 |
| Astana | 51.08 | 71.40 | 350 | 1870 |
| Ereimentau | 51.60 | 73.20 | 397 | 1954 |
| Pavlodar | 52.10 | 77.10 | 125 | 1891 |
| Kushmuryn | 52.50 | 64.70 | 110 | 1940 |
| Ruzaevka | 52.80 | 67.00 | 227 | 1935 |
| Aktogai | 53.00 | 75.59 | 780 | 1960 |
| Kostanay | 53.20 | 63.60 | 156 | 1962 |
| Yavlenka | 54.30 | 68.50 | 115 | 1902 |
| Petropavlovsk | 54.80 | 69.20 | 142 | 1890 |
| Index | Formula | Input Data | Description |
|---|---|---|---|
| SPI | Based on gamma distribution, transformed to standard normal variable | Precipitation | Quantifies precipitation anomalies [62,63]. |
| SPEI | Similar to SPI but uses difference (precipitation–PET) | Precipitation, potential evapotranspiration | Captures drought by integrating precipitation and temperature [62,63,64]. |
| HTC | , (1) | Total precipitation (when t > +10 °C), air temperature (>+10 °C) | Moisture availability indicator during growing period [65]. |
| MCZI | Based on skewness-corrected Z-score (Equations (5)–(7)) | Precipitation | Incorporates the skewness coefficient and median precipitation, making it less sensitive to extreme outliers [66]. |
| VCI | (2) | NDVI | Measures vegetation health relative to NDVI extremes [67]. |
| TCI | (3) | Land surface temperature | Assesses thermal stress on vegetation; complements VCI [67]. |
| VHI | (4) | VCI, TCI, a = 0.5 (contribution of VCI and TCI), | Combines moisture and temperature stress; widely used in arid and semi-arid monitoring [67,68]. |
| Drought Categories | HTC | Drought Categories | SPI/SPEI/MCZI |
|---|---|---|---|
| Extremely wet | >2.0 | Extremely wet | >2.0 |
| Moderate wet | >1.0 | Very wet | 1.5 to 1.99 |
| Dry | <1.0 | Moderate wet | 1.0 to 1.49 |
| Mild drought | 1–0.8 | Normal | −0.99 to 0.99 |
| Drought | 0.8–0.6 | Moderate dry | −1.0 to −1.49 |
| Moderate drought | 0.6–0.5 | Very dry | −1.5 to −1.99 |
| Severe drought | 0.5–0.4 | Extremely dry | <−2.0 |
| Very severe drought | <0.4 |
| Drought Categories | VHI/TCI/VCI |
|---|---|
| Extreme drought | <0.1 |
| Severe drought | <0.2 |
| Moderate drought | <0.3 |
| Mild drought | <0.4 |
| No drought | >0.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryssaliyeva, L.; Salnikov, V.; Lin, Z.; Raimbekova, Z. Seasonal Sensitivity of Drought Indices in Northern Kazakhstan: A Comparative Evaluation and Selection of Optimal Indicators. Sustainability 2025, 17, 9413. https://doi.org/10.3390/su17219413
Ryssaliyeva L, Salnikov V, Lin Z, Raimbekova Z. Seasonal Sensitivity of Drought Indices in Northern Kazakhstan: A Comparative Evaluation and Selection of Optimal Indicators. Sustainability. 2025; 17(21):9413. https://doi.org/10.3390/su17219413
Chicago/Turabian StyleRyssaliyeva, Laura, Vitaliy Salnikov, Zhaohui Lin, and Zhanar Raimbekova. 2025. "Seasonal Sensitivity of Drought Indices in Northern Kazakhstan: A Comparative Evaluation and Selection of Optimal Indicators" Sustainability 17, no. 21: 9413. https://doi.org/10.3390/su17219413
APA StyleRyssaliyeva, L., Salnikov, V., Lin, Z., & Raimbekova, Z. (2025). Seasonal Sensitivity of Drought Indices in Northern Kazakhstan: A Comparative Evaluation and Selection of Optimal Indicators. Sustainability, 17(21), 9413. https://doi.org/10.3390/su17219413

