The Reconstruction of China’s Population Mobility Pattern Under Digital Technology Evolution: A Pathway to Urban Sustainability
Abstract
1. Introduction
2. Research Hypotheses
3. Research Design
3.1. Data Sources
3.2. Social Network Analysis
3.3. ERGM Analysis
3.4. Indicator Selection
4. Empirical Results
4.1. Analysis of the Digital Technology Incubation Phase
4.2. Analysis of the Digital Technology Penetration Phase
4.3. Analysis of the Digital Technology Maturity Phase
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fang, C. Population dividend and economic growth in China, 1978–2018. China Econ. J. 2018, 11, 243–258. [Google Scholar] [CrossRef]
- Yuan, X.; Gao, Y. Demographic transition and economic miracles in China: An analysis based on demographic perspective. Int. J. Econ. Policy Stud. 2020, 14, 25–45. [Google Scholar] [CrossRef]
- Lutz, W.; Cuaresma, J.C.; Kebede, E.; Prskawetz, A.; Sanderson, W.C.; Striessnig, E. Education rather than age structure brings demographic dividend. Proc. Natl. Acad. Sci. USA 2019, 116, 12798–12803. [Google Scholar] [CrossRef]
- Yu, A.Q.; Liu, G.K.; Gao, Y.N. Intergenerational Occupational Mobility, Labor Migration and Sustained Demographic Dividends. Sustainability 2022, 14, 3110. [Google Scholar] [CrossRef]
- Ҫurçija, M.; Bejleri, E. Urban Population Growth and Job Opportunities: The Case of Albania. Naše Gospod./Our Econ. 2020, 66, 28–39. [Google Scholar] [CrossRef]
- Zhang, J.; Zhou, J.; Qian, L.; Zhang, D.; Han, R.; Takawadiyi, M.T.; Li, L. The inter-relationships among mobility, housing prices and innovation: Evidence from China’s cities. Int. J. Strateg. Prop. Manag. 2023, 27, 233–245. [Google Scholar] [CrossRef]
- Li, Y. Have Housing Prices Affected Residents’ Level of Social Integration? SHS Web Conf. 2023, 155, 01011. [Google Scholar] [CrossRef]
- Konstantinov, V. The Role of the Host Local Population in the Process of Migrants’ Adaptation. Soc. Sci. 2017, 6, 92. [Google Scholar] [CrossRef]
- Liu, T.; Shi, Q.J.; Zhuo, Y.X. Are adaptation challenges relevant to the location choices of internal migrants? Evidence from China. Reg. Stud. 2024, 58, 1674–1686. [Google Scholar] [CrossRef]
- Deng, R.Y.; Cheng, M.W.; Yan, S.Y.; Zhang, C.; Zhao, Y.F.; Tang, Q.; Yao, J. Trajectories of psychological adaptation to Chinese older internal migrants: A latent transition model. Aging Ment. Health 2025, 29, 95–103. [Google Scholar] [CrossRef]
- Feng, J.X.; Tang, S.S. Adapt or not: A comparison of rural migrant adaptation in two cities in China. PLoS ONE 2024, 19, e0298238. [Google Scholar] [CrossRef]
- Liang, Z.; Li, Z.; Ma, Z.D. Changing Patterns of the Floating Population in China, 2000–2010. Popul. Dev. Rev. 2014, 40, 695–716. [Google Scholar] [CrossRef]
- Ai, T.H.; Zhou, M.J.; Tian, J.; Ye, N. Origin-destination (OD) of the interprovincial floating population of China. J. Maps 2016, 12, 577–583. [Google Scholar] [CrossRef]
- Wang, L.C.; Xue, C.X. Spatio-temporal characteristics and influencing factors of urban floating population in China from 2011 to 2015. Chin. J. Popul. Resour. Environ. 2019, 17, 359–373. [Google Scholar] [CrossRef]
- MacLachlan, I.; Gong, Y. China’s new age floating population: Talent workers and drifting elders. Cities 2022, 131, 103960. [Google Scholar] [CrossRef]
- Qiangmin, X.I.; Peng, J.I. Does the development zone promote population urbanization? Evidence from China. Land Use Policy 2023, 131, 106736. [Google Scholar] [CrossRef]
- Beine, M.; Machado, J.; Ruyssen, I. Do potential migrants internalize migrant rights in OECD host societies? Can. J. Econ. -Rev. Can. D Econ. 2020, 53, 1429–1456. [Google Scholar] [CrossRef]
- Knapp, T.A.; White, N.E.; Clark, D.E. A Nested Logit Approach to Household Mobility. J. Reg. Sci. 2001, 41, 1–22. [Google Scholar] [CrossRef]
- Lee, B.H.Y.; Waddell, P. Residential mobility and location choice: A nested logit model with sampling of alternatives. Transportation 2010, 37, 587–601. [Google Scholar] [CrossRef]
- Drinkwater, S.; Garapich, M.P. Migration Strategies of Polish Migrants: Do They Have Any at All? J. Ethn. Migr. Stud. 2015, 41, 1909–1931. [Google Scholar] [CrossRef]
- Loo, B.P.Y.; Wang, B. Progress of e-development in China since 1998. Telecommun. Policy 2017, 41, 731–742. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, S.Q.; Wan, X.Y.; Yao, Y. Study on the effect of digital economy on high-quality economic development in China. PLoS ONE 2021, 16, e0257365. [Google Scholar] [CrossRef]
- Yang, Y.P.; Wang, B.J. Stage identification and strategy optimization of industrial evolution of China’s digital economy supporting low-carbon effect. Int. J. Low-Carbon Technol. 2023, 18, 295–305. [Google Scholar] [CrossRef]
- Dengler, K.; Matthes, B. The impacts of digital transformation on the labour market: Substitution potentials of occupations in Germany. Technol. Forecast. Soc. Change 2018, 137, 304–316. [Google Scholar] [CrossRef]
- Frank, F.; Alina, S. Mapping the Future of Occupations: Transformative and Destructive Effects of New Digital Technologies on Jobs. Foresight STI Gov. 2019, 13, 10–18. [Google Scholar] [CrossRef]
- Gregory, T.; Salomons, A.; Zierahn, U. Racing With or Against the Machine? Evidence on the Role of Trade in Europe. J. Eur. Econ. Assoc. 2022, 20, 869–906. [Google Scholar] [CrossRef]
- Fossen, F.M.; Sorgner, A. New digital technologies and heterogeneous wage and employment dynamics in the United States: Evidence from individual-level data. Technol. Forecast. Soc. Change 2022, 175, 121381. [Google Scholar] [CrossRef]
- Chayko, M. Techno-social Life: The Internet, Digital Technology, and Social Connectedness. Sociol. Compass 2014, 8, 976–991. [Google Scholar] [CrossRef]
- Shi, J.R.; Jiang, Z.H.; Liu, Z.Y. Digital Technology Adoption and Collaborative Innovation in Chinese High-Speed Rail Industry: Does Organizational Agility Matter? IEEE Trans. Eng. Manag. 2023, 71, 4322–4335. [Google Scholar] [CrossRef]
- Fan, R.G.; Qi, Y.; Wang, Y.T.; Zhu, C.P.; Yao, Q.Y.; Yang, P.; Chen, R.K. Network dynamics of inter-firm innovation in China’s digital economy: A two-layer network perspective. Technol. Anal. Strateg. Manag. 2025, 1–20. [Google Scholar] [CrossRef]
- Dosi, G. Technological paradigms and technological trajectories: A suggested interpretation of the determinants and directions of technical change. Res. Policy 1982, 11, 147–162. [Google Scholar] [CrossRef]
- Perez, C. Technological revolutions and techno-economic paradigms. Camb. J. Econ. 2010, 34, 185–202. [Google Scholar] [CrossRef]
- Mathews, J.A. The renewable energies technology surge: A new techno-economic paradigm in the making? Futures 2013, 46, 10–22. [Google Scholar] [CrossRef]
- Blackorby, C.; Lovell, C.A.K.; Thursby, M.C. Extended Hicks Neutral Technical Change. Econ. J. 1976, 86, 845–852. [Google Scholar] [CrossRef]
- Schwark, F.; Tryphonides, A. The effects of digitalization on production☆. Eur. Econ. Rev. 2025, 171, 104896. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, S. China’s Digital Economy: Opportunities and Risks. IMF Work. Pap. 2019, 2019, 24. [Google Scholar] [CrossRef]
- Karabarbounis, L.; Neiman, B. The Global Decline of the Labor Share. Q. J. Econ. 2014, 129, 61–103. [Google Scholar] [CrossRef]
- Dao, M.C.; Das, M.; Koczan, Z. Why is labour receiving a smaller share of global income? Econ. Policy 2019, 34, 723–759. [Google Scholar] [CrossRef]
- Perc, M.; Ozer, M.; Hojnik, J. Social and juristic challenges of artificial intelligence. Palgrave Commun. 2019, 5, 61. [Google Scholar] [CrossRef]
- Mastrandrea, R.; Squartini, T.; Fagiolo, G.; Garlaschelli, D. Enhanced reconstruction of weighted networks from strengths and degrees. New J. Phys. 2014, 16, 043022. [Google Scholar] [CrossRef]
- Pi, X.C.; Tang, L.K.; Chen, X.Z. A directed weighted scale-free network model with an adaptive evolution mechanism. Phys. A-Stat. Mech. Its Appl. 2021, 572, 125897. [Google Scholar] [CrossRef]
- Zhang, R.P.; Lin, J.A.; Sun, D.Q. The role of institutions and markets in shaping intercity investment networks in China. Cities 2024, 153, 105221. [Google Scholar] [CrossRef]
- Teng, T.W.; Cao, X.Z.; Chen, H.T. The dynamics of inter-firm innovation networks: The case of the photovoltaic industry in China. Energy Strategy Rev. 2021, 33, 100593. [Google Scholar] [CrossRef]
- Liu, J.; Chong, Z.H.; Lu, S.J. The Evolution and Determinants of Interorganizational Coinvention Networks in New Energy Vehicles: Evidence from Shenzhen, China. Complexity 2021, 2021, 6665945. [Google Scholar] [CrossRef]
- Fu, Q.W. How does digital technology affect manufacturing upgrading? Theory and evidence from China. PLoS ONE 2022, 17, e0267299. [Google Scholar] [CrossRef]
- Gu, K. The Impact of China’s Digital Economy on the Transformation of Traditional Industries. Sci. J. Econ. Manag. Res. 2025, 7, 164–171. [Google Scholar] [CrossRef]
- Fan, R.N.; Nie, C.; Zhao, Y.H.; Hao, C.X.; Peng, C. Spatiotemporal Distribution and Regional Imbalance of China’s Digital Economy. Sustainability 2024, 16, 6738. [Google Scholar] [CrossRef]
- Shang, Y.J.; Lee, H.; Ma, J.H. A Study on the Spatial Effects of the Digital Economy on Regional Economic Growth in China. Sustainability 2025, 17, 2259. [Google Scholar] [CrossRef]
- Cui, C.; Wang, Y.F.; Wang, Q. The Interregional Migration of Human Capital: The Case of “First-Class” University Graduates in China. Appl. Spat. Anal. Policy 2022, 15, 397–419. [Google Scholar] [CrossRef]
- Zhang, Y.X.; Chen, A.H.; Li, L.Z.; Zhang, H.Q. The development of new occupation practitioners in China’s first-tier cities: A comparative analysis. PLoS ONE 2024, 19, e0284148. [Google Scholar] [CrossRef] [PubMed]
Parameter | Structure | Explanation |
---|---|---|
Endogenous Structural Variables | ||
Edges | Represents the baseline connection likelihood. (+): denser than random; (−): sparser than random. | |
Mutual | Measures reciprocity in directed networks (A→B and B→A). (+): higher mutual connection preference than random. (−): stronger unidirectional tendency than random. | |
Node Attribute Variables | ||
Receiver Effect | Measures differential ability of nodes to attract connections. (+): Significant attraction/clustering tendency in specific nodes. (−): Connection avoidance pattern in particular nodes. | |
Network Covariates | ||
Exogenous Network Effect | Measures cross-network influence on tie formation. (+): External networks systematically strengthen specific connections. (−): External factors suppress particular ties. |
Variable Type | Variable Name | Definition |
---|---|---|
Dependent Variable | Population mobility network | Directed weighted network matrix constructed from intercity population flow data. |
Endogenous Structural Variables | Edges | Baseline connection density of the network. |
Mutual | Reciprocal flow relationship. | |
Node Attribute Variables (Receiver Effect) | Manu | Manufacturing development level of a city. |
Serv | Service sector development level of a city. | |
Digital | Digital technology development level of a city. | |
Digital × Manu | Product term of Digital and Manu (multiplicative interaction). | |
Digital × Serv | Product term of Digital and Serv (multiplicative interaction). | |
Network Covariates | GeoProx | Geographical proximity effect (inverse Euclidean distance between cities). |
CulProx | Cultural proximity effect (1 if cities share a dialect region, 0 otherwise). | |
PopMob2017 | The 2017 CMDS-based network, used to test path dependence and validate comparability with the 2023 Amap-based network. |
Ranking | Weighted In-Degree (Normalized) | Weighted Out-Degree (Normalized) | ||
---|---|---|---|---|
City | Value | City | Value | |
1 | Shanghai | 1 | Chongqing | 1 |
2 | Beijing | 0.901 | Fuyang | 0.525 |
3 | Tianjin | 0.744 | Suihua | 0.504 |
4 | Dalian | 0.307 | Qiqihar | 0.440 |
5 | Wuxi | 0.224 | Xinyang | 0.440 |
Model 1 | Model 2 | |
---|---|---|
Endogenous Structural Variables | ||
Edges | −3.5119 *** (0.0242) | −4.1131 *** (0.0317) |
Mutual | 0.9207 *** (0.0869) | −0.1215 (0.1111) |
Node Attribute Variables | ||
Manu | 4.4868 *** (0.4381) | 4.5107 *** (0.4653) |
Serv | 5.9833 *** (0.5072) | 6.7518 *** (0.5601) |
Network Covariates | ||
GeoProx | — | 264.6704 *** (10.0459) |
CulProx | — | 0.9096 *** (0.0590) |
Model Fit Statistics | ||
AIC | 22,654.3669 | 20,679.5700 |
BIC | 22,690.7751 | 20,734.1822 |
Log-likelihood | −11,323.1835 | −10,333.7850 |
Number of Nodes | 258 | 258 |
Ranking | Weighted In-Degree (Normalized) | Weighted Out-Degree (Normalized) | ||
---|---|---|---|---|
City | Value | City | Value | |
1 | Beijing | 1 | Fuyang | 1 |
2 | Shanghai | 0.926 | Zhoukou | 0.994 |
3 | Tianjin | 0.737 | Shangrao | 0.780 |
4 | Zhengzhou | 0.392 | Suihua | 0.769 |
5 | Nanjing | 0.376 | Bijie | 0.751 |
Model 3 | Model 4 | Model 5 | Model 6 | |
---|---|---|---|---|
Endogenous Structural Variables | ||||
Edges | −2.2564 *** (0.0147) | −2.2891 *** (0.0150) | −2.5036 *** (0.0168) | −3.1332 *** (0.0208) |
Mutual | 0.6547 *** (0.0336) | 0.6547 *** (0.0336) | 0.6613 *** (0.0346) | 0.0402 (0.0404) |
Node Attribute Variables | ||||
Manu | 9.1190 *** (0.3693) | 0.4438 (0.5053) | 2.6028 *** (0.5820) | 0.0351 (0.6169) |
Serv | 0.6450 *** (0.0292) | −0.1013 *** (0.0264) | 1.0137 *** (0.0441) | 1.2013 *** (0.0491) |
Digital | — | 7.6891 *** (0.2366) | 9.5261 *** (0.2318) | 10.1640 *** (0.2386) |
Digital × Manu | — | — | −37.0079 *** (1.8736) | −33.7121 *** (1.9485) |
Digital × Serv | — | — | −0.8212 *** (0.0742) | −1.1107 *** (0.0790) |
Network Covariates | ||||
GeoProx | — | — | — | 450.8189 *** (8.9248) |
CulProx | — | — | — | 0.4410 *** (0.0377) |
Model Fit Statistics | ||||
AIC | 63,940.7131 | 63,081.8155 | 61,630.3544 | 56,220.3811 |
BIC | 63,977.9471 | 63,128.3579 | 61,695.5138 | 56,304.1574 |
Log-likelihood | −31,966.3566 | −31,535.9077 | −30,808.1772 | −28,101.1905 |
Number of Nodes | 286 | 286 | 286 | 286 |
Ranking | Weighted In-Degree (Normalized) | Weighted Out-Degree (Normalized) | ||
---|---|---|---|---|
City | Value | City | Value | |
1 | Guangzhou | 1 | Guangzhou | 1 |
2 | Dongguan | 0.877 | Dongguan | 0.869 |
3 | Shenzhen | 0.805 | Foshan | 0.743 |
4 | Foshan | 0.730 | Shenzhen | 0.710 |
5 | Suzhou | 0.615 | Suzhou | 0.602 |
… | … | … | … | … |
9 | Chengdu | 0.394 | Wuxi | 0.403 |
Model 7 | Model 8 | Model 9 | Model 10 | Model 11 | |
---|---|---|---|---|---|
Endogenous Structural Variables | |||||
Edges | −1.9946 *** (0.0192) | −1.9832 *** (0.0195) | −2.1690 *** (0.0196) | −4.8670 *** (0.0365) | −4.9173 *** (0.0400) |
Mutual | 3.7137 *** (0.0305) | 3.7116 *** (0.0312) | 3.7239 *** (0.0294) | 2.5978 *** (0.0327) | 2.5656 *** (0.0337) |
Node Attribute Variables | |||||
Manu | 1.5039 *** (0.0313) | 0.6761 *** (0.0475) | 0.9085 *** (0.0484) | 0.4654 *** (0.0557) | 0.5428 *** (0.0607) |
Serv | 0.0340 (0.0429) | −0.3472 *** (0.0272) | −1.5681 *** (0.2242) | 2.4606 *** (0.2652) | 1.3420 *** (0.2875) |
Digital | — | 7.4302 *** (0.3775) | 15.4051 *** (0.5174) | 14.6269 *** (0.5737) | 14.9486 *** (0.6349) |
DT × Manu | — | — | −4.0444 *** (0.1214) | −2.9955 *** (0.0934) | −3.1275 *** (0.1127) |
DT × Serv | — | — | 2.1732 *** (0.2798) | −2.5475 *** (0.2659) | −1.4284 *** (0.2938) |
Network Covariates | |||||
GeoProx | — | — | — | 3948.1368 *** (43.7004) | 3954.3563 *** (46.2312) |
CulProx | — | — | — | 0.5127 *** (0.0680) | 0.5021 *** (0.0720) |
PopMob2017 | — | — | — | — | 0.8272 *** (0.0374) |
Model Fit Statistics | |||||
AIC | 78,440.9942 | 77,892.0808 | 76,390.9922 | 50,799.3721 | 46,907.8737 |
BIC | 78,478.2839 | 77,938.6930 | 76,456.2493 | 50,883.2741 | 47,000.5337 |
Log-likelihood | −39,216.4971 | −38,941.0404 | −38,188.4961 | −25,390.6860 | −23,443.9368 |
Number of Nodes | 288 | 288 | 288 | 288 | 280 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Xiao, D.; Fu, H. The Reconstruction of China’s Population Mobility Pattern Under Digital Technology Evolution: A Pathway to Urban Sustainability. Sustainability 2025, 17, 9334. https://doi.org/10.3390/su17209334
Lu J, Xiao D, Fu H. The Reconstruction of China’s Population Mobility Pattern Under Digital Technology Evolution: A Pathway to Urban Sustainability. Sustainability. 2025; 17(20):9334. https://doi.org/10.3390/su17209334
Chicago/Turabian StyleLu, Junjie, Delong Xiao, and Haiwei Fu. 2025. "The Reconstruction of China’s Population Mobility Pattern Under Digital Technology Evolution: A Pathway to Urban Sustainability" Sustainability 17, no. 20: 9334. https://doi.org/10.3390/su17209334
APA StyleLu, J., Xiao, D., & Fu, H. (2025). The Reconstruction of China’s Population Mobility Pattern Under Digital Technology Evolution: A Pathway to Urban Sustainability. Sustainability, 17(20), 9334. https://doi.org/10.3390/su17209334