Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method
Abstract
1. Introduction
2. Literature Review
2.1. Studies on Ammonia as an Alternative Marine Fuel
2.2. Methodological Studies
3. Materials and Methods
3.1. Data Collection Process
3.2. SWOT Analysis
3.3. BWM
4. Results and Discussion
4.1. The Identification of the SWOT Sub-Criteria
4.2. The Findings of the SWOT-BWM Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ejder, E.; Arslanoğlu, Y. Evaluation of ammonia fueled engine for a bulk carrier in marine decarbonization pathways. J. Clean. Prod. 2022, 379, 134688. [Google Scholar] [CrossRef]
- Faber, J.; Hanayama, S.; Zhang, S.; Pereda, P.; Comer, B.; Hauerhof, E.; Yuan, H. Fourth IMO Greenhouse Gas Study. 2020. Available online: https://docs.imo.org/ (accessed on 18 August 2025).
- DNV GL. Ammonia Energy Conference 2020–Ammonia Infrastructure. 2020. Available online: https://www.ammoniaenergy.org/wp-content/uploads/2020/12/Anthony-Teo.pdf (accessed on 18 August 2025).
- Hansson, J.; Fridell, E.; Brynolf, S. On the Potential of Ammonia as Fuel for Shipping: A Synthesis of Knowledge. Lighthouse Reports. 2020. Available online: https://www.diva-portal.org/smash/get/diva2:1747278/FULLTEXT01.pdf (accessed on 19 August 2025).
- Yang, R.; Liu, J.; Liu, Z.; Liu, J. Applying separate treatment of fuel-and air-borne nitrogen to enhance understanding of in-cylinder nitrogen-based pollutants formation and evolution in ammonia-diesel dual fuel engines. Sustain. Energy Technol. Assess. 2024, 69, 103910. [Google Scholar] [CrossRef]
- Duong, P.A.; Ryu, B.; Kim, C.; Lee, J.; Kang, H. Energy and exergy analysis of an ammonia fuel cell integrated system for marine vessels. Energies 2022, 15, 3331. [Google Scholar] [CrossRef]
- Dimitriou, P.; Javaid, R. A review of ammonia as a compression ignition engine fuel. Int. J. Hydrogen Energy 2020, 45, 7098–7118. [Google Scholar] [CrossRef]
- Kim, K.; Roh, G.; Kim, W.; Chun, K. A Preliminary study on an alternative ship propulsion system fueled by ammonia: Environmental and economic assessments. J. Mar. Sci. Eng. 2020, 8, 183. [Google Scholar] [CrossRef]
- Cardoso, J.S.; Silva, V.; Rocha, R.C.; Hall, M.J.; Costa, M.; Eusébio, D. Ammonia as an energy vector: Current and future prospects for low-carbon fuel applications in internal combustion engines. J. Clean. Prod. 2021, 296, 126562. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, X.; Liu, L. Theoretical investigation of the combustion performance of ammonia/hydrogen mixtures on a marine diesel engine. Int. J. Hydrogen Energy 2021, 46, 14805–14812. [Google Scholar] [CrossRef]
- MacFarlane, D.R.; Cherepanov, P.V.; Choi, J.; Suryanto, B.H.; Hodgetts, R.Y.; Bakker, J.M.; Vallana, F.M.F.; Simonov, A.N. A Roadmap to the Ammonia Economy. Joule 2020, 4, 1186–1205. [Google Scholar] [CrossRef]
- Soloveichik, G. Future of ammonia production: Improvement of Haber-Bosch process or electrochemical synthesis. In Proceedings of the 14th Annual NH3 Fuel Conference, Minneapolis, MN, USA, 1–2 November 2017. [Google Scholar]
- Ghavam, S.; Vahdati, M.; Wilson, I.A.G.; Styring, P. Sustainable Ammonia Production Processes. Front. Energy Res. 2021, 9, 580808. [Google Scholar] [CrossRef]
- Chavando, A.; Silva, V.; Cardoso, J.; Eusebio, D. Advancements and challenges of ammonia as a sustainable fuel for the maritime industry. Energies 2024, 17, 3183. [Google Scholar] [CrossRef]
- Frigo, S.; Gentili, R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen. Int. J. Hydrogen Energy 2013, 38, 1607–1615. [Google Scholar] [CrossRef]
- Capdevila-Cortada, M. Electrifying the haber–bosch. Nat. Catal. 2019, 2, 1055. [Google Scholar] [CrossRef]
- Valera-Medina, A.; Amer-Hatem, F.; Azad, A.K.; Dedoussi, I.C.; de Joannon, M.; Fernandes, R.X.; Glarborg, P.; Hashemi, H.; He, X.; Mashruk, S.; et al. Review on Ammonia as a Potential Fuel: From Synthesis to Economics. Energy Fuels 2021, 35, 6964–7029. [Google Scholar] [CrossRef]
- Smith, C.; Hill, A.K.; Torrente-Murciano, L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy Environ. Sci. 2020, 13, 331–344. [Google Scholar] [CrossRef]
- Rouwenhorst, K.H.R.; Van der Ham, A.G.J.; Mul, G.; Kersten, S.R.A. Islanded ammonia power systems: Technology review & conceptual process design. Renew. Sustain. Energy Rev. 2019, 114, 109339. [Google Scholar] [CrossRef]
- Ash, N.; Scarbrough, T. Sailing on Solar: Could Green Ammonia Decarbonise International Shipping; Environmental Defense Fund: London, UK, 2019. [Google Scholar]
- Balci, G.; Phan, T.T.N.; Surucu-Balci, E.; Iris, Ç. A roadmap to alternative fuels for decarbonising shipping: The case of green ammonia. Res. Transp. Bus. Manag. 2024, 53, 101100. [Google Scholar] [CrossRef]
- Baldi, F.; Azzi, A.; Maréchal, F. From renewable energy to ship fuel: Ammonia as an energy vector and mean for energy storage. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; Volume 46, pp. 1747–1752. [Google Scholar]
- Bicer, Y.; Dincer, I. Environmental impact categories of hydrogen and ammonia driven transoceanic maritime vehicles: A comparative evaluation. Int. J. Hydrogen Energy 2018, 43, 4583–4596. [Google Scholar] [CrossRef]
- Lövdahl, J.; Magnusson, M. Evaluation of Ammonia as a Potential Marine Fuel; Chalmers University of Technology: Gothenburg, Sweden, 2019. [Google Scholar]
- Park, M.; Choi, W. Solid oxide fuel cell-internal combustion engine hybrid system for ships fueled by ammonia. Fuel 2025, 387, 134201. [Google Scholar] [CrossRef]
- Ryu, B.R.; Duong, P.A.; Kang, H. Comparative analysis of the thermodynamic performances of solid oxide fuel cell–gas turbine integrated systems for marine vessels using ammonia and hydrogen as fuels. Int. J. Nav. Arch. Ocean Eng. 2023, 15, 100524. [Google Scholar] [CrossRef]
- Sheriff, A.M.; Tall, A. Assessment of Ammonia Ignition as a Maritime Fuel, Using Engine Experiments and Chemical Kinetic Simulations. Master’s Thesis, World Maritime University, Malmö, Sweden, 2019. [Google Scholar]
- Wang, Q.; Zhang, H.; Huang, J.; Zhang, P. The use of alternative fuels for maritime decarbonization: Special marine environmental risks and solutions from an international law perspective. Front. Mar. Sci. 2023, 9, 1082453. [Google Scholar] [CrossRef]
- Lu, Z.; Lu, S. Inclusion of Maritime into the EU ETS: Implications from the Aviation EU ETS and Aviation Sector. J. Econ. Bus. Manag. 2024, 12, 262–266. [Google Scholar] [CrossRef]
- Al-Aboosi, F.Y.; El-Halwagi, M.M.; Moore, M.; Nielsen, R.B. Renewable ammonia as an alternative fuel for the shipping industry. Curr. Opin. Chem. Eng. 2021, 31, 100670. [Google Scholar] [CrossRef]
- Nguyen, D.; Fernandes, R.J.; Turner, J.W.; Emberson, D.R. Life cycle assessment of ammonia and hydrogen as alternative fuels for marine internal combustion engines. Int. J. Hydrogen Energy 2025, 112, 15–30. [Google Scholar] [CrossRef]
- Xing, H.; Stuart, C.; Spence, S.; Chen, H. Alternative fuel options for low carbon maritime transportation: Pathways to 2050. J. Clean. Prod. 2021, 297, 126651. [Google Scholar] [CrossRef]
- Franks, A.; Parkar, S.; Hansen, C.R. Use of quantitative risk assessment to enhance the safety of ships using ammonia as fuel. J. Saf. Sustain. 2024, 1, 127–140. [Google Scholar] [CrossRef]
- Hu, L.; Niu, J.; Wu, W.; Zhao, Z.; Du, M.; Chen, L.; Zheng, Q.; Cao, H. Quantitative analysis of toxicity risks in the operation of ammonia-fueled tugboats. Ocean Eng. 2024, 310, 118759. [Google Scholar] [CrossRef]
- Jang, H.; Mujeeb-Ahmed, M.; Wang, H.; Park, C.; Hwang, I.; Jeong, B.; Zhou, P.; Papadakis, A.; Giannakis, A.; Sykaras, K. Safety evaluation on ammonia-fueled ship: Gas dispersion analysis through vent mast. Int. J. Hydrogen Energy 2024, 83, 1060–1077. [Google Scholar] [CrossRef]
- Zincir, B.; Deniz, C. Assessment of alternative fuels from the aspect of shipboard safety. J. ETA Marit. Sci. 2018, 6, 199–214. [Google Scholar] [CrossRef]
- Fullonton, A.; Lea-Langton, A.R.; Madugu, F.; Larkin, A. Green ammonia adoption in shipping: Opportunities and challenges across the fuel supply chain. Mar. Policy 2025, 171, 106444. [Google Scholar]
- Kommers, M. The Potential of Ammonia as an Alternative Fuel in the Marine Industry. Master’s Thesis, Delft University of Technology, Delft, The Netherlands, 2021. [Google Scholar]
- Prause, G.; Olaniyi, E.O.; Gerstlberger, W. Ammonia Production as Alternative Energy for the Baltic Sea Region. Energies 2023, 16, 1831. [Google Scholar] [CrossRef]
- Schreuder, W.; Slootweg, J.C.; van der Zwaan, B. Techno-economic assessment of low-carbon ammonia as fuel for the maritime sector. Appl. Energy Combust. Sci. 2025, 22, 100330. [Google Scholar]
- Duong, P.A.; Kang, H. Ammonia as fuel for marine dual-fuel technology: A comprehensive review. Fuel Process. Technol. 2025, 272, 108205. [Google Scholar] [CrossRef]
- Machaj, K.; Kupecki, J.; Malecha, Z.; Morawski, A.; Skrzypkiewicz, M.; Stanclik, M.; Chorowski, M. Ammonia as a potential marine fuel: A review. Energy Strat. Rev. 2022, 44, 100926. [Google Scholar] [CrossRef]
- McKinlay, C.J.; Turnock, S.; Hudson, D. A Comparison of hydrogen and ammonia for future long distance shipping fuels. In Proceedings of the LNG/LPG and Alternative Fuel Ships, London, UK, 29–30 January 2020. [Google Scholar]
- Morlanés, N.; Katikaneni, S.P.; Paglieri, S.N.; Harale, A.; Solami, B.; Sarathy, S.M.; Gascon, J. A technological roadmap to the ammonia energy economy: Current state and missing technologies. Chem. Eng. J. 2021, 408, 127310. [Google Scholar] [CrossRef]
- Chai, W.S.; Bao, Y.; Jin, P.; Tang, G.; Zhou, L. A review on ammonia, ammonia-hydrogen and ammonia-methane fuels. Renew. Sustain. Energy Rev. 2021, 147, 111254. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Q.; Wang, L.; Chen, Y.; Wang, J. A review of the port carbon emission sources and related emission reduction technical measures. Environ. Pollut. 2023, 320, 121000. [Google Scholar] [CrossRef] [PubMed]
- Motlagh, H.R.S.; Zadeh, S.B.I.; Garay-Rondero, C.L. Towards International Maritime Organization Carbon Targets: A Multi-Criteria Decision-Making Analysis for Sustainable Container Shipping. Sustainability 2023, 15, 16834. [Google Scholar] [CrossRef]
- WIN GD. Delivers Exceptional Results in Full Load Ammonia Engine Test. 2025. Available online: https://my.wingd.com/media/vtgkm11c/wingd-full-load-ammonia-tests-deliver-exceptional-results.pdf (accessed on 1 September 2025).
- MAN ES. MITSUI E&S Commences Full-Scale Ammonia Testing. 2025. Available online: https://www.man-es.com/docs/default-source/press-releases-new/pr-mitsui-me-lgia_en.pdf?sfvrsn=18997350_1 (accessed on 26 August 2025).
- DNV GL. Ammonia in Shipping Tracing the Emergence of a New Fuel. 2025. Available online: https://www.dnv.com/maritime/publications/ammonia-in-shipping-download/ (accessed on 2 October 2025).
- Hyundai Heavy. HD Hyundai Heavy Industries Develops Ammonia Dual-Fuel Engine and Receives Approval from 7 Major Classification Societies. 2024. Available online: https://www.hyundai-engine.com/en/media/newsdetail/435 (accessed on 26 August 2025).
- Li, P.; Liu, D. How blue carbon financing can sustain blue carbon ecosystems protection and restoration: A proposed conceptual framework for the blue carbon financing mechanism. Ocean Coast. Manag. 2025, 265, 107644. [Google Scholar] [CrossRef]
- Kumar, L.; Sleiti, A.K.; Al-Ammari, W.A. A techno-economic evaluation and SWOT analysis of various hydrogen energy carriers: Production to distribution. Int. J. Hydrogen Energy 2025, 142, 1153–1167. [Google Scholar] [CrossRef]
- Bayraktar, M.; Sokukcu, M.; Pamik, M.; Yuksel, O. Evaluating Ammonia as a Marine Fuel: Review and Illustration. Environ. Model. Assess. 2025, 30, 779–803. [Google Scholar] [CrossRef]
- Rodríguez, C.G.; Lamas, M.I.; Rodríguez, J.d.D.; Abbas, A. Multi-Criteria Analysis to Determine the Most Appropriate Fuel Composition in an Ammonia/Diesel Oil Dual Fuel Engine. J. Mar. Sci. Eng. 2023, 11, 689. [Google Scholar] [CrossRef]
- Syed, Z. Decarbonizing Maritime Shipping in the EU: A PESTLE and MICMAC Factor Analysis of Green Ammonia (e-NH3) Adoption Using Rogers’ Innovation Decision Process. Master’s Thesis, University of Twente, Enschede, The Netherlands, 2024. [Google Scholar]
- Hansson, J.; Månsson, S.; Brynolf, S.; Grahn, M. Alternative marine fuels: Prospects based on multi-criteria decision analysis involving Swedish stakeholders. Biomass-Bioenergy 2019, 126, 159–173. [Google Scholar] [CrossRef]
- Hill, T.; Westbrook, R. SWOT analysis: It’s time for a product recall. Long Range Plan. 1997, 30, 46–52. [Google Scholar] [CrossRef]
- Kowalska-Pyzalska, A.; Kott, J.; Kott, M. Why Polish market of alternative fuel vehicles (AFVs) is the smallest in Europe? SWOT analysis of opportunities and threats. Renew. Sustain. Energy Rev. 2020, 133, 110076. [Google Scholar] [CrossRef]
- Khan, M.I. Evaluating the strategies of compressed natural gas industry using an integrated SWOT and MCDM approach. J. Clean. Prod. 2018, 172, 1035–1052. [Google Scholar] [CrossRef]
- Pickton, D.W.; Wright, S. What’s swot in strategic analysis? Strateg. Change 1998, 7, 101–109. [Google Scholar] [CrossRef]
- Gurl, E. SWOT analysis: A theoretical review. J. Int. Soc. Res. 2017, 10, 994–1006. [Google Scholar] [CrossRef]
- Ghazinoory, S.; Abdi, M.; Azadegan-Mehr, M. Swot methodology: A state-of-the-art review for the past, a framework for the future/ssgg metodologija: Praeities ir ateities analizė. J. Bus. Econ. Manag. 2011, 12, 24–48. [Google Scholar] [CrossRef]
- Gulen, M.F.; Uflaz, E.; Gumus, F.; Orhan, M.; Arslan, O. An integrated SWOT-based interval type-2 fuzzy AHP and TOPSIS methodology for digital transformation strategy selection in maritime safety. Ocean Eng. 2025, 323, 120518. [Google Scholar] [CrossRef]
- Rezaei, J. Best-worst multi-criteria decision-making method. Omega 2015, 53, 49–57. [Google Scholar] [CrossRef]
- Liang, F.; Brunelli, M.; Rezaei, J. Consistency issues in the best worst method: Measurements and thresholds. Omega 2020, 96, 102175. [Google Scholar] [CrossRef]
- Rezaei, J. A Concentration ratio for nonlinear best worst method. Int. J. Inf. Technol. Decis. Mak. 2020, 19, 891–907. [Google Scholar] [CrossRef]
- Qin, J.; Ma, X.; Liang, Y. Building a consensus for the best-worst method in group decision-making with an optimal allocation of information granularity. Inf. Sci. 2023, 619, 630–653. [Google Scholar] [CrossRef]
- Tu, J.; Wu, Z.; Pedrycz, W. Priority ranking for the best-worst method. Inf. Sci. 2023, 635, 42–55. [Google Scholar] [CrossRef]
- Gu, B.; Liu, J.; Chen, J. Scenario-based strategies evaluation for the maritime supply chain resilience. Transp. Res. Part D Transp. Environ. 2023, 124, 103948. [Google Scholar]
- Ma, J.; Wiegmans, B.; Wang, X.; Yang, K.; Jiang, L. A Hybrid DEMATEL and Bayesian Best–Worst Method Approach for Inland Port Development Evaluation. Axioms 2023, 12, 1116. [Google Scholar] [CrossRef]
- Munim, Z.H.; Chowdhury, M.M.H.; Tusher, H.M.; Notteboom, T. Towards a prioritization of alternative energy sources for sustainable shipping. Mar. Policy 2023, 152, 105579. [Google Scholar] [CrossRef]
- Munim, Z.H.; Notteboom, T.; Haralambides, H.; Schøyen, H. Key determinants for the commercial feasibility of maritime autonomous surface ships (MASS). Mar. Policy 2025, 172, 106482. [Google Scholar]
- Soner, O.; Celik, E.; Akyuz, E. A fuzzy best–worst method (BWM) to assess the potential environmental impacts of the process of ship recycling. Marit. Policy Manag. 2022, 49, 396–409. [Google Scholar]
- Tusher, H.M.; Munim, Z.H.; Nazir, S. An evaluation of maritime simulators from technical, instructional, and organizational perspectives: A hybrid multi-criteria decision-making approach. WMU J. Marit. Aff. 2024, 23, 165–194. [Google Scholar]
- Mi, X.; Tang, M.; Liao, H.; Shen, W.; Lev, B. The state-of-the-art survey on integrations and applications of the best worst method in decision making: Why, what, what for and what’s next? Omega 2019, 87, 205–225. [Google Scholar] [CrossRef]
- Zincir, B. A short review of ammonia as an alternative marine fuel for decarbonised maritime transportation. In Proceedings of the ICEESEN2020, Kayseri, Turkey, 19–21 November 2020. [Google Scholar]
- Issa-Zadeh, S.B.; Garay-Rondero, C.L. Decarbonizing Seaport Maritime Traffic: Finding Hope. World 2025, 6, 47. [Google Scholar] [CrossRef]
- Erdemir, D.; Dincer, I. A perspective on the use of ammonia as a clean fuel: Challenges and solutions. Int. J. Energy Res. 2021, 45, 4827–4834. [Google Scholar] [CrossRef]
- DNV GL. Comparison of Alternative Marine Fuels. 2019. Available online: https://sea-lng.org/wp-content/uploads/2020/04/Alternative-Marine-Fuels-Study_final_report_25.09.19.pdf (accessed on 28 August 2025).
- Avery, W. A role for ammonia in the hydrogen economy. Int. J. Hydrogen Energy 1988, 13, 761–773. [Google Scholar] [CrossRef]
- Aziz, M.; Oda, T.; Kashiwagi, T. Comparison of liquid hydrogen, methylcyclohexane and ammonia on energy efficiency and economy. Energy Procedia 2019, 158, 4086–4091. [Google Scholar] [CrossRef]
- Wijayanta, A.T.; Oda, T.; Purnomo, C.W.; Kashiwagi, T.; Aziz, M. Liquid hydrogen, methylcyclohexane, and ammonia as potential hydrogen storage: Comparison review. Int. J. Hydrogen Energy 2019, 44, 15026–15044. [Google Scholar] [CrossRef]
- Chatterjee, S.; Parsapur, R.K.; Huang, K.-W. Limitations of ammonia as a hydrogen energy carrier for the transportation sector. ACS Energy Lett. 2021, 6, 4390–4394. [Google Scholar] [CrossRef]
- Cesaro, Z.; Ives, M.; Nayak-Luke, R.; Mason, M.; Bañares-Alcántara, R. Ammonia to power: Forecasting the levelized cost of electricity from green ammonia in large-scale power plants. Appl. Energy 2021, 282, 116009. [Google Scholar] [CrossRef]
- MAN ES. MAN B&W Two-Stroke Engine Operating on Ammonia. 2025. Available online: https://www.man-es.com/docs/default-source/document-sync/man-b-w-two-stroke-engine-operating-on-ammonia-eng.pdf?sfvrsn=c4bb6fea_5 (accessed on 28 August 2025).
- Boretti, A. Advancing ammonia synthesis: Pathways toward decarbonization and sustainability. Chem. Eng. Res. Des. 2025, 217, 235–251. [Google Scholar] [CrossRef]
- Ishaq, H.; Crawford, C. Review of ammonia production and utilization: Enabling clean energy transition and net-zero climate targets. Energy Convers. Manag. 2024, 300, 117869. [Google Scholar] [CrossRef]
- Bayramoğlu, K.; Bayraktar, M.; Seyhan, A.; Yuksel, O. Evaluation of techniques to reduce carbon emissions from ships within the scope of revised greenhouse gas emission targets for 2030, 2040, and 2050. Ocean Eng. 2025, 334, 121605. [Google Scholar] [CrossRef]
- Elçiçek, H. Bibliometric analysis on hydrogen and ammonia: A comparative evaluation for achieving IMO’s decarbonization targets. Int. J. Environ. Sci. Technol. 2024, 21, 7039–7060. [Google Scholar] [CrossRef]
- Salehmin, M.N.I.; Kiong, T.S.; Mohamed, H.; Mahlia, T.I.; Aziz, N.A.M.; Timmiati, S.N.; Zakaria, Z. Transition pathway from blue to green ammonia production: Comparative insight into technoeconomic, environmental, and policy framework. Int. J. Hydrogen Energy 2025, 143, 147–178. [Google Scholar] [CrossRef]
- Zhou, J.; Zhang, J.; Jiang, G.; Xie, K. Using DPF to Control Particulate Matter Emissions from Ships to Ensure the Sustainable Development of the Shipping Industry. Sustainability 2024, 16, 6642. [Google Scholar] [CrossRef]
- Isella, A.; Lista, A.; Colombo, G.; Ostuni, R.; Manca, D. Gray and hybrid green ammonia price sensitivity to market fluctuations: The Russia-Ukraine war case. In Computer Aided Chemical Engineering; Elsevier: Amsterdam, The Netherlands, 2023; Volume 52, pp. 2285–2290. [Google Scholar]
- Adhari, O.H.K.; Mahmoud, M.; Abdelkareem, M.A.; Olabi, A.G. Green Ammonia: Progress and Challenges. Compr. Green Mater. 2025, 1, 479–497. [Google Scholar] [CrossRef]
- Bora, N.; Singh, A.K.; Pal, P.; Sahoo, U.K.; Seth, D.; Rathore, D.; Bhadra, S.; Sevda, S.; Venkatramanan, V.; Prasad, S. Green ammonia production: Process technologies and challenges. Fuel 2024, 369, 131808. [Google Scholar] [CrossRef]
- Schmidhalter, I.; Mussati, M.C.; Mussati, S.F.; Marcovecchio, M.G.; Aguirre, P.A. Optimal green ammonia system design for minimum levelized costs in Southern Argentina. Int. J. Hydrogen Energy 2025, 121, 337–350. [Google Scholar] [CrossRef]
- Guardiola, C.; Pla, B.; Bares, P.; Mora, J. Model-based ammonia slip observation for scr control and diagnosis. IEEE/ASME Trans. Mechatronics 2020, 25, 1346–1353. [Google Scholar] [CrossRef]
- International Energy Agency (IEA). Ammonia Technology Roadmap. Towards More Sustainable Nitrogen Fertilizer Production. 2021. Available online: https://iea.blob.core.windows.net/assets/6ee41bb9-8e81-4b64-8701-2acc064ff6e4/AmmoniaTechnologyRoadmap.pdf (accessed on 29 August 2025).
- Green Shipping Programme (GSP). AMMONIA-POWERED TANKER PILOT. 2023. Available online: https://greenshippingprogramme.com/wp-content/uploads/2023/08/Ammonia-powered-tanker-pilot.pdf (accessed on 29 August 2025).
- AEA. Ammonia Energy Association-Setting the Scene for Ammonia Maritime Fuel: Regulatory Needs and Timelines to Decarbonize Shipping. 2025. Available online: https://ammoniaenergy.org/articles/setting-the-scene-for-ammonia-maritime-fuel-regulatory-needs-and-timelines-to-decarbonize-shipping/ (accessed on 30 August 2025).
- Wartsila. WARTSILA 25: The Power to Target Net Zero. 2025. Available online: https://brandhub.wartsila.com/m/6ec1690a9bc01222/original/Wartsila-25-Brochure.pdf?utm_source=engines&utm_medium=dfengines&utm_term=w25&utm_content=brochure&utm_campaign=mp-engines-and-generating-sets-brochures (accessed on 1 September 2025).
- Wang, Y.; Iris, Ç. Transition to near-zero emission shipping fleet powered by alternative fuels under uncertainty. Transp. Res. Part D Transp. Environ. 2025, 142, 104689. [Google Scholar] [CrossRef]
- Wang, Y.; Zhu, S.; Iris, Ç. An exact algorithm for fleet co-deployment and slot co-chartering in a sustainable shipping alliance under emissions trading system. Eur. J. Oper. Res. 2025, 327, 450–468. [Google Scholar] [CrossRef]
- Genge, L.; Müsgens, F. Green Ammonia: A Techno-Economic Supply Chain Optimization. arXiv 2025, arXiv:2507.02412. [Google Scholar] [CrossRef]
- Proton Ventures. Why Does Green Ammonia Struggle to Kick-Off, & What Can We Do About It? 2025. Available online: https://protonventures.com/news/why-does-green-ammonia-struggle-to-kick-off-what-can-we-do-about-it/ (accessed on 31 August 2025).
- Ohio River Valley Institute. The Uncertain Ammonia Industry, Present & Future. 2025. Available online: https://ohiorivervalleyinstitute.org/wp-content/uploads/2025/02/Ammonia_v5.3-FINAL-1.pdf (accessed on 31 August 2025).
- Christodoulou, A.; Dong, T.; Schönborn, A.; Ölçer, A.I.; Dalaklis, D. A cost-benefit analysis of the use of ammonia and hydrogen as marine fuels. In Proceedings of the International Maritime and Logistics Conference “Marlog 12”, Alexandria, Egypt, 12–14 March 2023. [Google Scholar]
- Park, C.; Hwang, I.; Jang, H.; Jeong, B.; Ha, S.; Kim, J.; Jee, J. Comparative analysis of marine alternative fuels for offshore supply vessels. Appl. Sci. 2024, 14, 11196. [Google Scholar] [CrossRef]
- Ship & Bunker. A Comparative Analysis of Alternative Fuels for Sustainable Maritime Shipping. 2025. Available online: https://shipandbunker.com/news/world/527976-insight-a-comparative-analysis-of-alternative-fuels-for-sustainable-maritime-shipping (accessed on 1 September 2025).
Theme | Study | Focus/Contribution |
---|---|---|
Technological Feasibility & Engine Integration | [1,7,8,9,22,23,24,25,26,27,28,29] | Combustion characteristics, hybrid SOFC-ICE systems, and the feasibility of ammonia engines. The focus should be on low energy density, pilot fuel needs, and advanced ignition strategies for enhanced efficiency and emission control. |
Environmental & Lifecycle Assessments | [17,23,30,31,32] | A critical evaluation of the environmental performance and GHG reduction potential of ammonia, with a particular focus on green ammonia. Ammonia has been identified as a strong potential option for IMO decarbonization targets, though it is acknowledged that high production costs and infrastructure limitations remain key challenges to be addressed. |
Fuel Safety, Risk & Toxicity | [33,34,35,36] | A comprehensive evaluation of the safety, toxicity, and risk mitigation aspects of ammonia-fueled systems. The findings highlight toxicity hazards, provide comparative safety rankings, and emphasize the need for robust safety measures in design and operations. |
Policy, Economics & Adoption Barriers | [37,38,39,40] | Policy support, market readiness, and economic barriers. Need for subsidies, regulations, and stakeholder coordination. It should be noted that ammonia vessels have been observed to increase the total cost of ownership by approximately 25% compared to conventional ships. |
Market Potential, Future Role & Strategic Perspective | [41,42,43,44] | Ammonia’s strategic role in energy transition and future maritime applications. Low energy density, performance impacts, and technology maturity. It is imperative to ascertain the viability of the proposed initiative. However, it is equally crucial to acknowledge the persistent challenges that are inherent to the operational processes. |
Fuel Blending & Combustion Optimization | [45,46] | Ammonia–hydrogen blends for improved combustion and emission reduction. The proposal involves hydrogen-assisted ignition and jet flame strategies, aiming to improve power output and thermal efficiency. |
Expert | Profession | Experience (Year) | Education Level |
---|---|---|---|
EX-1 | Oceangoing second engineer/Academician | 11 | PhD |
EX-2 | Oceangoing master/marine pilot | 15 | MSc |
EX-3 | Oceangoing master | 25 | BSc |
EX-4 | Oceangoing master | 18 | BSc |
EX-5 | Oceangoing chief engineer | 17 | BSc |
EX-6 | Oceangoing second engineer | 10 | BSc |
EX-7 | Marine pilot | 15 | BSc |
EX-8 | Surveyor | 20 | BSc |
EX-9 | Oceangoing chief engineer | 15 | BSc |
EX-10 | Oceangoing master | 14 | MSc |
EX-11 | Technical superintendent | 13 | BSc |
EX-12 | Oceangoing chief engineer/Academician | 24 | PhD |
EX-13 | Oceangoing chief engineer | 12 | BSc |
EX-14 | Oceangoing chief engineer | 15 | MSc |
EX-15 | Oceangoing master | 15 | BSc |
EX-16 | Technical superintendent | 17 | PhD |
EX-17 | Academician | 11 | PhD |
Objectives | Strengths (S) | Weaknesses (W) |
---|---|---|
Opportunities (O) | SO Strategies | WO Strategies |
Threats (T) | ST Strategies | WT Strategies |
Expert | Main Criteria | Strengths | Weaknesses | Opportunities | Threats |
---|---|---|---|---|---|
EX1 | 0.167 | 0.15 | 0.167 | 0.05 | 0.167 |
EX2 | 0.119 | 0.133 | 0.167 | 0.2 | 0.2 |
EX3 | 0.150 | 0.15 | 0.133 | 0.167 | 0.167 |
EX4 | 0.150 | 0.2 | 0.167 | 0.15 | 0.133 |
EX5 | 0.100 | 0.083 | 0.167 | 0.167 | 0.167 |
EX6 | 0.150 | 0.2 | 0.133 | 0.167 | 0.153 |
EX7 | 0.167 | 0.2 | 0.2 | 0.167 | 0.2 |
EX8 | 0.150 | 0.2 | 0.05 | 0.214 | 0.214 |
EX9 | 0.150 | 0.05 | 0.167 | 0.167 | 0.167 |
EX10 | 0.100 | 0.143 | 0.15 | 0.1 | 0.167 |
EX11 | 0.150 | 0.1 | 0.1 | 0.119 | 0.083 |
EX12 | 0.067 | 0.083 | 0.067 | 0.1 | 0.05 |
EX13 | 0.100 | 0.119 | 0.1 | 0.1 | 0.05 |
EX14 | 0.167 | 0.05 | 0.119 | 0.1 | 0.1 |
EX15 | 0.150 | 0.05 | 0.119 | 0.05 | 0.05 |
EX16 | 0.150 | 0.083 | 0.214 | 0.083 | 0.2 |
EX17 | 0.067 | 0.15 | 0.2 | 0.083 | 0.1 |
Average | 0.132 | 0.108 | 0.147 | 0.148 | 0.157 |
Criteria | Weights | Main Criteria Rank | CR | Sub-Criteria | Local Weight | Global Weight | Local Rank | Global Rank |
---|---|---|---|---|---|---|---|---|
S | 0.242 | 3 | 0.108 | S1 | 0.321 | 0.078 | 1 | 3 |
S2 | 0.140 | 0.034 | 5 | 17 | ||||
S3 | 0.188 | 0.046 | 2 | 9 | ||||
S4 | 0.173 | 0.042 | 4 | 12 | ||||
S5 | 0.178 | 0.043 | 3 | 10 | ||||
W | 0.270 | 2 | 0.147 | W1 | 0.135 | 0.036 | 5 | 14 |
W2 | 0.209 | 0.056 | 3 | 8 | ||||
W3 | 0.151 | 0.041 | 4 | 13 | ||||
W4 | 0.221 | 0.059 | 2 | 7 | ||||
W5 | 0.286 | 0.077 | 1 | 4 | ||||
O | 0.352 | 1 | 0.148 | O1 | 0.172 | 0.061 | 4 | 6 |
O2 | 0.227 | 0.080 | 2 | 2 | ||||
O3 | 0.300 | 0.106 | 1 | 1 | ||||
O4 | 0.120 | 0.042 | 5 | 11 | ||||
O5 | 0.181 | 0.064 | 3 | 5 | ||||
T | 0.137 | 4 | 0.157 | T1 | 0.251 | 0.034 | 2 | 16 |
T2 | 0.218 | 0.030 | 3 | 18 | ||||
T3 | 0.256 | 0.035 | 1 | 15 | ||||
T4 | 0.159 | 0.022 | 4 | 19 | ||||
T5 | 0.117 | 0.016 | 5 | 20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hazar, C.; Seyhan, A. Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method. Sustainability 2025, 17, 9314. https://doi.org/10.3390/su17209314
Hazar C, Seyhan A. Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method. Sustainability. 2025; 17(20):9314. https://doi.org/10.3390/su17209314
Chicago/Turabian StyleHazar, Canberk, and Alper Seyhan. 2025. "Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method" Sustainability 17, no. 20: 9314. https://doi.org/10.3390/su17209314
APA StyleHazar, C., & Seyhan, A. (2025). Investigating Ammonia as an Alternative Marine Fuel: A SWOT Analysis Using the Best–Worst Method. Sustainability, 17(20), 9314. https://doi.org/10.3390/su17209314