Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China
Abstract
1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources and Processing
3. Method
3.1. Calculation of the ECLU: Super-SBM Model
3.2. Carbon Emissions of Cultivated Land
3.3. Random Forest Regression Model
3.4. Kernel Density Estimation
3.5. Geo-Detector Model
- ➀
- Weaken, nonlinear: q(X1∩X2) < Min(q(X1), q(X2)).
- ➁
- Weaken, nonlinear Single-factor: Min(q(X1), q(X2)) < q(X1∩X2) < Max(q(X1)), q(X2)).
- ➂
- Enhance, double factor: q(X1∩X2) > Max(q(X1), q(X2)).
- ➃
- Independent: q(X1∩X2) = q(X1) + q(X2).
- ➄
- Enhance, nonlinear: q(X1∩X2) > q(X1) + q(X2).
4. Results
4.1. Analysis of the ECLU of Aksu
4.2. Carbon Emission Analysis of Cultivated Land in Various Counties and Cities in Aksu
4.3. ECLU and CLCE Based on Different Property Ownership
4.4. Kernel Density Analysis
4.5. Analysis of Influencing Factors of CLCE
- (1)
- Factor detection
- (2)
- Interactive detection
5. Discussions
5.1. The Characteristics and Relationship of ECLU and CLCE Change in Aksu
5.2. Policy Implications
5.3. Limitations and Prospects
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, J.Y.; Su, D.; Wu, Q.; Li, G.; Cao, Y. Study on eco-efficiency of cultivated land utilization based on the improvement of ecosystem services and emergy analysis. Sci. Total Environ. 2023, 882, 163489. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.Q.; Hou, X.H.; Liu, J.M. Detection and attribution of changes in cultivated land use ecological efficiency: A case study on Yangtze River Economic Belt, China. Ecol. Indic. 2022, 137, 108753. [Google Scholar] [CrossRef]
- FAO; IFAD; WW UNICEF. The State of Food Security and Nutrition in the World; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017. [Google Scholar]
- Yang, B.; Wang, Y.; Li, Y.; Mo, L. Empirical investigation of cultivated land Green Use Efficiency and influencing factors in China, 2000–2020. Land 2023, 12, 1589. [Google Scholar] [CrossRef]
- Kuang, B.; Lu, X.; Zhou, M.; Chen, D. Provincial cultivated land use efficiency in China: Empirical analysis based on the SBM-DEA model with carbon emissions considered. Technol. Forecast. Soc. Change 2020, 151, 119874. [Google Scholar] [CrossRef]
- Liu, Y.S. Introduction to land use and rural sustainability in China. Land Use Policy 2018, 74, 1–4. [Google Scholar] [CrossRef]
- Plieninger, T.; Hartel, T.; Martin-Lopez, B.; Beaufoy, G.; Bergmeier, E.; Kirby, K.; Montero, M.J.; Moreno, G.; Oteros-Rozas, E.; Van Uytvanck, J. Wood-pastures of Europe: Geographic coverage, social-ecological values, conservation management, and policy implications. Biol. Conserv. 2015, 190, 70–79. [Google Scholar] [CrossRef]
- FAO 2021. The State of the World’s Land and Water Resources for Food and Agriculture—Systems at Breaking Point; Synthesis Report; FAO: Rome, Italy, 2021. [Google Scholar]
- Bommarco, R.; Kleijn, D.; Potts, S.G. Ecological intensification: Harnessing ecosystem services for food security. Trends Ecol. Evol. 2013, 28, 230–238. [Google Scholar] [CrossRef]
- Xiao, Q.T.; Hu, Z.H.; Hu, C. A highly agricultural river network in Jurong Reservoir watershed as significant CO2 and CH4 sources. Sci. Total Environ. 2021, 769, 144558. [Google Scholar] [CrossRef]
- Xie, H.L.; Huang, Y.Q.; Choi, Y.; Shi, J. Evaluating the sustainable intensification of cultivated land use based on emergy analysis. Technol. Forecast. Soc. Change 2021, 165, 120449. [Google Scholar] [CrossRef]
- Xiao, L.Y.; Peng, W.L.; Niu, S.D.; Qu, Y.; Xin, Z. Evaluation of sustainable intensification of cultivated land use according to farming households’ livelihood types. Ecol. Indic. 2022, 138, 108848. [Google Scholar] [CrossRef]
- Wang, G.G.; Liu, Y.S.; Li, Y.R.; Chen, Y. Dynamic trends and driving forces of land use intensification of cultivated land in China. J. Geogr. Sci. 2015, 25, 45–57. [Google Scholar] [CrossRef]
- Liang, X.Y.; Jin, X.B.; Xu, X.X.; Zhou, Y. A stage of cultivated land use towards sustainable intensification in China: Description and identification on anti-intensification. Habitat Int. 2022, 125, 102594. [Google Scholar] [CrossRef]
- Niu, S.D.; Lyu, X.; Gu, G.Z.; Zhou, X.; Peng, W. Sustainable Intensification of Cultivated Land Use and Its Influencing Factors at the Farming Household Scale: A Case Study of Shandong Province, China. Chin. Geogr. Sci. 2021, 31, 109–125. [Google Scholar] [CrossRef]
- Yang, H.; Chen, L.G.; Yang, B.; Shi, Z. Exploring provincial sustainable intensification of cultivated land use in China: An empirical study based on emergy analysis. Phys. Chem. Earth 2022, 128, 103287. [Google Scholar] [CrossRef]
- Liu, J.; Jin, X.B.; Xu, W.Y.; Gu, Z.; Yang, X.; Ren, J.; Fan, Y.; Zhou, Y. A New Framework of Land Use Efficiency for The Coordination Among Food, Economy and Ecology in Regional Development. Sci. Total Environ. 2020, 710, 135670. [Google Scholar] [CrossRef]
- Fan, Z.G.; Deng, C.; Fan, Y.Q.; Zhang, P.; Lu, H. Spatial-Temporal Pattern and Evolution Trend of The Cultivated Land Use Eco-Efficiency in The National Pilot Zone for Ecological Conservation in China. Int. J. Environ. Res. Public Health 2022, 19, 111. [Google Scholar] [CrossRef]
- Zhou, X.; Yu, J.; Li, J.F.; Li, S.; Zhang, D.; Wu, D.; Pan, S.; Chen, W. Spatial correlation among cultivated land intensive use and carbon emission efficiency: A case study in the Yellow River Basin, China. Environ. Sci. Pollut. Res. 2022, 29, 43341–43360. [Google Scholar] [CrossRef]
- Luo, X.; Ao, X.H.; Zhang, Z.; Wan, Q.; Liu, X. Spatiotemporal variations of cultivated land use efficiency in the Yangtze River Economic Belt based on carbon emission constraints. J. Geogr. Sci. 2020, 30, 535–552. [Google Scholar] [CrossRef]
- Wu, Z.H.; Zhou, L.H.; Wang, Y.B. Prediction of the Spatial Pattern of Carbon Emissions Based on Simulation of Land Use Change under Different Scenarios. Land 2022, 11, 1788. [Google Scholar] [CrossRef]
- Luo, K.; Wang, H.W.; Ma, C.; Wu, C.; Zheng, X.; Xie, L. Carbon sinks and carbon emissions balance of land use transition in Xinjiang, China: Differences and compensation. Sci. Rep. 2022, 12, 22456. [Google Scholar] [CrossRef]
- Liu, D.D.; Zhu, X.Y.; Wang, Y.F. China’s agricultural green total factor productivity based on carbon emission: An analysis of evolution trend and influencing factors. J. Clean. Prod. 2021, 278, 123692. [Google Scholar] [CrossRef]
- Deng, X.; Gibson, J. Sustainable land use management for improving land eco-efficiency: A case study of Hebei, China. Ann. Oper. Res. 2020, 290, 265–277. [Google Scholar] [CrossRef]
- Dong, H.; Li, Y.; Tao, X.; Peng, X.; Li, N.; Zhu, Z. China greenhouse gas emissions from agricultural activities and its mitigation strategy. Trans. Chin. Soc. Agric. Eng. 2008, 24, 269–273. [Google Scholar] [CrossRef]
- Xie, H.L.; Chen, Q.R.; Wang, W.; He, Y. Analyzing the green efficiency of arable land use in China. Technol. Forecast. Soc. Change 2018, 133, 15–28. [Google Scholar] [CrossRef]
- Cao, W.; Zhou, W.; Wu, T.; Wang, X.; Xu, J. Spatial-temporal characteristics of cultivated land use eco-efficiency under carbon constraints and its relationship with landscape pattern dynamics. Ecol. Indic. 2022, 114, 109140. [Google Scholar] [CrossRef]
- Yang, B.; Wang, Z.Q.; Zou, L.; Zhang, H.W. Exploring the eco-efficiency of cultivated land utilization and its influencing factors in China’s Yangtze River Economic Belt, 2001–2018. J. Environ. Manag. 2021, 294, 112939. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, Z.; Wu, H. Detection and attribution of changes in agricultural eco-efficiency within rapid urbanized areas: A case study in the urban agglomeration in the middle reaches of Yangtze River, China. Ecol. Indic. 2022, 144, 109533. [Google Scholar] [CrossRef]
- Li, M.N.; Tan, L.; Yang, X. The Impact of Environmental Regulation on Cultivated Land Use Eco-Efficiency: Evidence from China. Agriculture 2023, 13, 1723. [Google Scholar] [CrossRef]
- Li, Q.F.; Hu, S.G.; Du, G.; Zhang, C.; Liu, Y.S. Cultivated Land Use Benefits Under State and Collective Agrarian Property Regimes in China. Sustainability 2018, 10, 7. [Google Scholar] [CrossRef]
- Koirala, K.H.; Mishra, A.; Mohanty, S. Impact of land ownership on productivity and efficiency of rice farmers: The case of the Philippines. Land Use Policy 2016, 50, 371–378. [Google Scholar] [CrossRef]
- Agarwal, B.; Mahesh, M. Does the Landowner’s Gender Affect Self-Cultivation and Farm Productivity? An Analysis for India. J. Dev. Stud. 2023, 59, 758–777. [Google Scholar] [CrossRef]
- Khadka, S.; Gyawali, B.R.; Shrestha, T.B. Exploring relationships among landownership, landscape diversity, and ecological productivity in Kentucky. Land Use Policy 2021, 111, 105723. [Google Scholar] [CrossRef]
- Gao, Y.; Liu, B.; Yu, L.L.; Yang, H.; Yin, S. Social capital, land tenure and the adoption of green control techniques by family farms: Evidence from Shandong and Henan Provinces of China. Land Use Policy 2019, 89, 104250. [Google Scholar] [CrossRef]
- Jombo, S.; Adam, E.; Odindi, J. Quantification of landscape transformation due to the Fast Track Land Reform Programme (FTLRP) in Zimbabwe using remotely sensed data. Land Use Policy 2017, 68, 287–294. [Google Scholar] [CrossRef]
- Kansanga, M.; Andersen, P.; Atuoye, K.; Mason-Renton, S. Contested commons: Agricultural modernization, tenure ambiguities and intra-familial land grabbing in Ghana. Land Use Policy 2018, 75, 215–224. [Google Scholar] [CrossRef]
- Migheli, M. Land ownership and use of pesticides. Evidence from the Mekong Delta. J. Clean. Prod. 2017, 145, 188–198. [Google Scholar] [CrossRef]
- Cai, T.Y.; Zhang, X.H.; Xia, F.Q.; Lu, D. Function Evolution of Oasis Cultivated Land and Its Trade-Off and Synergy Relationship in Xinjiang, China. Land Use Policy 2022, 11, 1399. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, J.B.; He, Y.Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef]
- Wang, B.; Zhang, W. A research of agricultural eco-efficiency measure in China and space-time differences. Chin. J. Popul. Resour. Environ. 2016, 26, 11–19. [Google Scholar] [CrossRef]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Charnes, A.; Cooper, W.W.; Rhodes, E. Measuring the efficiency of decision-making units. Eur. J. Oper. Res. 1978, 2, 429–444. [Google Scholar] [CrossRef]
- West, T.O.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Zhou, Y.; Guo, L.Y.; Liu, Y.S. Land consolidation boosting poverty alleviation in China: Theory and practice. Land Use Policy 2019, 82, 339–348. [Google Scholar] [CrossRef]
- Ishwaran, H.; Kogalur, U.B.; Blackstone, E.H.; Lauer, M.S. Random survival forests. Ann. Appl. Stat. 2008, 2, 841–860. [Google Scholar] [CrossRef]
- Wang, C.; Kan, A.; Zeng, Y.; Li, G.; Wang, M.; Ci, R. Population distribution pattern and influencing factors in Tibet based on Radom Forest model. Acta Geogr. Sin. 2019, 74, 664–680. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Inst. Stat. Math. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.-L.; Zhang, T.; Gu, X.; Zheng, X.-Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Dong, Y.H.; Peng, F.L.; Bao, Z.H.; Qiao, Y.-K. Identification of the spatial distribution pattern and driving forces of underground parking space based on multi-source data: A case study of Fuzhou city in China. Sustain. Cities Soc. 2021, 72, 103084. [Google Scholar] [CrossRef]
- Peng, W.F.; Kuang, T.T.; Tao, S. Quantifying influences of natural factors on vegetation NDVI changes based on geographical detector in Sichuan, western China. J. Clean. Prod. 2019, 233, 353–367. [Google Scholar] [CrossRef]
- Wu, W.Y.; Zhang, J.; Sun, Z.Y.; Yu, J.; Liu, W.; Yu, R.; Wang, P. Attribution analysis of land degradation in Hainan Island based on geographical detector. Ecol. Indic. 2022, 141, 109119. [Google Scholar] [CrossRef]
- Xie, L.; Wang, H.W.; Liu, S.H. The ecosystem service values simulation and driving force analysis based on land use/land cover: A case study in inland rivers in arid areas of the Aksu River Basin, China. Ecol. Indic. 2022, 138, 108828. [Google Scholar] [CrossRef]
- Hou, X.H.; Yin, Y.Q.; Zhou, X. Does economic agglomeration affect the sustainable intensification of cultivated land use? Evidence from China. Ecol. Indic. 2023, 154, 110808. [Google Scholar] [CrossRef]
- Qu, Y.; Lyu, X.; Peng, W.L.; Xin, Z. How to Evaluate the Green Utilization Efficiency of Cultivated Land in a Farming Household? A Case Study of Shandong Province, China. Land 2021, 10, 789. [Google Scholar] [CrossRef]
- Yu, Y.H.; Lin, J.K.; Zhou, P.X.; Zheng, S.; Li, Z. Cultivated Land Input Behavior of Different Types of Rural Households and Its Impact on Cultivated Land-Use Efficiency: A Case Study of the Yimeng Mountain Area, China. Int. J. Environ. Res. Public Health 2022, 19, 14870. [Google Scholar] [CrossRef]
- Manjunatha, A.V.; Anik, A.R.; Speelman, S.; Nuppenau, E.A. Impact of land fragmentation, farm size, land ownership and crop diversity on profit and efficiency of irrigated farms in India. Land Use Policy 2013, 31, 397–405. [Google Scholar] [CrossRef]
- Chen, Q.R.; Xie, H.L. Temporal-Spatial Differentiation and Optimization Analysis of Cultivated Land Green Utilization Efficiency in China. Land 2019, 8, 158. [Google Scholar] [CrossRef]
- Gu, T.C.; Chen, W.X.; Liang, J.L.; Pan, S.; Ye, X. Identifying the driving forces of cultivated land fragmentation in China. Environ. Sci. Pollut. Res. 2023, 30, 105275–105292. [Google Scholar] [CrossRef] [PubMed]
Data Type | Data Source |
---|---|
Administrative boundaries | Resource and Environmental Science and Data Center (https://www.resdc.cn/DOI/DOI.aspx?DOIID=120 (1 October 2024). |
Statistical data | The Statistical Yearbook of Xinjiang Uygur Autonomous Region (https://tjj.xinjiang.gov.cn/tjj/tjnj/jump.shtml (1 October 2024)); The Statistical Yearbook of Aksu District (https://data.cnki.net/yearBook?type=type&code=A (1 October 2024)); The Statistical Bulletin of the National Economic and Social Development of the Administrative Office of Aksu District, Xinjiang, China (https://www.aks.gov.cn/sjkf/tjnb/index.html (1 October 2024)). |
Questionnaire survey data | Individual and family characteristics of farmers, including their age, gender, education level, years of farming, and per capita annual household income. |
Farmers’ land management includes the level of agricultural income, the quantity and quality of land area of different crop types. | |
The CL utilization of the survey subjects, including the types of main cultivated crops, the input of fertilizers, pesticides, agricultural film, the input of water resources, the input of agricultural machinery, the consumption of fuel oil, and the labor input level of different planted crops. | |
The Third National Land Survey | Bureau of Natural Resources, Aksu Prefecture, Xinjiang Uygur Autonomous Region. |
DEM | General Bathymetric Chart of the Oceans (GEBCO) https://www.gebco.net/ |
Type | Factor Layer | Index Layer | Variables | Unit |
---|---|---|---|---|
Inputs | Land | The area of CL (ACL) | hm2 | |
Labors | Number of employees in agriculture (NEA) | 10,000 people | ||
Means of production | Usage of agricultural diesel (UAD) | ton | ||
Usage of chemical fertilizers (UCF) | ton | |||
Usage of pesticides (UP) | ton | |||
Usage of agricultural films (UAF) | ton | |||
Effective irrigated area (EIA) | hm2 | |||
Outputs | Expected output | Economic output | Total value of agricultural outputs (TVAO) | 10,000 yuan |
Unexpected output | carbon emissions | Total carbon emissions (TCE) | ton |
Carbon Sources | Tillage (T) | Agricultural Machinery (AM) | Chemical Fertilizer (CF) | Pesticide (P) | Agricultural Film (AF) | Irrigation (I) |
---|---|---|---|---|---|---|
Coefficient | 3.126 [38] | 0.5927 [38] | 0.896 [25] | 4.934 [42] | 5.18 | 20.5 [2] |
Unit | hm2 | kg | kg | kg | kg | hm2 |
Collective Cultivated Land | State Cultivated Land | |||
---|---|---|---|---|
Food Crop | Non-Food Crop | Food Crop | Non-Food Crop | |
CF | 1785 kg/ha | 2220 kg/ha | 1650 kg/ha | 1800 kg/ha |
P | 2.4 kg/ha | 4.5 kg/ha | 2.2 kg/ha | 6 kg/ha |
AF | 45 kg/ha | 90 kg/ha | 45 kg/ha | 82 kg/ha |
AE | 230 kwh/ha | 600 kwh/ha | 450 kwh/ha | 3330 kwh/ha |
AD | 195 L/ha | 225 L/ha | 195 L/ha | 256 L/ha |
I | 150 kg/ha | 157 kg/ha | 150 kg/ha | 176 kg/ha |
Local_GDP | FI | PEI | DCA | DFP | IIA | MCI | PSCL | |
---|---|---|---|---|---|---|---|---|
q statistic | 0.763 | 0.443 | 0.155 | 0.321 | 0.182 | 0.254 | 0.178 | 0.229 |
p value | 0.000 | 0.000 | 0.1 | 0.1 | 0.1 | 0.05 | 0.05 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Liu, W.; Wu, H.; Xie, L.; Liu, S. Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China. Sustainability 2025, 17, 9369. https://doi.org/10.3390/su17219369
Zhang J, Liu W, Wu H, Xie L, Liu S. Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China. Sustainability. 2025; 17(21):9369. https://doi.org/10.3390/su17219369
Chicago/Turabian StyleZhang, Jianlong, Weizhong Liu, Hongqi Wu, Ling Xie, and Suhong Liu. 2025. "Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China" Sustainability 17, no. 21: 9369. https://doi.org/10.3390/su17219369
APA StyleZhang, J., Liu, W., Wu, H., Xie, L., & Liu, S. (2025). Carbon-Oriented Eco-Efficiency of Cultivated Land Utilization Under Different Ownership Structures: Evidence from Arid Oases in Northwest China. Sustainability, 17(21), 9369. https://doi.org/10.3390/su17219369