A Data-Driven Hybrid Intelligent Optimization Framework for Sustainable Mineral Resource Extraction
Abstract
1. Introduction
2. Proposed Hybrid Modeling Framework
2.1. Feature Selection Based on RF
2.2. Parameters Optimization Based on WOA
2.3. Prediction Based on XGBoost
2.4. A Hybrid Model Framework RF-WOA-XGBoost
3. Data Processing and Hyperparameter Optimization
3.1. Data Description and Correlation Analysis
3.2. Data Processing
3.3. Feature Selection
3.4. Hyperparameter Optimization
4. Verification of Prediction Performance and Comparative Analysis
4.1. Cross-Validation
4.2. Sensitivity Analysis
4.3. Comparison of Prediction Performance
4.3.1. Model Evaluation Metrics
4.3.2. Model Comparison
4.4. Model Interpretation Based on SHAP
5. Conclusions
- (1)
- By combining correlation analysis and RF-based feature selection, the primary strategy for determining input feature variables in the predictive model is to select those variables that exert a significant influence on MFS, while simultaneously avoiding the inclusion of variables that exhibit strong intercorrelation.
- (2)
- A total of ten key input variables were identified through RF-based feature selection, and the hyperparameters of XGBoost were optimized using WOA. On this basis, the RF-WOA-XGBoost tri-model hybrid optimization model was constructed. Compared with WOA-XGBoost, RF-XGBoost, RF-WOA-ANFIS, RF-WOA-LightGBM, and RF-WOA-CatBoost models, the proposed model demonstrated significantly enhanced predictive accuracy. This indicates that the integration of feature selection, hyperparameter optimization, and tree-based algorithms can effectively improve the predictive capability of models when dealing with high-dimensional and small-sample blasting fragmentation datasets.
- (3)
- The SHAP method quantitatively revealed the marginal contributions and interaction effects of input variables in the predictive model. The SHAP visualization further illustrated the relationships between contribution direction, intensity, and original feature values across different samples, thereby significantly enhancing model interpretability.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Monteiro, N.B.R.; Bezerra, A.K.L.; Moita Neto, J.M.; Silva, E.A.d. Mining Law: In Search of Sustainable Mining. Sustainability 2021, 13, 867. [Google Scholar] [CrossRef]
- Aghdamigargari, M.; Avane, S.; Anani, A.; Adewuyi, S.O. Sustainability in Long-Term Surface Mine Planning: A Systematic Review of Operations Research Applications. Sustainability 2024, 16, 9769. [Google Scholar] [CrossRef]
- Ding, X.; Jamei, M.; Hasanipanah, M.; Abdullah, R.A.; Le, B.N. Optimized Data-Driven Models for Prediction of Flyrock due to Blasting in Surface Mines. Sustainability 2023, 15, 8424. [Google Scholar] [CrossRef]
- Hekmat, A.; Munoz, S.; Gomez, R. Prediction of Rock Fragmentation Based on a Modified Kuz–Ram Model. In Proceedings of the 27th International Symposium on Mine Planning and Equipment Selection (MPES 2018), Las Condes, Chile, 19–23 November 2018; Springer: Cham, Switzerland, 2019. [Google Scholar]
- Yilmaz, O. Rock factor prediction in the Kuz–Ram model and burden estimation by mean fragment size. Geomech. Energy Environ. 2023, 33, 100415. [Google Scholar] [CrossRef]
- Ouchterlony, F.; Sanchidrián, J.A. The Fragmentation-Energy Fan Concept and the Swebrec Function in Modeling Drop Weight Testing. Rock Mech. Rock Eng. 2018, 51, 3129–3156. [Google Scholar] [CrossRef]
- Sanchidrián, J.A.; Ouchterlony, F. Blast-Fragmentation Prediction Derived from the Fragment Size-Energy Fan Concept. Rock Mech. Rock Eng. 2023, 56, 8869–8889. [Google Scholar] [CrossRef]
- Chung, S.H.; Katsabanis, P.D. Fragmentation Prediction Using Improved Engineering Formulae. Fragblast 2000, 4, 198–207. [Google Scholar] [CrossRef]
- Moomivand, H.; Gheybi, M. Novel empirical models to assess rock fragment size by drilling and blasting. Measurement 2024, 238, 115375. [Google Scholar] [CrossRef]
- Guo, H.; Nguyen, H.; Bui, X.N.; Armaghani, D.J. A New Technique to Predict Fly-Rock in Bench Blasting Based on an Ensemble of Support Vector Regression and GLMNET. Eng. Comput. 2019, 37, 421–435. [Google Scholar] [CrossRef]
- Taiwo, B.O.; Famobuwa, O.V.; Mata, M.M.; Sazid, M.; Fissha, Y.; Jebutu, V.A.; Akinlabi, A.A.; Ogunyemi, O.B.; Ozigi, A. Granite Downstream Production Dependent Size and Profitability Assessment: An Application of Mathematical-Based Artificial Intelligence Model and WipFrag Software. J. Min. Environ. 2024, 15, 497–515. [Google Scholar] [CrossRef]
- Nguyen, H.; Bui, X.N.; Bui, H.B.; Mai, N.L. A Comparative Study of Artificial Neural Networks in Predicting Blast-Induced Air-Blast Overpressure at Deo Nai Open-Pit Coal Mine, Vietnam. Neural Comput. Appl. 2020, 32, 3939–3955. [Google Scholar] [CrossRef]
- Yu, Z.; Shi, X.; Zhou, J.; Gou, Y.; Huo, X.; Zhang, J.; Armaghani, D.J. A New Multikernel Relevance Vector Machine Based on the HPSOGWO Algorithm for Predicting and Controlling Blast-Induced Ground Vibration. Eng. Comput. 2020, 38, 1905–1920. [Google Scholar] [CrossRef]
- Zhou, J.; Li, C.; Arslan, C.A.; Hasanipanah, M.; Bakhshandeh Amnieh, H. Performance Evaluation of Hybrid FFA-ANFIS and GA-ANFIS Models to Predict Particle Size Distribution of a Muck-Pile after Blasting. Eng. Comput. 2021, 37, 265–274. [Google Scholar] [CrossRef]
- Zhou, J.; Li, E.; Yang, S.; Wang, M.; Shi, X.; Yao, S.; Mitri, H.S. Slope Stability Prediction for Circular Mode Failure Using Gradient Boosting Machine Approach Based on an Updated Database of Case Histories. Saf. Sci. 2019, 118, 505–518. [Google Scholar] [CrossRef]
- Ebrahimi, E.; Monjezi, M.; Khalesi, M.R.; Armaghani, D.J. Prediction and Optimization of Back-Break and Rock Fragmentation Using an Artificial Neural Network and a Bee Colony Algorithm. Bull. Eng. Geol. Environ. 2016, 75, 27–36. [Google Scholar] [CrossRef]
- Armaghani, D.J.; Hajihassani, M.; Monjezi, M.; Mohamad, E.T.; Marto, A.; Moghaddam, M.R. Application of Two Intelligent Systems in Predicting Environmental Impacts of Quarry Blasting. Arab. J. Geosci. 2015, 8, 9647–9665. [Google Scholar] [CrossRef]
- Sayevand, K.; Arab, H. A Fresh View on Particle Swarm Optimization to Develop a Precise Model for Predicting Rock Fragmentation. Eng. Comput. 2019, 36, 533–550. [Google Scholar] [CrossRef]
- Hasanipanah, M.; Amnieh, H.B.; Arab, H.; Zamzam, M.S. Feasibility of PSO–ANFIS Model to Estimate Rock Fragmentation Produced by Mine Blasting. Neural Comput. Appl. 2018, 30, 1015–1024. [Google Scholar] [CrossRef]
- Chen, L.; Taiwo, B.O.; Hosseini, S.; Kahraman, E.; Fissha, Y.; Sazid, M.; Famobuwa, O.V.; Faluyi, J.O.; Akinlabi, A.A.; Ikeda, H.; et al. Swarm-Based Metaheuristic and Reptile Search Algorithm for Downstream Operation-Dependent Fragmentation Size Prediction. Neural Comput. Appl. 2025, 37, 25033–25059. [Google Scholar] [CrossRef]
- Kulatilake, P.H.S.W.; Hudaverdi, T.; Wu, Q. New Prediction Models for Mean Particle Size in Rock Blast Fragmentation. Geotech. Geol. Eng. 2012, 30, 665–684. [Google Scholar] [CrossRef]
- Huang, J.; Asteris, P.G.; Manafi Khajeh Pasha, S.; Mohammed, A.S.; Hasanipanah, M. A New Auto-Tuning Model for Predicting the Rock Fragmentation: A Cat Swarm Optimization Algorithm. Eng. Comput. 2022, 38, 2209–2220. [Google Scholar] [CrossRef]
- Mojtahedi, S.F.F.; Ebtehaj, I.; Hasanipanah, M.; Bonakdari, H.; Amnieh, H.B. Proposing a Novel Hybrid Intelligent Model for the Simulation of Particle Size Distribution Resulting from Blasting. Eng. Comput. 2019, 35, 47–56. [Google Scholar] [CrossRef]
- Zhang, S.; Bui, X.N.; Trung, N.T.; Nguyen, H.; Bui, H.B. Prediction of Rock Size Distribution in Mine Bench Blasting Using a Novel Ant Colony Optimization-Based Boosted Regression Tree Technique. Nat Resour Res 2020, 29, 867–886. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, Y.; Wu, D.; Li, K.; Yan, X.; Lin, J. Rock Fragmentation Size Distribution Prediction and Blasting Parameter Optimization Based on the Muck-Pile Model. Min. Metall. Explor. 2021, 38, 1071–1080. [Google Scholar] [CrossRef]
- Akyildiz, O.; Hudaverdi, T. ANFIS Modelling for Blast Fragmentation and Blast-Induced Vibrations Considering Stiffness Ratio. Arab. J. Geosci. 2020, 13, 1162. [Google Scholar] [CrossRef]
- Rong, K.; Xu, X.; Wang, H.; Yang, J. Prediction of the Mean Fragment Size in Mine Blasting Operations by Deep Learning and Grey Wolf Optimization Algorithm. Earth Sci. Inform. 2024, 17, 2903–2919. [Google Scholar] [CrossRef]
- Kahraman, E.; Hosseini, S.; Taiwo, B.O.; Fissha, Y.; Jebutu, V.A.; Akinlabi, A.A.; Adachi, T. Fostering Sustainable Mining Practices in Rock Blasting: Assessment of Blast Toe Volume Prediction Using Comparative Analysis of Hybrid Ensemble Machine Learning Techniques. J. Saf. Sustain. 2024, 1, 75–88. [Google Scholar] [CrossRef]
- He, H.; Wang, W.; Wang, Z.; Li, S.; Chen, J. Enhancing Seismic Landslide Susceptibility Analysis for Sustainable Disaster Risk Management through Machine Learning. Sustainability 2024, 16, 3828. [Google Scholar] [CrossRef]
- Moosavi, S.M.H.; Ma, Z.; Armaghani, D.J.; Aghaabbasi, M.; Ganggayah, M.D.; Wah, Y.C.; Ulrikh, D.V. Understanding and Predicting the Usage of Shared Electric Scooter Services on University Campuses. Appl. Sci. 2022, 12, 9392. [Google Scholar] [CrossRef]
- Hong, Z.; Tao, M.; Liu, L.; Zhao, M.; Wu, C. An Intelligent Approach for Predicting Overbreak in Underground Blasting Operation Based on an Optimized XGBoost Model. Eng. Appl. Artif. Intell. 2023, 126, 107097. [Google Scholar] [CrossRef]
- Goulet, A.; Grenon, M. Managing Seismic Risk Associated to Development Blasting Using Random Forests Predictive Models Based on Geologic and Structural Rockmass Properties. Rock Mech. Rock Eng. 2024, 57, 9805–9826. [Google Scholar] [CrossRef]
- Gu, Z.; Cao, M.; Wang, C.; Yu, N.; Qing, H. Research on Mining Maximum Subsidence Prediction Based on Genetic Algorithm Combined with XGBoost Model. Sustainability 2022, 14, 10421. [Google Scholar] [CrossRef]
- Sun, M.; Yang, J.; Yang, C.; Wang, W.; Wang, X.; Li, H. Research on Prediction of PPV in Open-Pit Mine Used RUN-XGBoost Model. Heliyon 2024, 10, e28246. [Google Scholar] [CrossRef]
- Li, E.; Yang, F.; Ren, M.; Zhang, X.; Zhou, J.; Khandelwal, M. Prediction of Blasting Mean Fragment Size Using Support Vector Regression Combined with Five Optimization Algorithms. J. Rock Mech. Geotech. Eng. 2021, 13, 1380–1397. [Google Scholar] [CrossRef]
- Xie, C.Y.; Nguyen, H.; Bui, X.N.; Choi, Y.; Zhou, J.; Nguyen-Trang, T. Predicting Rock Size Distribution in Mine Blasting Using Various Novel Soft Computing Models Based on Meta-Heuristics and Machine Learning Algorithms. Geosci. Front. 2021, 12, 101108. [Google Scholar] [CrossRef]
- Huan, B.; Li, X.; Wang, J.; Hu, T.; Tao, Z. An Interpretable Deep Learning Model for the Accurate Prediction of Mean Fragmentation Size in Blasting Operations. Sci. Rep. 2025, 15, 11515. [Google Scholar] [CrossRef] [PubMed]
- Yari, M.; He, B.; Armaghani, D.J.; Abbasi, P.; Mohamad, E.T. A Novel Ensemble Machine Learning Model to Predict Mine Blasting–Induced Rock Fragmentation. Bull. Eng. Geol. Environ. 2023, 82, 187. [Google Scholar] [CrossRef]
- Ibrahim, B.; Ahenkorah, I.; Ewusi, A. Explainable Risk Assessment of Rockbolts’ Failure in Underground Coal Mines Based on Categorical Gradient Boosting and SHapley Additive exPlanations (SHAP). Sustainability 2022, 14, 11843. [Google Scholar] [CrossRef]
- Sharma, S.K.; Rai, P. Establishment of Blasting Design Parameters Influencing Mean Fragment Size Using State-of-the-Art Statistical Tools and Techniques. Measurement 2017, 96, 34–51. [Google Scholar] [CrossRef]
- Ohadi, B.; Sun, X.; Esmaieli, K.; Consens, M.P. Predicting Blast-Induced Outcomes Using Random Forest Models of Multi-Year Blasting Data from an Open-Pit Mine. Bull. Eng. Geol. Environ. 2020, 79, 329–343. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [Google Scholar] [CrossRef]
- Ma, X.; Chen, Z.; Chen, P.; Zheng, H.; Gao, X.; Xiang, J.; Chen, L.; Huang, Y. Predicting the Utilization Factor of Blasthole in Rock Roadways by Random Forest. Undergr. Space 2023, 11, 232–245. [Google Scholar] [CrossRef]
Algorithm: RF-WOA-XGBoost Input: Dataset D(x,y), feature selection threshold θ, population size N, maximum iterations T Output: Optimized model M∗, prediction results y_pred, evaluation metrics Metrics |
1. Data preprocessing: x ← Outlier removal (x) // Remove outliers based on quartiles and IQR x ← Standardization and normalization(x) (x_train, x_test, y_train, y_test) ← Split dataset(x, y, test ratio = 9:1) |
2. RF-based feature selection: RF model ← Train Random Forest (x_train, y_train) Selected features ← {f | FeatureImportance(f) > θ} x_train, x_test ← Retain only selected features |
3. WOA-based parameter optimization: Initialize N whale positions // Each position corresponds to an XGBoost parameter set Best parameters ← null, Best score ← ∞ for t = 1 to T do for each whale w do Current score← Cross-validation (XGBoost(w.params), x_train, y_train) if Current score < Best score then update Best score and Best parameters end for Update whale positions // Following WOA updating rules end for |
4. Model training and evaluation: Final model ←Train XGBoost(Best parameters, x_train, y_train) y_pred ← Final model.predict (x_test) Metrics ← Compute (MSE, R2, MAE, Accuracy, VAF) |
5. Feature analysis: Compute SHAP values and rank features by importance |
return Final model, y_pred, Metrics |
Type | Parameter | Unit | Min | Max | Mean | Median | Std. Dev. |
---|---|---|---|---|---|---|---|
Input Parameters | D | m | 0.25 | 0.31 | 0.28 | 0.27 | 0.02 |
H | m | 12.0 | 45.5 | 25.1 | 24.0 | 10.38 | |
J | m | 0.0 | 3.5 | 1.5 | 1.5 | 0.94 | |
S | m | 9.0 | 12.8 | 10.4 | 10.0 | 1.51 | |
B | m | 7 | 10 | 8.8 | 9 | 0.90 | |
T | m | 4.5 | 12.2 | 6.9 | 6.0 | 2.34 | |
L | m | 26.2 | 133.0 | 75.4 | 72.5 | 27.09 | |
W | m | 38 | 175 | 73.3 | 71.5 | 22.39 | |
S/B | - | 1.00 | 1.29 | 1.18 | 1.17 | 0.09 | |
T/B | - | 0.50 | 1.22 | 0.77 | 0.71 | 0.20 | |
H/B | - | 1.33 | 4.55 | 2.79 | 2.70 | 0.94 | |
J/B | - | 0.00 | 0.39 | 0.16 | 0.20 | 0.10 | |
B/D | - | 28.00 | 35.86 | 31.83 | 32.16 | 1.97 | |
L/W | - | 0.23 | 2.00 | 1.10 | 1.07 | 0.43 | |
NH | - | 16 | 145 | 58.2 | 56.5 | 21.93 | |
Qe | t | 9140 | 282,088 | 90,667.4 | 60,038.5 | 70,900.59 | |
De | kg/m | 45.00 | 99.22 | 72.21 | 67.62 | 15.85 | |
PF | kg/m3 | 1.34 | 2.53 | 1.74 | 1.68 | 0.22 | |
UCS | MPa | 11.8 | 36.0 | 22.4 | 22.0 | 4.77 | |
Output Parameter | MFS | m | 0.180 | 0.707 | 0.348 | 0.340 | 0.097 |
Hyperparameter | Range | Optimal Value |
---|---|---|
n_estimators | [150, 300] | 274 |
max_depth | [2, 4] | 2 |
learning_rate | [0.1, 0.4] | 0.39 |
subsample | [0.00001, 1.0] | 0.56 |
colsample_bytree | [0.0001, 1.0] | 0.32 |
reg_alpha | [0.1, 0.8] | 0.10 |
reg_lambda | [0.1, 0.9] | 0.45 |
Validation Strategies | Mean MSE | Standard Deviation of MSE |
---|---|---|
5-Fold CV | 0.004599 | 0.002167 |
LOOCV | 0.005441 | 0.012943 |
Repeated 5-Fold (10x) | 0.005029 | 0.003108 |
Model | MSE | R2 | MAE | MAPE | RSD |
---|---|---|---|---|---|
WOA-XGBoost | 0.00138 | 0.670 | 0.2971 | 0.1097 | 0.03089 |
RF-XGBoost | 0.00162 | 0.611 | 0.03546 | 0.1463 | 0.02676 |
RF-WOA-XGBoost | 0.00029 | 0.930 | 0.01386 | 0.0505 | 0.01676 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Sun, J.; Lv, H.; Sun, Y. A Data-Driven Hybrid Intelligent Optimization Framework for Sustainable Mineral Resource Extraction. Sustainability 2025, 17, 9143. https://doi.org/10.3390/su17209143
Xu Z, Sun J, Lv H, Sun Y. A Data-Driven Hybrid Intelligent Optimization Framework for Sustainable Mineral Resource Extraction. Sustainability. 2025; 17(20):9143. https://doi.org/10.3390/su17209143
Chicago/Turabian StyleXu, Ziying, Jinshan Sun, Haoyuan Lv, and Yang Sun. 2025. "A Data-Driven Hybrid Intelligent Optimization Framework for Sustainable Mineral Resource Extraction" Sustainability 17, no. 20: 9143. https://doi.org/10.3390/su17209143
APA StyleXu, Z., Sun, J., Lv, H., & Sun, Y. (2025). A Data-Driven Hybrid Intelligent Optimization Framework for Sustainable Mineral Resource Extraction. Sustainability, 17(20), 9143. https://doi.org/10.3390/su17209143