Source Apportionment and Risk Assessment of Metals in the Potential Contaminated Areas
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling and Analysis
2.3. Self-Organizing Maps
2.4. Positive Matrix Factorization
2.5. Health Risk Assessment
2.6. Geo-Accumulation Index
2.7. Potential Ecological Risk Index
2.8. Data Processing and Statistical Analysis
3. Results and Discussion
3.1. Pollution Assessment and Ecological Risk Assessment
3.2. Cluster Analysis with SOM
3.3. Analysis of Pollution Components for Each Cluster
3.4. Source Interpretation and Driving Factors with Multiple Methods
3.5. Quantitative Analysis of Pollution Sources
3.6. Health Risk Assessment of Metals
4. Conclusions
- (1)
- The mean concentrations of Hg, Pb, Cd, and As exceeded background values by factors of 1.98, 2.74, 1.90, and 1.24, respectively. The RI ranged from 75.56 to 381.84, with risk levels distributed as follows: 52% low risk, 47% moderate risk, and 1% considerable risk.
- (2)
- SOM and K-means clustering classified the soil samples into four distinct clusters. Cluster 1 showed extensive spatial coverage across the study region with consistently lower pollution levels. Cluster 2 was concentrated in the central and northern regions, correlating with areas of concentrated agricultural and industrial activities. Cluster 3 displayed a strip-like distribution with localized clustering, coinciding with a higher density of fireworks enterprises. Cluster 4 showed a distinct spatial concentration in the southeastern sector of the study region, where fireworks production facilities were densely concentrated. Notably, the presence of clustered fireworks manufacturing was associated with significantly elevated levels of Cd, As, Hg, and Pb. Three potential pollution sources were quantified: Cr (74%), Cd (22%), As (18%), Pb (14%), and Hg (13%) originated from irrigation water; As (82%), Cd (73%), Hg (49%), Pb (47%), and Cr (14%) derived from fireworks enterprises; Pb (39%), Hg (37%), Cr (12%), and Cd (5%) from fireworks packaging material.
- (3)
- Children were more vulnerable than adults to harmful health impacts through oral ingestion and dermal contact exposure, while adults faced higher inhalation risks. For children, the greatest threats came from ingesting As, Hg, Pb, Cr, and Cd. In adults, As, Hg, and Pb primarily entered through oral ingestion, whereas Cr and Cd exposure is mainly via inhalation. The CR values ranged from 2.92 × 10−12 to 1.42 × 10−4 for adults and 4.13 × 10−9 to 2.04 × 10−4 for children, exceeding acceptable thresholds. Among adults, As presented the greatest carcinogenic threat, with Cr and Cd ranking second and third, respectively. In contrast, Cr presented a greater risk than As and Cd in children. Collectively, the carcinogenic risk exposure was significantly greater in children compared to adults.
- (4)
- In future research, it is essential to focus on the morphological characteristics of metals and the distribution characteristics of metals at different depths. This will enable more precise pollution prevention and control.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fang, S.; Hua, C.; Yang, J.; Liu, F.; Wang, L.; Wu, D.; Ren, L. Combined pollution of soil by heavy metals, microplastics, and pesticides: Mechanisms and anthropogenic drivers. J. Hazard. Mater. 2025, 485, 136812. [Google Scholar] [CrossRef]
- Xue, S.; Korna, R.; Fan, J.; Ke, W.; Lou, W.; Wang, J.; Zhu, F. Spatial distribution, environmental risks, and sources of potentially toxic elements in soils from a typical abandoned antimony smelting site. J. Environ. Sci. 2023, 127, 780–790. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, D.; Ren, F.; Huang, L. Spatiotemporal variation of soil heavy metals in China: The pollution status and risk assessment. Sci. Total Environ. 2023, 871, 161768. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhang, Q.; Chen, W.; Shi, W.; Cui, Y.; Chen, L.; Shao, J. Hydrogeochemical analysis and groundwater pollution source identification based on self-organizing map at a contaminated site. J. Hydrol. 2023, 616, 128839. [Google Scholar] [CrossRef]
- Fei, X.; Lou, Z.; Xiao, R.; Ren, Z.; Lv, X. Source analysis and source-oriented risk assessment of heavy metal pollution in agricultural soils of different cultivated land qualities. J. Clean. Prod. 2022, 341, 130942. [Google Scholar] [CrossRef]
- Hu, B.; Shao, S.; Ni, H.; Fu, Z.; Hu, L.; Zhou, Y.; Min, X.; She, S.; Chen, S.; Huang, M.; et al. Current status, spatial features, health risks, and potential driving factors of soil heavy metal pollution in China at province level. Environ. Pollut. 2020, 266, 114961. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Wu, C.; Lin, Y.; Li, W.; Deng, M.; Tan, J.; Xue, S. Soil heavy metal pollution from Pb/Zn smelting regions in China and the remediation potential of biomineralization. J. Environ. Sci. 2023, 125, 662–677. [Google Scholar] [CrossRef] [PubMed]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef] [PubMed]
- Shamsunnahar Setu, V.S. Impacts of non-ferrous metal mining on soil heavy metal pollution and risk assessment. Sci. Total Environ. 2025, 969, 178962. [Google Scholar] [CrossRef]
- Ning, X.; He, L.; Long, S.; Wang, S. Bioavailability, migration and driving factors of As, Cd and Pb in calcareous soil amended with organic fertilizer and manganese oxidizing bacteria in arid northwest China. J. Hazard. Mater. 2025, 489, 137528. [Google Scholar] [CrossRef]
- Deng, J.; Yu, J.; Zhang, B.; Zhao, H.; Zhao, Z.; Chen, Y.; Pu, S. Source-pathway-sink analysis and health risk zoning of heavy metal groundwater pollution in karst chemical park. Environ. Pollut. 2025, 382, 126716. [Google Scholar] [CrossRef]
- He, S.; Li, P.; Su, F.; Wang, D.; Ren, X. Identification and apportionment of shallow groundwater nitrate pollution in Weining Plain, northwest China, using hydrochemical indices, nitrate stable isotopes, and the new Bayesian stable isotope mixing model (MixSIAR). Environ. Pollut. 2022, 298, 118852. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Zhou, A.; Zhang, L. Identification of groundwater pollution from livestock farming using fluorescence spectroscopy coupled with multivariate statistical methods. Water Res. 2021, 206, 117754. [Google Scholar] [CrossRef] [PubMed]
- Goldrich-Middaugh, G.M.; Johnson, K.; Ma, L.; Engle, M.A.; Fleming, S.W.; Ricketts, J.W.; Sullivan, P.L. Critical zone controls on stream chemistry: Lessons from multiple machine learning methods and irregular data across large watersheds. J. Hydrol. 2025, 660, 133319. [Google Scholar] [CrossRef]
- Jin, L.; Ye, H.; Shi, Y.; Li, L.; Liu, R.; Cai, Y.; Li, J.; Li, F.; Jin, Z. Using PCA-APCS-MLR model and SIAR model combined with multiple isotopes to quantify the nitrate sources in groundwater of Zhuji, East China. Appl. Geochem. 2022, 143, 105354. [Google Scholar] [CrossRef]
- Proshad, R.; Kormoker, T.; Al, M.A.; Islam, S.; Khadka, S.; Idris, A.M. Receptor model-based source apportionment and ecological risk of metals in sediments of an urban river in Bangladesh. J. Hazard. Mater. 2022, 423, 127030. [Google Scholar] [CrossRef]
- Zhao, W.; Ma, J.; Liu, Q.; Dou, L.; Qu, Y.; Shi, H.; Sun, Y.; Chen, H.; Tian, Y.; Wu, F. Accurate Prediction of Soil Heavy Metal Pollution Using an Improved Machine Learning Method: A Case Study in the Pearl River Delta, China. Environ. Sci. Technol. 2023, 57, 17751–17761. [Google Scholar] [CrossRef]
- Diao, Z.; Ping, X.; Zhang, X.; Hui, B.; Zhu, F.; Zhang, Y.; Wang, J.; Yu, Y.; Zhang, L.; Hui, W.; et al. Seasonal characteristics, source apportionment and ecological risk assessment of priority and emerging contaminants using passive samplers in the coastal water. J. Hazard. Mater. 2025, 493, 138398. [Google Scholar] [CrossRef]
- Qu, S.; Shi, Z.; Wang, G.; Han, J. Application of multiple approaches to investigate hydraulic connection in multiple aquifers system in coalfield. J. Hydrol. 2021, 595, 125673. [Google Scholar] [CrossRef]
- Yan, Z.; Li, Z.; Li, P.; Zhao, C.; Xu, Y.; Cui, Z.; Sun, H. Hydrochemical assessments and driving forces of water resources in coal mining areas: A case study of the Changhe River Basin, Shanxi. Environ. Earth Sci. 2023, 82, 447. [Google Scholar] [CrossRef]
- Du, J.; Jia, C.; Ding, Y.; Yang, X.; Feng, K.; Wei, M. Advancing wetland groundwater pollution zoning: A novel integration of Monte Carlo health risk modeling and machine learning. J. Hazard. Mater. 2025, 494, 138412. [Google Scholar] [CrossRef]
- Cao, M.; Tang, Q.; Gai, N.; Ma, S.; Liu, J.; Wang, F. Contamination characteristics, source apportionment, and risk assessment of heavy metals and metalloids in the soil-crop-human system within the typical high geological background region of the Yangtze River Delta. J. Environ. Manag. 2025, 391, 126443. [Google Scholar] [CrossRef]
- Zhang, W.; Xin, C.; Du, W.; Yu, S. Health risk assessment of heavy metals based on source analysis and Monte Carlo in the Lijiang River Basin, China. Ecol. Indic. 2025, 176, 113620. [Google Scholar] [CrossRef]
- Kim, K.-H.; Yun, S.-T.; Yu, S.; Choi, B.-Y.; Kim, M.-J.; Lee, K.-J. Geochemical pattern recognitions of deep thermal groundwater in South Korea using self-organizing map: Identified pathways of geochemical reaction and mixing. J. Hydrol. 2020, 589, 125202. [Google Scholar] [CrossRef]
- Wang, S.; Li, G.; Ji, X.; Wang, Y.; Xu, B.; Tang, J.; Guo, C. Machine learning-driven assessment of heavy metal contamination in the impounded lakes of China’s South-to-North Water Diversion Project: Identifying spatiotemporal patterns and ecological risks. J. Hazard. Mater. 2024, 480, 135983. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Zhang, Y.; Sun, Z.; Xie, Z.; Yao, R.; Chen, S.; Uddin, M.G.; Pu, Y.; Yang, C.; Wang, Y.; et al. Using unsupervised machine learning and positive matrix factorization models to drive groundwater chemistry and associated health risks in a coal-mining rural region. J. Hydrol. 2025, 661, 133691. [Google Scholar] [CrossRef]
- Cui, H.; Duan, L.; Pan, H.; Liu, T. Geochemical pattern, quality and driving forces of multi-layer groundwater in a high-capacity mining area basin: A comprehensive analysis based on the interweaving of multiple factors. J. Hydrol. 2025, 660, 133376. [Google Scholar] [CrossRef]
- Zhang, K.; Li, M.; Qu, S.; Zhao, Y.; Duan, L.; Yang, X.; Li, D.; Liao, Z.; Yu, R. Spatio-seasonal variability of source contributions to water quality in a large irrigation drainage lake basin based on the entropy weighted quality index, positive matrix factorization, and isotopic tracers. Environ. Pollut. 2025, 382, 126670. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Liu, Q.; Yang, T.; Ju, Q.; Hou, X.; Gao, W.; Jiang, S. Groundwater pollution source identification and health risk assessment in the North Anhui Plain, eastern China: Insights from positive matrix factorization and Monte Carlo simulation. Sci. Total Environ. 2023, 895, 165186. [Google Scholar] [CrossRef]
- Li, X.; Tan, H.; Luo, M.; Wu, X.; Huang, X.; Zhou, S.; Shen, L.; He, Y.; Liu, Y.; Hu, L. Exposure to firework chemicals from production factories in pregnant women and risk of preterm birth occurrence in Liuyang, China. J. Toxicol. Environ. Health 2018, 81, 154–159. [Google Scholar] [CrossRef]
- Zhou, L.; Meng, Y.; Vaghefi, S.A.; Marras, P.A.; Sui, C.; Lu, C.; Abbaspour, K.C. Uncertainty-based metal budget assessment at the watershed scale: Implications for environmental management practices. J. Hydrol. 2020, 584, 124699. [Google Scholar] [CrossRef]
- Yang, Y.; Zhou, J.; Guo, T.; Ding, H.; Liu, X. Source analysis of heavy metal pollution in farmland soil in a mining area based on a small watershed scale. J. Agro-Environ. Science. 2023, 42, 1956–1963. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Z.; Xiao, X.; Chen, T.; Liao, X.; Song, J.; Wu, B. Heavy metal pollution of soils and vegetables in the midstream and downstream of the Xiangjiang River, Hunan Province. J. Geogr. Sci. 2008, 18, 353–362. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Wu, Y.-J.; Wu, B.-J.; Kuang, X.-L. Pollution Characteristics and Ecological Risk Assessment of Heavy Metals in Surface Sediments in Changsha-Zhuzhou-Xiangtan Reach, Xiang Jiang River, China. J. Agric. Resour. Environ. 2015, 32, 60–65. [Google Scholar] [CrossRef]
- Zhang, K.; Peng, B.; Yang, X. Contamination and Risk of Heavy Metals in Sediments from Zhuzhou, Xiangtan and Changsha Sections of the Xiangjiang River, Hunan Province of China. Sustainability 2023, 15, 14239. [Google Scholar] [CrossRef]
- Ruan, Y.-L.; Liu, C.-S.; Wang, G.-Q.; Bao, Z.-X.; Wang, Y. Characteristics of Land Use Change and Its Relationship with Key Hydrological Factors in the Liuyang River Basin. Water Sav. Irrigation. 2024, 53–59. [Google Scholar] [CrossRef]
- Fang, M.-L.; Wang, R.; Yan, Y.-N.; Chen, S. Study on Water Footprint of Main Crop Production in Liuyang City, A Typical Agricultural Area in Central China. Resour. Environ. Yangtze Basin 2022, 31, 2308–2317. Available online: https://yangtzebasin.whlib.ac.cn/EN/10.11870/cjlyzyyhj202210018 (accessed on 18 April 2025).
- Fang, X.; Peng, B.; Wang, X.; Song, Z.; Zhou, D.; Wang, Q.; Qin, Z.; Tan, C. Distribution, contamination and source identification of heavy metals in bed sediments from the lower reaches of the Xiangjiang River in Hunan province, China. Sci. Total Environ. 2019, 689, 557–570. [Google Scholar] [CrossRef] [PubMed]
- Kohonen, T. Essentials of the self-organizing map. Neural Networks. 2013, 37, 52–65. [Google Scholar] [CrossRef] [PubMed]
- Licen, S.; Astel, A.; Tsakovski, S. Self-organizing map algorithm for assessing spatial and temporal patterns of pollutants in environmental compartments: A review. Sci. Total Environ. 2023, 878, 163084. [Google Scholar] [CrossRef]
- Melo, D.S.; Gontijo, E.S.J.; Frascareli, D.; Simonetti, V.C.; Machado, L.S.; Barth, J.A.C.; Moschini-Carlos, V.; Pompêo, M.L.; Rosa, A.H.; Friese, K. Self-Organizing Maps for Evaluation of Biogeochemical Processes and Temporal Variations in Water Quality of Subtropical Reservoirs. Water Resour. Res. 2019, 55, 10268–10281. [Google Scholar] [CrossRef]
- Wang, Z.; Xiao, J.; Wang, L.; Liang, T.; Guo, Q.; Guan, Y.; Rinklebe, J. Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map. Environ. Pollut. 2020, 260, 114065. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, Y.; Yang, S.; Liu, J.; Zheng, W.; Xu, J.; Cai, H.; Liu, X. Source apportionment of soil heavy metals: A new quantitative framework coupling receptor model and stable isotopic ratios. Environ. Pollut. 2022, 314, 120291. [Google Scholar] [CrossRef]
- Mao, H.; Wang, G.; Liao, F.; Shi, Z.; Zhang, H.; Chen, X.; Qiao, Z.; Li, B.; Bai, Y. Spatial variability of source contributions to nitrate in regional groundwater based on the positive matrix factorization and Bayesian model. J. Hazard. Mater. 2023, 445, 130569. [Google Scholar] [CrossRef]
- Jahandari, A.; Abbasnejad, B. Environmental pollution status and health risk assessment of selective heavy metal(oid)s in Iran’s agricultural soils: A review. J. Geochem. Explor. 2024, 256, 107330. [Google Scholar] [CrossRef]
- Meng, F.; Liu, D.; Bu, T.; Zhang, M.; Peng, J.; Ma, J. Assessment of pollution and health risks from exposure to heavy metals in soil, wheat grains, drinking water, and atmospheric particulate matter. J. Environ. Manag. 2025, 376, 124448. [Google Scholar] [CrossRef] [PubMed]
- Erickson, B.E. US EPA to reassess health risks of glyphosate. Chem. Eng. News 2022, 100, 15. [Google Scholar] [CrossRef]
- Liu, G.; Shi, Y.; Guo, G.; Zhao, L.; Niu, J.; Zhang, C. Soil pollution characteristics and systemic environmental risk assessment of a large-scale arsenic slag contaminated site. J. Clean. Prod. 2020, 251, 119721. [Google Scholar] [CrossRef]
- Müller, G. Index of geoaccumulation in sediments of the Rhine River. GeoJournal 1969, 2, 108–118. [Google Scholar]
- Liu, J.; Wang, J.; Xiao, T.; Bao, Z.A.; Lippold, H.; Luo, X.; Yin, M.; Ren, J.; Chen, Y.; Linghu, W. Geochemical dispersal of thallium and accompanying metals in sediment profiles from a smelter-impacted area in South China. Appl. Geochem. 2018, 88, 239–246. [Google Scholar] [CrossRef]
- Dai, L.; Wang, L.; Li, L.; Liang, T.; Zhang, Y.; Ma, C.; Xing, B. Multivariate geostatistical analysis and source identification of heavy metals in the sediment of Poyang Lake in China. Sci. Total Environ. 2018, 621, 1433–1444. [Google Scholar] [CrossRef]
- Aftab, A.; Aziz, R.; Ghaffar, A.; Rafiq, M.T.; Feng, Y.; Saqib, Z.; Rafiq, M.K.; Awan, M.A. Occurrence, source identification and ecological risk assessment of heavy metals in water and sediments of Uchalli lake—Ramsar site, Pakistan. Environ. Pollut. 2023, 334, 122117. [Google Scholar] [CrossRef]
- Guo, G.; Li, K.; Zhang, D.; Lei, M. Quantitative source apportionment and associated driving factor identification for soil potential toxicity elements via combining receptor models, SOM, and geo-detector method. Sci. Total Environ. 2022, 830, 154721. [Google Scholar] [CrossRef]
- Haselbeck, V.; Kordilla, J.; Krause, F.; Sauter, M. Self-organizing maps for the identification of groundwater salinity sources based on hydrochemical data(Article). J. Hydrol. 2019, 576, 610–619. [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Tian, B.; Li, J.; Luo, J.; Wang, X.; Ai, S.; Wang, X. Assessment of soil heavy metal pollution in provinces of China based on different soil types: From normalization to soil quality criteria and ecological risk assessment. J. Hazard. Mater. 2023, 441, 129891. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Zheng, K.; Bao, S.; Cui, Y.; Yuan, Y.; Ge, C.; Zhang, Y. Estimating the spatiotemporal distribution of PM2.5 concentrations in Tianjin during the Chinese Spring Festival: Impact of fireworks ban. Environ. Pollut. 2024, 361, 124899. [Google Scholar] [CrossRef]
- ten Brink, H.; Otjes, R.; Weijers, E. Extreme levels and chemistry of PM from the consumer fireworks in the Netherlands. Energy-Res. Cent. Netherlands. Atmos. Environ. 2019, 212, 36–40. [Google Scholar] [CrossRef]
- Kumar, R.R.; Sahu, S.; Agharwal, J.R. Biosorption of cadmium (II) ions by the cadmium tolerant bacteria isolated from the chemical exposed soil of fireworks industry(Article). J. Pure Appl. Microbiol. 2012, 6, 781–787. [Google Scholar]
- Shen, H.; An, R.; Shi, H.; Liu, X.; Zhang, A. Heavy Metal Pollution and Influencing Factors of Agricultural Land in a Typical Watershed in Hunan Province. Res. Environ. Sci. 2021, 34, 715–724. [Google Scholar] [CrossRef]
- Wang, F.; Wang, X.; Liu, D.; Liu, H. Comprehensive safety risk evaluation of fireworks production enterprises using the frequency-based ANP and BPNN. Heliyon 2023, 9, e21724. [Google Scholar] [CrossRef]
- Cao, J.; Xie, C.-Y.; Hou, Z.-R. Spatiotemporal distribution patterns and risk characteristics of heavy metal pollutants in the soil of lead–zinc mines. Environ. Sci. Eur. 2022, 34, 1–14. [Google Scholar] [CrossRef]
- Ding, H.; Liu, J.; Liu, Q.; Guo, L.; Hang, Q.; Zhang, Y.; Jia, J.; Tao, T.; Liu, Q.; Ding, C. Risk assessment and source tracing of heavy metals in major rice-producing provinces of Yangtze River Basin. J. Hazard. Mater. 2024, 480, 136206. [Google Scholar] [CrossRef] [PubMed]
- Bateman, P.W.; Gilson, L.N.; Bradshaw, P. Not just a flash in the pan: Short and long term impacts of fireworks on the environment. Pac. Conserv. Biol. 2023, 29, 396–401. [Google Scholar] [CrossRef]








| Hg (mg/kg) | Pb (mg/kg) | Cr (mg/kg) | Cd (mg/kg) | As (mg/kg) | |
|---|---|---|---|---|---|
| Maximum | 0.527 | 301.00 | 89.00 | 0.76 | 173.00 |
| Minimum | 0.069 | 23.00 | 11.00 | 0.09 | 3.40 |
| Average | 0.230 | 81.42 | 70.83 | 0.24 | 19.44 |
| SD | 0.076 | 41.757 | 17.74 | 0.107 | 18.067 |
| CV | 33.05 | 51.29 | 43.44 | 44.06 | 92.92 |
| Background | 0.116 | 29.7 | 71.4 | 0.126 | 15.7 |
| Hg | Pb | Cr | Cd | As | ||
|---|---|---|---|---|---|---|
| Cluster 1 | Min | 0.074 | 24.00 | 11.00 | 0.09 | 3.40 |
| 15 neurons | Max | 0.321 | 89.00 | 42.00 | 0.32 | 36.30 |
| 42 samples | Mean | 0.193 | 54.91 | 25.33 | 0.20 | 10.80 |
| Cluster 2 | Min | 0.103 | 23.00 | 44.00 | 0.09 | 5.10 |
| 23 neurons | Max | 0.294 | 105.00 | 89.00 | 0.37 | 48.90 |
| 67 samples | Mean | 0.205 | 68.03 | 58.69 | 0.19 | 15.08 |
| Cluster 3 | Min | 0.093 | 68.00 | 14.00 | 0.14 | 9.60 |
| 18 neurons | Max | 0.527 | 301.00 | 56.00 | 0.59 | 59.60 |
| 40 samples | Mean | 0.315 | 131.08 | 28.45 | 0.33 | 23.96 |
| Cluster 4 | Min | 0.069 | 43.00 | 24.00 | 0.25 | 24.70 |
| 7 neurons | Max | 0.290 | 162.00 | 68.00 | 0.76 | 173.00 |
| 14 samples | Mean | 0.218 | 83.14 | 37.29 | 0.39 | 53.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Jiang, Y.; Shao, J.; Cui, Y. Source Apportionment and Risk Assessment of Metals in the Potential Contaminated Areas. Sustainability 2025, 17, 9404. https://doi.org/10.3390/su17219404
Zhang Y, Jiang Y, Shao J, Cui Y. Source Apportionment and Risk Assessment of Metals in the Potential Contaminated Areas. Sustainability. 2025; 17(21):9404. https://doi.org/10.3390/su17219404
Chicago/Turabian StyleZhang, Yaobin, Yucong Jiang, Jingli Shao, and Yali Cui. 2025. "Source Apportionment and Risk Assessment of Metals in the Potential Contaminated Areas" Sustainability 17, no. 21: 9404. https://doi.org/10.3390/su17219404
APA StyleZhang, Y., Jiang, Y., Shao, J., & Cui, Y. (2025). Source Apportionment and Risk Assessment of Metals in the Potential Contaminated Areas. Sustainability, 17(21), 9404. https://doi.org/10.3390/su17219404
