Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Preprocessing
2.3. Technical Route
2.4. Spatio-Temporal Simulation of LUCC in the Yellow River Delta Region in 2040
- (1)
- Spatio-temporal simulation of land use change
- (2)
- PLUS model parameter setting
- (3)
- LUCC Simulation Results Verification
2.5. Design of Three Regional Development Scenarios
2.6. Ecological Security Pattern Construction
2.6.1. Identification of Ecological Source Areas
- Habitat quality
- 2.
- MSPA
- 3.
- Landscape Connectivity Calculation
2.6.2. Ecological Resistance Surface
2.6.3. Extraction of Ecological Corridors and Pinch Points
2.6.4. Univariate and Multivariate Comparisons Based on Hexagonal Binning
3. Results
3.1. Land Use Projections Under Different Scenarios for 2040
3.2. Construction and Comparison of Ecological Security Patterns
3.2.1. Identification of Ecological Source Sites
3.2.2. Ecological Resistance Surface Construction
3.2.3. Ecological Corridor Extraction
3.2.4. Multi-Scenario Ecological Security Pattern Construction
4. Discussion
4.1. Research on Ecological Restoration Strategies Based on Ecological Security Patterns
4.2. Comparative Analysis Across Different Study Areas
4.3. Regional Ecological Security Patterns and Sustainable Development
4.4. Research Limitations and Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hu, S.; Niu, Z.; Chen, Y.; Li, L.; Zhang, H. Global wetlands: Potential distribution, wetland loss, and status. Sci. Total Environ. 2017, 586, 319–327. [Google Scholar] [CrossRef]
- Foley, J.A.; DeFries, R.; Asner, G.P.; Barford, C.; Bonan, G.; Carpenter, S.R.; Chapin, F.S.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Global consequences of land use. Science 2005, 309, 570–574. [Google Scholar] [CrossRef]
- Van Vliet, J. Direct and indirect loss of natural area from urban expansion. Nat. Sustain. 2019, 2, 755–763. [Google Scholar] [CrossRef]
- Zeng, W.; He, Z.; Bai, W. Identification of ecological security patterns of alpine wetland grasslands based on landscape ecological risks: A study in Zoigê County. Sci. Total Environ. 2024, 928, 172302. [Google Scholar] [CrossRef]
- Li, Y.; Huang, S.; Kong, X. Ecological effects of surface water evolution in the Yellow River Delta. Sustainability 2022, 14, 13544. [Google Scholar] [CrossRef]
- Su, Y.; Chen, X.; Liao, J. Modeling the optimal ecological security pattern for guiding the urban constructed land expansions. Urban For. Urban Green. 2016, 19, 35–46. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, S.; Yang, L. Evaluating ecological conservation effectiveness of security patterns under multiple scenarios: A case study of Hubei Province. Ecol. Indic. 2024, 166, 112528. [Google Scholar] [CrossRef]
- Li, J.; Liang, L.; Chao, Y. Construction of the ecological security pattern of Mu Us sandy land on the basis of the “Source− Resistance− Corridor” theory. Ecol. Indic. 2025, 171, 113162. [Google Scholar] [CrossRef]
- Wang, W.; Feng, C.; Liu, F. Biodiversity conservation in China: A review of recent studies and practices. Environ. Sci. Ecotechnol. 2020, 2, 100025. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Dong, J.; Peng, J.; Xu, Z. Integrating regional and interregional approaches to identify ecological security patterns. Landsc. Ecol. 2021, 36, 2151–2164. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Wang, J. Construction and optimization of regional ecological security patterns based on MSPA-MCR-GA Model: A case study of Dongting Lake Basin in China. Ecol. Indic. 2024, 165, 112169. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Li, Y.Y.; Zhang, Y.Z.; Jiang, Z.Y. Integrating morphological spatial pattern analysis and the minimal cumulative resistance model to optimize urban ecological networks: A case study in Shenzhen City, China. Ecol. Process. 2021, 10, 63. [Google Scholar] [CrossRef]
- Huang, K.; Peng, L.; Wang, X. Integrating circuit theory and landscape pattern index to identify and optimize ecological networks: A case study of the Sichuan Basin, China. J. Environ. Sci. Pollut. Res. 2022, 29, 66874–66887. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A software package for quantifying the importance of habitat patches for landscape connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Fida, T.; Mohammadi, A.; Almasieh, K.; Bosso, L.; Din, S.U.; Shamas, U.; Nawaz, M.A.; Kabir, M. Species distribution modelling and landscape connectivity as tools to inform management and conservation for the critically endangered Himalayan brown bear (Ursus arctos isabellinus) in the Deosai National Park, Pakistan. Front. Ecol. Evol. 2025, 12, 1477480. [Google Scholar] [CrossRef]
- Zhang, T.; Chen, W.; Sheng, Z.; Wang, P.; Guan, F. Ecological network construction and identification of important elements based on morphological spatial pattern analysis and circuit theory in **xiang City. J. Nat. Conserv. 2025, 86, 126902. [Google Scholar] [CrossRef]
- McRae, B.H.; Beier, P. Circuit theory predicts gene flow in plant and animal populations. Proc. Natl. Acad. Sci. USA 2007, 104, 19885–19890. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C. Understanding the drivers of sustainable land expansion using a patch-generating land use simulation (PLUS) model: A case study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Batty, M.; Xie, Y. From cells to cities. Environ. Plan. B Plan. Des. 1994, 21, S31–S48. [Google Scholar] [CrossRef]
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Liu, X.; Liang, X.; Li, X.; Xu, X.; Ou, J.; Chen, Y.; Li, S.; Wang, S.; Pei, F. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects. Landsc. Urban Plan. 2017, 168, 94–116. [Google Scholar] [CrossRef]
- Shu, R.; Wang, Z.; Guo, N. Multi-Scenario Land Use Optimization Simulation and Ecosystem Service Value Estimation Based on Fine-Scale Land Survey Data. Land 2024, 13, 557. [Google Scholar] [CrossRef]
- Nie, W.; Xu, B.; Yang, F. Simulating future land use by coupling ecological security patterns and multiple scenarios. Sci. Total Environ. 2023, 859, 160262. [Google Scholar] [CrossRef]
- Ma, J.; Mei, Z.; Wang, X. Ecological Security Pattern Construction and Multi-Scenario Risk Early Warning (2020–2035) in the Guangdong–Hong Kong–Macao Greater Bay Area, China. Land 2024, 13, 1267. [Google Scholar] [CrossRef]
- Yu, B.; Zang, Y.; Wu, C. Spatiotemporal dynamics of wetlands and their future multi-scenario simulation in the Yellow River Delta, China. J. Environ. Manag. 2024, 353, 120193. [Google Scholar] [CrossRef]
- Guan, H.; Bai, Y.; Zhang, C. Research on ecosystem security and restoration pattern of urban agglomeration in the Yellow River basin. Sustainability 2022, 14, 11599. [Google Scholar] [CrossRef]
- Sheng, X.; Cao, Y.; Zhou, W. Multiple scenario simulations of land use changes and countermeasures for collaborative development mode in Chaobai River region of Jing-Jin-Ji, China. Habitat Int. 2018, 82, 38–47. [Google Scholar] [CrossRef]
- Wu, J.; Luo, J.; Zhang, H. Projections of land use change and habitat quality assessment by coupling climate change and development patterns. Sci. Total Environ. 2022, 847, 157491. [Google Scholar] [CrossRef]
- Pontius, R.G.; Boersma, W.; Castella, J.-C.; Clarke, K.; de Nijs, T.; Dietzel, C.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; et al. Comparing the input, output, and validation maps for several models of land change. Ann. Reg. Sci. 2008, 42, 11–37. [Google Scholar] [CrossRef]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wei, M.; Li, Z. Multi-scenario simulation of urban growth boundaries with an ESP-FLUS model: A case study of the Min Delta region, China. Ecol. Indic. 2022, 135, 108538. [Google Scholar] [CrossRef]
- Fu, X.; Wang, X.; Yang, Y.J. Deriving suitability factors for CA-Markov land use simulation model based on local historical data. J. Environ. Manag. 2018, 206, 10–19. [Google Scholar] [CrossRef]
- Luo, X.; Le, F.; Zhang, Y. Multi-scenario analysis and optimization strategy of ecological security pattern in the Weihe river basin. J. Environ. Manag. 2024, 366, 121813. [Google Scholar] [CrossRef]
- Wang, J.; Chen, T. A Multi-Scenario Land Expansion Simulation Method from Ecosystem Services Perspective of Coastal Urban Agglomeration: A Case Study of GHM-GBA, China. Land 2022, 11, 1934. [Google Scholar] [CrossRef]
- Kang, J.; Zhang, X.; Zhu, X. Ecological security pattern: A new idea for balancing regional development and ecological protection. A case study of the Jiaodong Peninsula, China. Glob. Ecol. Conserv. 2021, 26, e01472. [Google Scholar] [CrossRef]
- Zhao, Y.; He, L.; Bai, W. Prediction of ecological security patterns based on urban expansion: A case study of Chengdu. Ecol. Indic. 2024, 158, 111467. [Google Scholar] [CrossRef]
- Fu, Y.; Shi, X.; He, J. Identification and optimization strategy of county ecological security pattern: A case study in the Loess Plateau, China. Ecol. Indic. 2020, 112, 106030. [Google Scholar] [CrossRef]
- Du, P.; Huai, H.; Wu, X. Using XGBoost-SHAP for understanding the ecosystem services trade-off effects and driving mechanisms in ecologically fragile areas. Front. Plant Sci. 2025, 16, 1552818. [Google Scholar] [CrossRef] [PubMed]
- Fahrig, L. Effects of habitat fragmentation on biodiversity. Annu. Rev. Ecol. Evol. Syst. 2003, 34, 487–515. [Google Scholar] [CrossRef]
- Gaillard, J.-M.; Hebblewhite, M.; Loison, A.; Fuller, M.; Powell, R.; Basille, M.; Van Moorter, B. Habitat–performance relationships: Finding the right metric at a given spatial scale. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 2255–2265. [Google Scholar] [CrossRef]
- Qiu, M.; Zuo, Q.; Wu, Q.; Yang, Z.; Zhang, J. Water ecological security assessment and spatial autocorrelation analysis of prefectural regions involved in the Yellow River Basin. Sci. Rep. 2022, 12, 5105. [Google Scholar] [CrossRef]
- Ding, M.; Liu, W.; Xiao, L.; Zhong, F.; Lu, N.; Zhang, J.; Zhang, Z.; Xu, X.; Wang, K. Construction and optimization strategy of ecological security pattern in a rapidly urbanizing region: A case study in central-south China. Ecol. Indic. 2022, 136, 108604. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Rong, W. Construction of ecological network in Suzhou based on the PLUS and MSPA models. Ecol. Indic. 2023, 154, 110740. [Google Scholar] [CrossRef]
- Huang, J.; Hu, Y.; Zheng, F. Research on recognition and protection of ecological security patterns based on circuit theory: A case study of an City. Environ. Sci. Pollut. Res. 2020, 27, 12414–12427. [Google Scholar] [CrossRef]
- Li, F.; Ye, Y.; Song, B. Evaluation of urban suitable ecological land based on the minimum cumulative resistance model: A case study from Changzhou, China. Ecol. Model. 2015, 318, 194–203. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Song, Y. Study on the construction of the ecological security pattern of the lancang river basin (Yunnan section) based on inVEST-MSPA-circuit theory. Sustainability 2022, 15, 477. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2019, 33, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Adriaensen, F.; Chardon, J.; De Blust, G.; Swinnen, E.; Villalba, S.; Gulinck, H.; Matthysen, E. The application of ‘least-cost’ modelling as a functional landscape model. Landsc. Urban Plan. 2003, 64, s0169–s2046. [Google Scholar] [CrossRef]
- Shu, Y.; Hu, Y.; Leng, W.; Zhu, S.; Shan, K. Habitat selection of red crowned crane in Yellow River Delta. Chin. J. Ecol. 2006, 25, 954. [Google Scholar] [CrossRef]
- Birch, C.P.D.; Oom, S.P.; Beecham, J.A. Rectangular and hexagonal grids used for observation, experiment and simulation in ecology. Ecol. Model. 2007, 206, 347–359. [Google Scholar] [CrossRef]
- Jurasinski, G.; Beierkuhnlein, C. Spatial patterns of biodiversity-assessing vegetation using hexagonal grids. Biol. Environ. Proc. R. Ir. Acad. 2006, 106, 401–411. [Google Scholar] [CrossRef]
- Theobald, D.M. Estimating natural landscape changes from 1992 to 2030 in the conterminous US. Landsc. Ecol. 2010, 25, 999–1011. [Google Scholar] [CrossRef]
- Legendre, P.; Fortin, M.J. Spatial pattern and ecological analysis. Vegetatio 1989, 80, 107–138. [Google Scholar] [CrossRef]
- Griffith, D.A. Effective geographic sample size in the presence of spatial autocorrelation. Ann. Assoc. Am. Geogr. 2005, 95, 740–760. [Google Scholar] [CrossRef]
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Manly, B.F.J. Randomization, Bootstrap and Monte Carlo Methods in Biology; Chapman and Hall/CRC: New York, NY, USA, 2018. [Google Scholar] [CrossRef]
- Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses; Springer: New York, NY, USA, 2005. [Google Scholar] [CrossRef]
- Anderson, M.J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 2001, 26, 32–46. [Google Scholar] [CrossRef]
- Anderson, M.J.; Walsh, D.C.I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing? Ecol. Monogr. 2013, 83, 557–574. [Google Scholar] [CrossRef]
- Hu, J.; Qing, G.; Wang, Y. Landscape ecological security of the lijiang river basin in China: Spatiotemporal evolution and pattern optimization. Sustainability 2024, 16, 5777. [Google Scholar] [CrossRef]
- Yang, H.; Flower, R.J.; Thompson, J.R. Rural factories won’t fix Chinese pollution. Nature 2012, 490, 342–343. [Google Scholar] [CrossRef]
- Cai, Z.; Zhang, Z.; Zhao, F. Assessment of eco-environmental quality changes and spatial heterogeneity in the Yellow River Delta based on the remote sensing ecological index and geo-detector model. Ecol. Inform. 2023, 77, 102203. [Google Scholar] [CrossRef]
- Yan, J.; Li, J.; Yao, X. Ecological security pattern construction based on landscape ecological risk assessment in the Yellow River basin. Front. Environ. Sci. 2025, 13, 1514599. [Google Scholar] [CrossRef]
- Lu, C.; Cai, X.; Hao, C. Trade-offs and Synergies in Ecosystem Services of the High-Efficiency Ecological Economic Zone in the Yellow River Delta. J. Appl. Ecol. 2024, 35, 457–468. [Google Scholar] [CrossRef]
- Li, D.; Xu, H.; Tang, J. Countermeasures for the management of ecological environment in the Shandong section of the lower Yellow River. Environ. Prot. 2023, 51, 23–26. [Google Scholar] [CrossRef]
- Zhang, J.; Yan, F.; Lyne, V. Monitoring of ecological security patterns based on long-term land use changes in Langsa Bay, Indonesia. Int. J. Digit. Earth 2025, 18, 2495740. [Google Scholar] [CrossRef]
- Sun, Y.; Dong, Y.; Chen, X. Dynamic evaluation of ecological and economic security: Analysis of China. J. Clean. Prod. 2023, 387, 135922. [Google Scholar] [CrossRef]
- Li, C.; Chunjuan, W.; Fei, X. Integrating Ecological Security Pattern and Sustainable Development Goals: A Multi-Scale Framework for Arid Cities. Land Degrad. Dev. 2025. [Google Scholar] [CrossRef]
- Lai, S.; Li, X.; Sha, J. Comprehensive evaluation and future trend prediction of ecological security in Fuzhou City: A DIKW framework and multi-model integration analysis. Hum. Ecol. Risk Assess. Int. J. 2024, 30, 833–857. [Google Scholar] [CrossRef]
- Bai, Y.; Zhao, J.; Shen, H.; Li, X.; Wen, B. The Evolution of Forest Landscape Connectivity and Ecological Network Construction: A Case Study of Zhejiang’s Ecological Corridors. Sustainability 2024, 16, 5868. [Google Scholar] [CrossRef]
- Bosso, L.; Panzuto, R.; Balestrieri, R.; Smeraldo, S.; Chiusano, M.L.; Raffini, F.; Canestrelli, D.; Musco, L.; Gili, C. Integrating citizen science and spatial ecology to inform management and conservation of the Italian seahorses. Ecol. Inform. 2024, 79, 102402. [Google Scholar] [CrossRef]
Data Type | Data Name | Original Resolution | Data Source |
---|---|---|---|
Land use data | Land use data (2000, 2010, 2020) | 30 m | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/ (accessed on 20 September 2024) |
Natural factors data | DEM | 30 m | Shuttle Radar Topography Mission (SRTM) DEM https://earthexplorer.usgs.gov/ (accessed on 13 June 2025) |
Slope | 30 m | Geospatial Data Cloud https://www.gscloud.cn/ (accessed on 23 September 2024) | |
Annual average temperature Annual average precipitation | 1 km 1 km | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/ (accessed on 2 November 2024) | |
Soil type | 1 km | Harmonized World Soil Database https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/ (accessed on 2 November 2024) | |
evaporation | 1 km | National Earth System Science Data Sharing Service Platform https://nnu.geodata.cn/index.html (accessed on 2 November 2024) | |
NDVI | 1 km | MODIS/Terra Vegetation Indices https://search.earthdata.nasa.gov/ (accessed on 2 November 2024) | |
Socio-economic data | Population | 1 km | WorldPop https://hub.worldpop.org/ (accessed on 23 September 2024) |
GDP | 1 km | Resources and Environment Data Center, Chinese Academy of Sciences https://www.resdc.cn/ (accessed on 23 September 2024) | |
Accessibility data | Distance to residential point Distance to highway Distance to national highway Distance to provincial highway Distance to railroad Distance to water | 30 m 30 m 30 m 30 m 30 m 30 m | OpenStreetMap https://www.openstreetmap.org/#map=11/1.3649/103.8229 (accessed on 24 September 2024), Calculating Euclidean Distances Using ArcGIS |
Type | Driving Factors |
---|---|
Natural factors | DEM Slope Soil Annual average temperature Annual average precipitation |
Socio-economic data | GDP POP |
Accessibility data | Distance to water Distance to residential point Distance to highway Distance to railroad Distance to national highway Distance to provincial highway |
Cropland | Forestland | Grassland | Water | Construction Land | Unused Land | |
---|---|---|---|---|---|---|
Neighborhood Weight | 0.10 | 0.38 | 0.24 | 1 | 0.74 | 0.31 |
Resistance Factor | Weights | |||
---|---|---|---|---|
2020 | BAU | PUD | PEP | |
Land use type | 0.19 | 0.14 | 0.26 | 0.32 |
NDVI | 0.09 | 0.10 | 0.07 | 0.10 |
Distance to water | 0.09 | 0.29 | 0.07 | 0.10 |
Distance to railroad | 0.31 | 0.22 | 0.29 | 0.23 |
Distance to residential point | 0.31 | 0.22 | 0.29 | 0.23 |
Consistency Ratio | 0.011 | 0.065 | 0.003 | 0.044 |
Landuse Type | Years and Different Scenarios | |||
---|---|---|---|---|
2020 | BAU | PEP | PUD | |
Cropland | 17,895.82 | 17,285.19 | 17,661.55 | 16,798.43 |
Forestland | 148.67 | 141.07 | 406.21 | 117.45 |
Grassland | 134.15 | 292.32 | 537.77 | 397.76 |
Water | 4327.75 | 4359.62 | 4339.66 | 4442.67 |
Construction land | 6063.12 | 6517.15 | 5633.86 | 6914.58 |
Unused land | 305.32 | 279.48 | 295.78 | 203.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, D.; Chen, W.; Zhu, X.; Xie, S.; Du, P.; Chen, X.; Lv, D. Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta. Sustainability 2025, 17, 9061. https://doi.org/10.3390/su17209061
Chen D, Chen W, Zhu X, Xie S, Du P, Chen X, Lv D. Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta. Sustainability. 2025; 17(20):9061. https://doi.org/10.3390/su17209061
Chicago/Turabian StyleChen, Danning, Weifeng Chen, Xincun Zhu, Shugang Xie, Peiyu Du, Xiaolong Chen, and Dong Lv. 2025. "Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta" Sustainability 17, no. 20: 9061. https://doi.org/10.3390/su17209061
APA StyleChen, D., Chen, W., Zhu, X., Xie, S., Du, P., Chen, X., & Lv, D. (2025). Multi-Scenario Simulation and Restoration Strategy of Ecological Security Pattern in the Yellow River Delta. Sustainability, 17(20), 9061. https://doi.org/10.3390/su17209061