Sustainable Bioremediation of Plastic Waste: How the Flame Retardant TCPP Affects Polyurethane Foam Biodegradation by Galleria mellonella Larvae
Abstract
1. Introduction
2. Methods and Materials
2.1. Sources of Galleria mellonella and Test Materials
2.2. Experiment of Galleria mellonella Larvae Ingestion
2.3. Biochemical Characteristics of Larvae
2.4. Instrumental Analysis
2.5. Microbial Community Analysis
2.6. Statistical Analysis
3. Results and Discussion
3.1. Biophysiological Responses of Galleria mellonella Larvae to RPUP Diet
3.2. Analysis of Gut Secretions Due to RPUP Degradation by Galleria mellonella Larvae
3.3. Fate of TCPP During Feeding on RPUP by Galleria mellonella Larvae
3.4. Gut Microbiota Response to RPUP Degradation in Larvae
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
EEP | electrical plastic |
OPFRs | organophosphate flame retardants |
FRs | flame retardants |
RPU | rigid polyurethane |
TCPP | Tris(1-chloro-2-propyl) phosphate |
PU | polyurethane |
HDPE | high-density polyethylene |
BW | beeswax |
BWP | TCPP-containing beeswax |
RPUP | TCPP-containing rigid polyurethane |
ST | starvation |
CBB G-250 | Coomassie Brilliant Blue G-250 |
EEM | excitation–emission matrix |
DOM | dissolved organic matter |
ANOVA | analysis of variance |
LSD | least significant difference |
PS | polystyrene |
PVC | polyvinyl chloride |
DEHP | di(2-ethylhexyl) phthalate |
ASV | amplicon sequence variant |
NMDS | non-metric multidimensional scaling |
LEfSe | linear discriminant analysis effect size |
LDA | linear discriminant analysis |
SD | standard deviation |
References
- Li, X.; Liu, Y.; Lin, B.; Zhu, G.; Wang, J.; Wang, X.; Yang, Y.; Zhang, S.; Liu, G.; Jin, R.; et al. Variation Profiles, Formation Mechanisms, and Emission Risks of Brominated Flame Retardant Compounds during Cement Kiln Co-Processing of Hexabromocyclododecane-Containing Waste. J. Hazard. Mater. 2024, 480, 135992. [Google Scholar] [CrossRef]
- Yang, C.-W.; Liao, C.-S.; Ku, H.; Chang, B.-V. Biodegradation of Tetrabromobisphenol-A in Mangrove Sediments. Sustainability 2019, 11, 151. [Google Scholar] [CrossRef]
- Wang, S.; Ling, X.; Wu, X.; Wang, L.; Li, G.; Corvini, P.F.-X.; Sun, F.; Ji, R. Release of Tetrabromobisphenol A (TBBPA)-Derived Non-Extractable Residues in Oxic Soil and the Effects of the TBBPA-Degrading Bacterium Ochrobactrum Sp. Strain T. J. Hazard. Mater. 2019, 378, 120666. [Google Scholar] [CrossRef]
- Gustavsson, J.; Wiberg, K.; Ribeli, E.; Nguyen, M.A.; Josefsson, S.; Ahrens, L. Screening of Organic Flame Retardants in Swedish River Water. Sci. Total Environ. 2018, 625, 1046–1055. [Google Scholar] [CrossRef]
- Gu, X.; Xu, J.; Zhu, S.; Zhao, Q.; Sun, S.; Zhang, Y.; Su, Q.; Long, C. The Catalytic Degradation of Waste PU and the Preparation of Recycled Materials. Polymers 2024, 16, 3581. [Google Scholar] [CrossRef] [PubMed]
- Kiss, G.; Rusu, G.; Peter, F.; Tănase, I.; Bandur, G. Recovery of Flexible Polyurethane Foam Waste for Efficient Reuse in Industrial Formulations. Polymers 2020, 12, 1533. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Song, Z.; Zhang, W. Production of Hydrogen-Rich Gas from Waste Rigid Polyurethane Foam via Catalytic Steam Gasification. Waste Manag. Res. J. Sustain. Circ. Econ. 2020, 38, 802–811. [Google Scholar] [CrossRef] [PubMed]
- Gu, X.; Wang, X.; Guo, X.; Liu, S.; Lou, C.; Liu, Y. Study on Efficient Degradation of Waste PU Foam. Polymers 2023, 15, 2359. [Google Scholar] [CrossRef]
- Zhang, K.; Hu, J.; Yang, S.; Xu, W.; Wang, Z.; Zhuang, P.; Grossart, H.-P.; Luo, Z. Biodegradation of Polyester Polyurethane by the Marine Fungus Cladosporium Halotolerans 6UPA1. J. Hazard. Mater. 2022, 437, 129406. [Google Scholar] [CrossRef]
- Maestri, C.; Plancher, L.; Duthoit, A.; Hébert, R.L.; Di Martino, P. Fungal Biodegradation of Polyurethanes. J. Fungi 2023, 9, 760. [Google Scholar] [CrossRef]
- He, H.; Su, H.; Yu, H.; Du, K.; Yang, F.; Zhu, Y.; Ma, M.; Shi, Y.; Zhang, X.; Chen, S.; et al. Chemical Recycling of Waste Polyurethane Foams: Efficient Acidolysis under the Catalysis of Zinc Acetate. ACS Sustain. Chem. Eng. 2023, 11, 5515–5523. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, D.; Wei, N. Enzyme Discovery and Engineering for Sustainable Plastic Recycling. Trends Biotechnol. 2022, 40, 22–37. [Google Scholar] [CrossRef]
- Liu, J.; Liu, J.; Xu, B.; Xu, A.; Cao, S.; Wei, R.; Zhou, J.; Jiang, M.; Dong, W. Biodegradation of Polyether-Polyurethane Foam in Yellow Mealworms (Tenebrio molitor) and Effects on the Gut Microbiome. Chemosphere 2022, 304, 135263. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Pan, X.; Li, X.; Liu, X.; Liu, Q.; Zhou, J.; Dai, X.; Qian, G. Biodegradation of Plastics from Waste Electrical and Electronic Equipment by Greater Wax Moth Larvae (Galleria mellonella). J. Clean. Prod. 2021, 310, 127346. [Google Scholar] [CrossRef]
- Zhu, P.; Xie, T.; Gong, S.; Jiang, H.; Zhang, L. Interaction between Tetrabromobisphenol A and Invertebrates in Rigid Polyurethane Biodegradation: Inhibitory Effects, Chemical Transformation and Microbial Adaptation. Bioresour. Technol. 2025, 422, 132149. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Leung, C.W.; Cai, Z.; Hu, D. PM2.5-Bound Organophosphate Flame Retardants in Hong Kong: Occurrence, Origins, and Source-Specific Health Risks. Environ. Sci. Technol. 2023, 57, 14289–14298. [Google Scholar] [CrossRef]
- Ye, J.; Tang, S.; Qiu, R.; Chen, S.; Liu, H. Biodegradation Pathway and Mechanism of Tri (2-Chloropropyl) Phosphate by Providencia rettgeri. J. Environ. Sci. 2024, 144, 26–34. [Google Scholar] [CrossRef]
- Lu, R.; Zhang, Y.; Guo, K.; He, Z.; Yu, W.; Cao, X.; Zheng, X.; Mai, B. Organophosphate Flame Retardants and Plastics in Soil from an Abandoned E-Waste Recycling Site: Significant Ecological Risks Derived from Plastic Debris. Environ. Sci. Pollut. Res. 2023, 30, 58933–58943. [Google Scholar] [CrossRef] [PubMed]
- Jurgens, S.S.; Helmus, R.; Waaijers, S.L.; Uittenbogaard, D.; Dunnebier, D.; Vleugel, M.; Kraak, M.H.S.; de Voogt, P.; Parsons, J.R. Mineralisation and Primary Biodegradation of Aromatic Organophosphorus Flame Retardants in Activated Sludge. Chemosphere 2014, 111, 238–242. [Google Scholar] [CrossRef]
- Kawagoshi, Y.; Nakamura, S.; Nishio, T.; Fukunaga, I. Isolation of Aryl-Phosphate Ester-Degrading Bacterium from Leachate of a Sea-Based Waste Disposal Site. J. Biosci. Bioeng. 2004, 98, 464–469. [Google Scholar] [CrossRef]
- Takahashi, S.; Kawashima, K.; Kawasaki, M.; Kamito, J.; Endo, Y.; Akatsu, K.; Horino, S.; Yamada, R.-H.; Kera, Y. Enrichment and Characterization of Chlorinated Organophosphate Ester-Degrading Mixed Bacterial Cultures. J. Biosci. Bioeng. 2008, 106, 27–32. [Google Scholar] [CrossRef]
- Takahashi, S.; Miura, K.; Abe, K.; Kera, Y. Complete Detoxification of Tris (2-Chloroethyl) Phosphate by Two Bacterial Strains: Sphingobium Sp. Strain TCM1 and Xanthobacter Autotrophicus Strain GJ10. J. Biosci. Bioeng. 2012, 114, 306–311. [Google Scholar] [CrossRef]
- Wei, K.; Yin, H.; Peng, H.; Lu, G.; Dang, Z. Bioremediation of Triphenyl Phosphate by Brevibacillus brevis: Degradation Characteristics and Role of Cytochrome P450 Monooxygenase. Sci. Total Environ. 2018, 627, 1389–1395. [Google Scholar] [CrossRef]
- Takahashi, S.; Satake, I.; Konuma, I.; Kawashima, K.; Kawasaki, M.; Mori, S.; Morino, J.; Mori, J.; Xu, H.; Abe, K.; et al. Isolation and Identification of Persistent Chlorinated Organophosphorus Flame Retardant-Degrading Bacteria. Appl. Environ. Microbiol. 2010, 76, 5292–5296. [Google Scholar] [CrossRef] [PubMed]
- Liang, Y.; Zhou, X.; Wu, Y.; Wu, Y.; Gao, S.; Zeng, X.; Yu, Z. Rhizobiales as the Key Member in the Synergistic Tris (2-Chloroethyl) Phosphate (TCEP) Degradation by Two Bacterial Consortia. Water Res. 2022, 218, 118464. [Google Scholar] [CrossRef]
- Losantos, D.; Sarra, M.; Caminal, G. OPFR Removal by White Rot Fungi: Screening of Removers and Approach to the Removal Mechanism. Front. Fungal Biol. 2024, 5, 1387541. [Google Scholar] [CrossRef]
- Covaci, A.; Voorspoels, S.; Abdallah, M.A.-E.; Geens, T.; Harrad, S.; Law, R.J. Analytical and Environmental Aspects of the Flame Retardant Tetrabromobisphenol-A and Its Derivatives. J. Chromatogr. A 2009, 1216, 346–363. [Google Scholar] [CrossRef]
- Ülkü, G.; Köken, N.; Akar, A.; Kızılcan, N.; Yaman, D. Tris (1-Chloro-2-Propyl) Phosphate (TCPP) Microcapsules for the Preparation of Flame-Retardant Rigid Polyurethane Foam. Polym.-Plast. Technol. Mater. 2021, 60, 562–570. [Google Scholar] [CrossRef]
- Ray, A.S.; Rajasekaran, M.; Uddin, M.; Kandasamy, R. Laccase Driven Biocatalytic Oxidation to Reduce Polymeric Surface Hydrophobicity: An Effective Pre-Treatment Strategy to Enhance Biofilm Mediated Degradation of Polyethylene and Polycarbonate Plastics. Sci. Total Environ. 2023, 904, 166721. [Google Scholar] [CrossRef] [PubMed]
- Ding, M.-Q.; Yang, S.-S.; Ding, J.; Zhang, Z.-R.; Zhao, Y.-L.; Dai, W.; Sun, H.-J.; Zhao, L.; Xing, D.; Ren, N.; et al. Gut Microbiome Associating with Carbon and Nitrogen Metabolism during Biodegradation of Polyethene in Tenebrio Larvae with Crop Residues as Co-Diets. Environ. Sci. Technol. 2023, 57, 3031–3041. [Google Scholar] [CrossRef] [PubMed]
- Peng, B.-Y.; Sun, Y.; Xiao, S.; Chen, J.; Zhou, X.; Wu, W.-M.; Zhang, Y. Influence of Polymer Size on Polystyrene Biodegradation in Mealworms (Tenebrio molitor): Responses of Depolymerization Pattern, Gut Microbiome, and Metabolome to Polymers with Low to Ultrahigh Molecular Weight. Environ. Sci. Technol. 2022, 56, 17310–17320. [Google Scholar] [CrossRef]
- Hammond, J.B.W.; Kruger, N.J. The Bradford Method for Protein Quantitation. In New Protein Techniques; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 1988; pp. 25–32. ISBN 978-1-59259-490-0. [Google Scholar]
- Bailey, L.S.; Prajapati, D.V.; Basso, K.B. Optimization of the Sulfo-Phospho-Vanillin Assay for Total Lipid Normalization in Untargeted Quantitative Lipidomic LC–MS/MS Applications. Anal. Chem. 2022, 94, 17810–17818. [Google Scholar] [CrossRef] [PubMed]
- Morris, D.L. Quantitative Determination of Carbohydrates With Dreywood’s Anthrone Reagent. Science 1948, 107, 254–255. [Google Scholar] [CrossRef] [PubMed]
- Rossi, G.; Durek, J.; Ojha, S.; Schlüter, O.K. Fluorescence-Based Characterisation of Selected Edible Insect Species: Excitation Emission Matrix (EEM) and Parallel Factor (PARAFAC) Analysis. Curr. Res. Food Sci. 2021, 4, 862–872. [Google Scholar] [CrossRef]
- Prata, J.C.; Da Costa, J.P.; Girão, A.V.; Lopes, I.; Duarte, A.C.; Rocha-Santos, T. Identifying a Quick and Efficient Method of Removing Organic Matter without Damaging Microplastic Samples. Sci. Total Environ. 2019, 686, 131–139. [Google Scholar] [CrossRef]
- Peng, B.-Y.; Su, Y.; Chen, Z.; Chen, J.; Zhou, X.; Benbow, M.E.; Criddle, C.S.; Wu, W.-M.; Zhang, Y. Biodegradation of Polystyrene by Dark (Tenebrio obscurus) and Yellow (Tenebrio molitor) Mealworms (Coleoptera: Tenebrionidae). Environ. Sci. Technol. 2019, 53, 5256–5265. [Google Scholar] [CrossRef] [PubMed]
- Vilaplana, F.; Ribes-Greus, A.; Karlsson, S. Microwave-Assisted Extraction for Qualitative and Quantitative Determination of Brominated Flame Retardants in Styrenic Plastic Fractions from Waste Electrical and Electronic Equipment (WEEE). Talanta 2009, 78, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Zhu, P.; Shen, Y.; Li, X.; Liu, X.; Qian, G.; Zhou, J. Feeding Preference of Insect Larvae to Waste Electrical and Electronic Equipment Plastics. Sci. Total Environ. 2022, 807, 151037. [Google Scholar] [CrossRef]
- Ren, L.; Men, L.; Zhang, Z.; Guan, F.; Tian, J.; Wang, B.; Wang, J.; Zhang, Y.; Zhang, W. Biodegradation of Polyethylene by Enterobacter Sp. D1 from the Guts of Wax Moth Galleria Mellonella. Int. J. Environ. Res. Public Health 2019, 16, 1941. [Google Scholar] [CrossRef]
- Riaz, K.; Iqbal, T.; Khan, S.; Usman, A.; Al-Ghamdi, M.S.; Shami, A.; El Hadi Mohamed, R.A.; Almadiy, A.A.; Al Galil, F.M.A.; Alfuhaid, N.A.; et al. Growth Optimization and Rearing of Mealworm (Tenebrio molitor L.) as a Sustainable Food Source. Foods 2023, 12, 1891. [Google Scholar] [CrossRef]
- Suzuki, K.; Sakamoto, H.; Shinozaki, Y.; Tabata, J.; Watanabe, T.; Mochizuki, A.; Koitabashi, M.; Fujii, T.; Tsushima, S.; Kitamoto, H.K. Affinity Purification and Characterization of a Biodegradable Plastic-Degrading Enzyme from a Yeast Isolated from the Larval Midgut of a Stag Beetle, Aegus laevicollis. Appl. Microbiol. Biotechnol. 2013, 97, 7679–7688. [Google Scholar] [CrossRef] [PubMed]
- Urbanek, A.K.; Rybak, J.; Wróbel, M.; Leluk, K.; Mirończuk, A.M. A Comprehensive Assessment of Microbiome Diversity in Tenebrio Molitor Fed with Polystyrene Waste. Environ. Pollut. 2020, 262, 114281. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Xiao, Z.-J.; Zeng, B.-P.; Li, K.; Tang, Y.-L. Insect Behavior and Physiological Adaptation Mechanisms Under Starvation Stress. Front. Physiol. 2019, 10, 163. [Google Scholar] [CrossRef]
- Krittika, S.; Lenka, A.; Yadav, P. Evidence of Dietary Protein Restriction Regulating Pupation Height, Development Time and Lifespan in Drosophila Melanogaster. Biol. Open 2019, 8, bio042952. [Google Scholar] [CrossRef]
- Brandon, A.M.; El Abbadi, S.H.; Ibekwe, U.A.; Cho, Y.-M.; Wu, W.-M.; Criddle, C.S. Fate of Hexabromocyclododecane (HBCD), A Common Flame Retardant, In Polystyrene-Degrading Mealworms: Elevated HBCD Levels in Egested Polymer but No Bioaccumulation. Environ. Sci. Technol. 2020, 54, 364–371. [Google Scholar] [CrossRef]
- Meijer, N.; de Rijk, T.; van Loon, J.J.A.; Zoet, L.; van der Fels-Klerx, H.J. Effects of Insecticides on Mortality, Growth and Bioaccumulation in Black Soldier Fly (Hermetia illucens) Larvae. PLoS ONE 2021, 16, e0249362. [Google Scholar] [CrossRef]
- Bożek, M.; Hanus-Lorenz, B.; Rybak, J. The Studies on Waste Biodegradation by Tenebrio molitor. E3S Web Conf. 2017, 17, 00011. [Google Scholar] [CrossRef]
- Suhrhoff, T.J.; Scholz-Böttcher, B.M. Qualitative Impact of Salinity, UV Radiation and Turbulence on Leaching of Organic Plastic Additives from Four Common Plastics—A Lab Experiment. Mar. Pollut. Bull. 2016, 102, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.K.; Hur, J. Adsorption of Microplastic-Derived Organic Matter onto Minerals. Water Res. 2020, 187, 116426. [Google Scholar] [CrossRef] [PubMed]
- Ni, B.-J.; Fang, F.; Xie, W.-M.; Sun, M.; Sheng, G.-P.; Li, W.-H.; Yu, H.-Q. Characterization of Extracellular Polymeric Substances Produced by Mixed Microorganisms in Activated Sludge with Gel-Permeating Chromatography, Excitation–Emission Matrix Fluorescence Spectroscopy Measurement and Kinetic Modeling. Water Res. 2009, 43, 1350–1358. [Google Scholar] [CrossRef]
- Chin, Y.-P.; Aiken, G.; O’Loughlin, E. Molecular Weight, Polydispersity, and Spectroscopic Properties of Aquatic Humic Substances. Environ. Sci. Technol. 1994, 28, 1853–1858. [Google Scholar] [CrossRef]
- Wang, Z.-W.; Wu, Z.-C.; Tang, S.-J. Characterization of Dissolved Organic Matter in a Submerged Membrane Bioreactor by Using Three-Dimensional Excitation and Emission Matrix Fluorescence Spectroscopy. Water Res. 2009, 43, 1533–1540. [Google Scholar] [CrossRef]
- Wang, B.; Cai, C.; Li, G.; Liu, H. Assessing the Stability in Dry Mycelial Fertilizer of Penicillium chrysogenum as Soil Amendment via Fluorescence Excitation-Emission Matrix Spectra: Organic Matter’s Transformation and Maturity. Environ. Sci. Pollut. Res. 2017, 24, 28258–28267. [Google Scholar] [CrossRef]
- Ji, J.; Pei, J.; Ding, F.; Zeng, C.; Zhou, J.; Dong, W.; Cui, Z.; Yan, X. Isolation and Characterization of Polyester Polyurethane-Degrading Bacterium Bacillus Sp. YXP1. Environ. Res. 2024, 249, 118468. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, S.; Hiraga, K.; Takehana, T.; Taniguchi, I.; Yamaji, H.; Maeda, Y.; Toyohara, K.; Miyamoto, K.; Kimura, Y.; Oda, K. A Bacterium That Degrades and Assimilates Poly (Ethylene Terephthalate). Science 2016, 351, 1196–1199. [Google Scholar] [CrossRef]
- Riva, S. Laccases: Blue Enzymes for Green Chemistry. Trends Biotechnol. 2006, 24, 219–226. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, Y.; Wan, L.; Chen, R.; Zhang, W.; Mu, W. High-Level De Novo Biosynthesis of 2′-Fucosyllactose by Metabolically Engineered Escherichia coli. J. Agric. Food Chem. 2022, 70, 9017–9025. [Google Scholar] [CrossRef]
- Tang, S.; Yin, H.; Chen, S.; Peng, H.; Chang, J.; Liu, Z.; Dang, Z. Aerobic Degradation of BDE-209 by Enterococcus casseliflavus: Isolation, Identification and Cell Changes during Degradation Process. J. Hazard. Mater. 2016, 308, 335–342. [Google Scholar] [CrossRef] [PubMed]
- Kaur, M.; Thakur, M.; Sagar, V.; Sharma, R. Diversity of Culturable Gut Bacteria of Diamondback Moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae) Collected from Different Geographical Regions of India. Mol. Biol. Rep. 2022, 49, 7475–7481. [Google Scholar] [CrossRef] [PubMed]
- Yandigeri, M.S.; Solanki, M.K.; Yalashetti, S.; Sampada, N.; Mohan, M.; Sivakumar, G.; Joshi, S.; Sushil, S.N. Diversity of Culturable Gut Bacteria in Natural Aphid Populations and Their Contribution to Insecticide Degradation. Biocatal. Agric. Biotechnol. 2024, 58, 103208. [Google Scholar] [CrossRef]
- Vélez, M.A.; Wolf, V.I.; Espariz, M.; Acciarri, G.; Magni, C.; Hynes, E.; Perotti, M.C. Study of Volatile Compounds Profiles in Milk Matrices Using Enterococcus faecalis EstA and Rhizomucor miehei Lipase. Food Res. Int. 2023, 169, 112861. [Google Scholar] [CrossRef] [PubMed]
- Rosenstein, R.; Götz, F. Staphylococcal Lipases: Biochemical and Molecular Characterization. Biochimie 2000, 82, 1005–1014. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, P.; Xie, T.; Gong, S. Sustainable Bioremediation of Plastic Waste: How the Flame Retardant TCPP Affects Polyurethane Foam Biodegradation by Galleria mellonella Larvae. Sustainability 2025, 17, 9203. https://doi.org/10.3390/su17209203
Zhu P, Xie T, Gong S. Sustainable Bioremediation of Plastic Waste: How the Flame Retardant TCPP Affects Polyurethane Foam Biodegradation by Galleria mellonella Larvae. Sustainability. 2025; 17(20):9203. https://doi.org/10.3390/su17209203
Chicago/Turabian StyleZhu, Ping, Teng Xie, and Shuangshuang Gong. 2025. "Sustainable Bioremediation of Plastic Waste: How the Flame Retardant TCPP Affects Polyurethane Foam Biodegradation by Galleria mellonella Larvae" Sustainability 17, no. 20: 9203. https://doi.org/10.3390/su17209203
APA StyleZhu, P., Xie, T., & Gong, S. (2025). Sustainable Bioremediation of Plastic Waste: How the Flame Retardant TCPP Affects Polyurethane Foam Biodegradation by Galleria mellonella Larvae. Sustainability, 17(20), 9203. https://doi.org/10.3390/su17209203