Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO2 Emissions, and Socio-Economic Factors
Abstract
1. Introduction
2. Literature Review
3. Methodology
3.1. Data
3.2. Core Econometric Methods for Panel Data Analysis
3.2.1. Testing for Cross-Sectional Dependence
3.2.2. Panel Data Unit Root Analysis
3.2.3. Cointegration Test
3.3. Specification of the Standard EKC Model
3.3.1. Panel ARDL Model
3.3.2. Pooled Mean Group (PMG) and Mean Group (MG) Estimators
3.3.3. Appropriate U–Test
3.4. Panel Causality Test
4. Results and Discussion
4.1. Fundamental Panel Econometric Analysis
4.1.1. Descriptive Statistics
4.1.2. Cross-Sectional Dependence Test Results
4.1.3. Panel Unit-Root Test Results
4.1.4. Results from the Panel Cointegration Analysis
4.2. Panel ARDL Estimation Results
4.3. Causality Link Between Variables
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Alvarado, R.; Ponce, P.; Criollo, A.; Córdova, K.; Khan, M.K. Environmental Degradation and Real per Capita Output: New Evidence at the Global Level Grouping Countries by Income Levels. J. Clean. Prod. 2018, 189, 13–20. [Google Scholar] [CrossRef]
- World Bank World Bank National Accounts Data. 2023. Available online: https://databank.worldbank.org/CO2-emission/id/4c817707 (accessed on 30 May 2023).
- Bekun, F.V.; Gyamfi, B.A.; Onifade, S.T.; Agboola, M.O. Beyond the Environmental Kuznets Curve in E7 Economies: Accounting for the Combined Impacts of Institutional Quality and Renewables. J. Clean. Prod. 2021, 314, 127924. [Google Scholar] [CrossRef]
- Zhai, P.; Pörtner, H.O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; Connors, S.; et al. IPCC Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C Above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Milkoreit, M. The Paris Agreement on Climate Change—Made in USA? Perspect. Politics 2019, 17, 1019–1037. [Google Scholar] [CrossRef]
- Eckersley, R. Rethinking Leadership: Understanding the Roles of the US and China in the Negotiation of the Paris Agreement. Eur. J. Int. Relat. 2020, 26, 1178–1202. [Google Scholar] [CrossRef]
- Fuhr, H. The Rise of the Global South and the Rise in Carbon Emissions. Third World Q. 2021, 42, 2724–2746. [Google Scholar] [CrossRef]
- Desanker, P.V. Impact of Climate Change on Life in Africa. 2002. Available online: https://wwflac.awsassets.panda.org/downloads/wwfbinaryitem4926.pdf (accessed on 30 May 2023).
- Busby, J.W.; Smith, T.G.; White, K.L.; Strange, S.M. Locating Climate Insecurity: Where Are the Most Vulnerable Places in Africa? Climate Change, Human Security and Violent Conflict, 8; Springer: Berlin/Heidelberg, Germany, 2012; pp. 463–511. ISBN 9783642286261. [Google Scholar]
- Simbi, C.H.; Yao, F.; Zhang, J.; Lin, J.; Seka, A.M.; Magati, M.T.; Hirwa, H.; Murekezi, J.S. Decoupling for a Greener Future: A Spatio-Temporal Analysis of CO2 Emissions and Economic Growth. Environ. Sci. Pollut. Res. 2023, 31, 56886–56900. [Google Scholar] [CrossRef]
- Fotso-Nguemo, T.C.; Weber, T.; Diedhiou, A.; Chouto, S.; Vondou, D.A.; Rechid, D.; Jacob, D. Projected Impact of Increased Global Warming on Heat Stress and Exposed Population Over Africa. Earth’s Future 2023, 11, e2022EF003268. [Google Scholar] [CrossRef]
- Htike, M.M.; Shrestha, A.; Kakinaka, M. Investigating Whether the Environmental Kuznets Curve Hypothesis Holds for Sectoral CO2 Emissions: Evidence from Developed and Developing Countries. Environ. Dev. Sustain. 2021, 24, 12712–12739. [Google Scholar] [CrossRef]
- Olubusoye, O.E.; Musa, D. Carbon Emissions and Economic Growth in Africa: Are They Related? Cogent Econ. Financ. 2020, 8, 1850400. [Google Scholar] [CrossRef]
- Tuyishimire, A.; Liu, Y.; Yin, J.; Kou, L.; Lin, S.; Lin, J.; Kubwimana, J.J.; Moharrami, K.; Simbi, C.H. Drivers of the Increasing Water Footprint in Africa: The Food Consumption Perspective. Sci. Total Environ. 2022, 809, 152196. [Google Scholar] [CrossRef]
- Erdoğan, S.; Onifade, S.T.; Altuntaş, M.; Bekun, F.V. Synthesizing Urbanization and Carbon Emissions in Africa: How Viable Is Environmental Sustainability amid the Quest for Economic Growth in a Globalized World? Environ. Sci. Pollut. Res. 2022, 29, 24348–24361. [Google Scholar] [CrossRef]
- Eckstein, D.; Künzel, V.; Schäfer, L.; Winges, M. Global Climate Risk Index 2020 Who Suffers Most from Extreme Weather Events? Weather-Related Loss Events in 2018 and 1999 to 2018; Germanwatch e.V.: Berlin, Germany, 2020; ISBN 9783943704778. [Google Scholar]
- Hanif, I. Impact of Economic Growth, Nonrenewable and Renewable Energy Consumption, and Urbanization on Carbon Emissions in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2018, 25, 15057–15067. [Google Scholar] [CrossRef] [PubMed]
- Habimana Simbi, C.; Lin, J.; Yang, D.; Ndayishimiye, J.C.; Liu, Y.; Li, H.; Xu, L.; Ma, W. Decomposition and Decoupling Analysis of Carbon Dioxide Emissions in African Countries during 1984–2014. J. Environ. Sci. 2021, 102, 85–98. [Google Scholar] [CrossRef] [PubMed]
- The World Economic Forum. The Global Risks Report 2019, 14th ed.; Africa’s Fastest-Growing Cities Are the Most Vulnerable to Climate Change Globally; World Economic Forum: Geneva, Switzerland, 2019. [Google Scholar]
- Tenaw, D. Is Carbon Decoupling Likely to Happen in Africa: Evidence from Production and Consumption-Based Carbon Emissions. Res. Sq. 2020. [Google Scholar] [CrossRef]
- African Economic Outlook African Economic Outlook Developing Africa’s Workforce for the Future; African Development Bank Group: Abidjan, Cote d’Ivoire, 2020.
- Kalisa, W.; Zhang, J.; Igbawua, T.; Kayiranga, A.; Ujoh, F.; Aondoakaa, I.S.; Tuyishime, P.; Li, S.; Simbi, C.H.; Nibagwire, D. Spatial Multi-Criterion Decision Making (Smdm) Drought Assessment and Sustainability over East Africa from 1982 to 2015. Remote Sens. 2021, 13, 5067. [Google Scholar] [CrossRef]
- Musah, M.; Kong, Y.; Mensah, I.A.; Antwi, S.K.; Osei, A.A.; Donkor, M. Modelling the Connection between Energy Consumption and Carbon Emissions in North Africa: Evidence from Panel Models Robust to Cross-Sectional Dependence and Slope Heterogeneity. Environ. Dev. Sustain. 2021, 23, 15225–15239. [Google Scholar] [CrossRef]
- Acheampong, A.O.; Adams, S.; Boateng, E. Do Globalization and Renewable Energy Contribute to Carbon Emissions Mitigation in Sub-Saharan Africa? Sci. Total Environ. 2019, 677, 436–446. [Google Scholar] [CrossRef]
- Jian, L.; Chuimin, K.; Jijian, Z.; Yusheng, K.; Ntarmah, A.H. The Relationship between Economic Growth and Environmental Degradation: Could West African Countries Benefit from EKC Hypothesis? Environ. Sci. Pollut. Res. 2022, 29, 73052–73070. [Google Scholar] [CrossRef]
- Mensah, I.A.; Sun, M.; Gao, C.; Omari-Sasu, A.Y.; Zhu, D.; Ampimah, B.C.; Quarcoo, A. Analysis on the Nexus of Economic Growth, Fossil Fuel Energy Consumption, CO2 Emissions and Oil Price in Africa Based on a PMG Panel ARDL Approach. J. Clean. Prod. 2019, 228, 161–174. [Google Scholar] [CrossRef]
- Halliru, A.M.; Loganathan, N.; Golam Hassan, A.A.; Mardani, A.; Kamyab, H. Re-Examining the Environmental Kuznets Curve Hypothesis in the Economic Community of West African States: A Panel Quantile Regression Approach. J. Clean. Prod. 2020, 276, 124247. [Google Scholar] [CrossRef]
- Ahmed, S.; Yoon, W.; Jo, H.; Irshad, M.; Kashif, M.; Kim, J. Structure-Activity Relationship and Deactivation Behavior of Iron Oxide during CO2 Hydrogenation. Chem. Eng. J. 2024, 499, 156104. [Google Scholar] [CrossRef]
- Kuznets, S. Economic Growth and the Environment. Am. Econ. Assoc. 1995, 45, 353–377. [Google Scholar] [CrossRef]
- Mitić, P.; Kresoja, M.; Jelena, M. A Literature Survey on Environmental Kuznets Curve. Econ. Anal. 2019, 52, 109–127. [Google Scholar] [CrossRef]
- Onifade, S.T. Retrospecting on Resource Abundance in Leading Oil-Producing African Countries: How Valid Is the Environmental Kuznets Curve (EKC) Hypothesis in a Sectoral Composition Framework? Environ. Sci. Pollut. Res. 2022, 29, 52761–52774. [Google Scholar] [CrossRef]
- Khan, I.; Hou, F.; Le, H.P. The Impact of Natural Resources, Energy Consumption, and Population Growth on Environmental Quality: Fresh Evidence from the United States of America. Sci. Total Environ. 2021, 754, 142222. [Google Scholar] [CrossRef]
- Bader, Y.; Ganguli, S. Analysis of the Association between Economic Growth, Environmental Quality and Health Standards in the Gulf Cooperation Council during 1980–2012. Manag. Environ. Qual. Int. J. 2019, 30, 1050–1071. [Google Scholar] [CrossRef]
- Demissew Beyene, S.; Kotosz, B. Testing the Environmental Kuznets Curve Hypothesis: An Empirical Study for East African Countries. Int. J. Environ. Stud. 2020, 77, 636–654. [Google Scholar] [CrossRef]
- Selden, T.M.; Song, D. Environmental Quality and Development: Is There a Kuznets Curve for Air Pollution Emissions? J. Environ. Econ. Manag. 1994, 27, 147–162. [Google Scholar] [CrossRef]
- Grossman, G.; Krueger, A.B. Economic Growth and the Environment. Q. J. Econ. 1995, 110, 353–377. [Google Scholar] [CrossRef]
- Panayotou, T. Demystifying the Environmental Kuznets Curve: Turning a Black Box into a Policy Tool. Environ. Dev. Econ. 1997, 2, 465–484. [Google Scholar] [CrossRef]
- Roy Chowdhury, R.; Moran, E.F. Turning the Curve: A Critical Review of Kuznets Approaches. Appl. Geogr. 2012, 32, 3–11. [Google Scholar] [CrossRef]
- Stern, D.I. The Rise and Fall of the Environmental Kuznets Curve. World Dev. 2004, 32, 1419–1439. [Google Scholar] [CrossRef]
- Dinda, S. Environmental Kuznets Curve Hypothesis: A Survey. Ecol. Econ. 2004, 49, 431–455. [Google Scholar] [CrossRef]
- Bah, M.M.; Abdulwakil, M.M.; Azam, M. Income Heterogeneity and the Environmental Kuznets Curve Hypothesis in Sub-Saharan African Countries. GeoJournal 2020, 85, 617–628. [Google Scholar] [CrossRef]
- Ajanaku, B.A.; Collins, A.R. Economic Growth and Deforestation in African Countries: Is the Environmental Kuznets Curve Hypothesis Applicable? For. Policy Econ. 2021, 129, 102488. [Google Scholar] [CrossRef]
- Beyene, S.D. Human Activities and Environmental Quality: Evidence beyond the Conventional EKC Hypothesis. Heliyon 2022, 8, e10756. [Google Scholar] [CrossRef]
- Lin, B.; Omoju, O.E.; Nwakeze, N.M.; Okonkwo, J.U.; Megbowon, E.T. Is the Environmental Kuznets Curve Hypothesis a Sound Basis for Environmental Policy in Africa? J. Clean. Prod. 2016, 133, 712–724. [Google Scholar] [CrossRef]
- Bibi, F.; Jamil, M. Testing Environment Kuznets Curve (EKC) Hypothesis in Different Regions. Environ. Sci. Pollut. Res. 2021, 28, 13581–13594. [Google Scholar] [CrossRef]
- KEHO, Y. An Econometric Study of the Long-Run Determinants of CO2 Emissions in Cote d’Ivoire. J. Financ. Econ. 2015, 3, 11–21. [Google Scholar] [CrossRef]
- Ogundipe, A.A.; Olurinola, O.I.; Odebiyi, J.T. Examining the Validity of EKC in Western Africa: Different Pollutants Option. Environ. Manag. Sustain. Dev. 2015, 4, 69. [Google Scholar] [CrossRef]
- Saqib, M.; Benhmad, F. Updated Meta-Analysis of Environmental Kuznets Curve: Where Do We Stand? Environ. Impact Assess. Rev. 2021, 86, 106503. [Google Scholar] [CrossRef]
- Kayiranga, A.; Li, Z.; Isabwe, A.; Ke, X.; Simbi, C.H.; Ifon, B.E.; Yao, H.; Wang, B.; Sun, X. The Effects of Heavy Metal Pollution on Collembola in Urban Soils and Associated Recovery Using Biochar Remediation: A Review. Int. J. Environ. Res. Public Health 2023, 20, 3077. [Google Scholar] [CrossRef] [PubMed]
- Hirwa, H.; Li, F.; Measho, S.; Chen, G.; Muhirwa, F.; Zhang, Q.; Kayiranga, A.; Qiao, Y.; Leng, P.; Tian, C.; et al. Understanding Grain Virtual Water Flux Dynamics and Drivers from a Socio-Ecohydrological Perspective: A Case Study of Landlocked Developing Countries of Africa. J. Clean. Prod. 2023, 413, 137555. [Google Scholar] [CrossRef]
- Sugiawan, Y.; Kurniawan, R.; Managi, S. Are Carbon Dioxide Emission Reductions Compatible with Sustainable Well-Being? Appl. Energy 2019, 242, 1–11. [Google Scholar] [CrossRef]
- Li, C.; Sampene, A.K.; Agyeman, F.O.; Brenya, R.; Wiredu, J. The Role of Green Finance and Energy Innovation in Neutralizing Environmental Pollution: Empirical Evidence from the MINT Economies. J. Environ. Manag. 2022, 317, 115500. [Google Scholar] [CrossRef]
- Sadik-Zada, E.R.; Ferrari, M. Environmental Policy Stringency, Technical Progress and Pollution Haven Hypothesis. Sustainability 2020, 12, 3880. [Google Scholar] [CrossRef]
- Shahbaz, M.; Solarin, S.A.; Ozturk, I. Environmental Kuznets Curve Hypothesis and the Role of Globalization in Selected African Countries. Ecol. Indic. 2016, 67, 623–636. [Google Scholar] [CrossRef]
- Aminu, N.; Clifton, N.; Mahe, S. From Pollution to Prosperity: Investigating the Environmental Kuznets Curve and Pollution-Haven Hypothesis in Sub-Saharan Africa’s Industrial Sector. J. Environ. Manag. 2023, 342, 118147. [Google Scholar] [CrossRef]
- Djellouli, N.; Abdelli, L.; Elheddad, M.; Ahmed, R.; Mahmood, H. The Effects of Nonrenewable Energy, Renewable Energy, Economic Growth, and Foreign Direct Investment on the Sustainability of African Countries. Renew. Energy 2022, 183, 676–686. [Google Scholar] [CrossRef]
- Ntarmah, A.H.; Kong, Y.; Manu, E.K. Investigating the Dynamic Relationships between Credit Supply, Economic Growth, and the Environment: Empirical Evidence of Sub-Regional Economies in Sub-Saharan Africa. Environ. Sci. Pollut. Res. 2021, 28, 5786–5808. [Google Scholar] [CrossRef]
- Ntarmah, A.H.; Kong, Y.; Obeng, A.F.; Gyedu, S. The Role of Bank Financing in Economic Growth and Environmental Outcomes of Sub-Saharan Africa: Evidence from Novel Quantile Regression and Panel Vector Autoregressive Models; Springer: Berlin/Heidelberg, Germany, 2022; Volume 29, ISBN 0123456789. [Google Scholar]
- Tachega, M.A.; Yao, X.; Liu, Y.; Ahmed, D.; Ackaah, W.; Gabir, M.; Gyimah, J. Income Heterogeneity and the Environmental Kuznets Curve Turning Points: Evidence from Africa. Sustainability 2021, 13, 5634. [Google Scholar] [CrossRef]
- Phiri, A.; Tembo, D. Ecological Based Environmental Kuznets Curve for Africa: Evidence from the Fishery Sector at Continental, Regional and Country-Specific Levels. Cogent Econ. Financ. 2023, 11, 2225917. [Google Scholar] [CrossRef]
- Simbi, C.H.; Yao, F.; Zhang, J.; Tenaw, D.; Sugira Murekezi, J.; Magati, M.T.; Hirwa, H.; Al-Sakkaf, A.S.; Kayiranga, A.; Peng, J. Balancing Growth and Preservation: Unravelling Africa’s Carbon-Economic Nexus Through the Environmental Kuznets Curve. Heliyon 2024, 10, e39269. [Google Scholar] [CrossRef]
- Ritchie, H.; And, M.R.; Rosado, P. CO2 and Greenhouse Gas Emissions. Publish Online OurWorldInData.org. Available online: https://ourworldindata.org/co2-and-other-greenhouse-gas-emissions (accessed on 26 May 2022).
- Tenaw, D.; Hawitibo, A.L. Carbon Decoupling and Economic Growth in Africa: Evidence from Production and Consumption-Based Carbon Emissions. Resour. Environ. Sustain. 2021, 6, 100040. [Google Scholar] [CrossRef]
- Chudik, A. Center for Applied Financial Economics (CAFE) Large Panel Data Models with Cross-Sectional Dependence: A Survey Large Panel Data Models with Cross-Sectional Dependence: A Survey; CESifo: Munich, Germany, 2013. [Google Scholar]
- Pesaran, M.H. General Diagnostic Tests for Cross Section Dependence in Panels. No. 435 and CESifo Working Paper Series. Cambridge Work Papers. Economics 2004, 1229, 1. [Google Scholar] [CrossRef]
- Pesaran, M.H. Testing Weak Cross-Sectional Dependence in Large Panels. Econom. Rev. 2015, 34, 1089–1117. [Google Scholar] [CrossRef]
- Levin, A.; Lin, C.F.; Chu, C.S.J. Unit Root Tests in Panel Data: Asymptotic and Finite-Sample Properties. J. Econom. 2002, 108, 1–24. [Google Scholar] [CrossRef]
- Im, K.S.; Pesaran, M.H.; Shin, Y. Testing for Unit Roots in Heterogeneous Panels. J. Econom. 2003, 115, 53–74. [Google Scholar] [CrossRef]
- Dickey, D.A.; Fuller, W.A. Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root. Econometrica 1981, 49, 1057. [Google Scholar] [CrossRef]
- Phillips, P.C.B.; Perron, P. Testing for a Unit Root in Time Series Regression. Biometrika 1988, 75, 335–346. [Google Scholar] [CrossRef]
- Kao, C. Spurious Regression and Residual-Based Tests for Cointegration in Panel Data. J. Econom. 1999, 90, 1–44. [Google Scholar] [CrossRef]
- Pedroni, P. Panel Cointegration: Asymptotic and Finite Sample Properties of Pooled Time Series Tests with an Application to the PPP Hypothesis. Econom. Theory 2004, 20, 597–625. [Google Scholar] [CrossRef]
- Pedroni, P. Critical Values for Cointegration Tests in Heterogeneous Panels with Multiple Regressors. Oxf. Bull. Econ. Stat. 1999, 61, 653–670. [Google Scholar] [CrossRef]
- Westerlund, J. Testing for Error Correction in Panel Data. Oxf. Bull. Econ. Stat. 2007, 6, 709–748. [Google Scholar] [CrossRef]
- Grossman, G.M.; Krueger, A.B. Environmental Impacts of a North American Free Trade Agreement; National Bureau of Economic Research, Inc.: Cambridge, MA, USA, 1991. [Google Scholar]
- Panayotou, T. Empirical Tests and Policy Analysis of Environmental Degradation at Different Stages of Economic Development; International Labour Office: Geneva, Switzerland, 1994; Volume 4, Available online: https://webapps.ilo.org/public/libdoc/ilo/1993/93B09_31_engl.pdf (accessed on 24 June 2022)ISBN 9221087964.
- Brock, W.A.; Taylor, M.S. The Green Solow Model. J. Econ. Growth 2010, 15, 127–153. [Google Scholar] [CrossRef]
- Kijima, M.; Nishide, K.; Ohyama, A. Economic Models for the Environmental Kuznets Curve: A Survey. J. Econ. Dyn. Control 2010, 34, 1187–1201. [Google Scholar] [CrossRef]
- Tenaw, D.; Beyene, A.D. Environmental Sustainability and Economic Development in Sub-Saharan Africa: A Modified EKC Hypothesis. Renew. Sustain. Energy Rev. 2021, 143, 110897. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pesaran, M.H.; Shin, Y.; Smith, R.P. Pooled Mean Group Estimation of Dynamic Heterogeneous Panels. J. Am. Stat. Assoc. 1999, 94, 621–634. [Google Scholar] [CrossRef]
- Lee, Y.M.; Wang, K.M. Dynamic Heterogeneous Panel Analysis of the Correlation between Stock Prices and Exchange Rates. Econ. Res. Istraz. 2015, 28, 749–772. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Smith, R. Estimating Long-Run Relationships from Dynamic Heterogeneous Panels. J. Econom. 1995, 68, 79–113. [Google Scholar] [CrossRef]
- Chu, J.F.; Sek, S.K. Investigating the Relationship between Inflation and Growth: Evidence from Panel ARDL Models. AIP Conf. Proc. 2014, 1605, 943–948. [Google Scholar] [CrossRef]
- Satari Yuzbashkandi, S.; Aghaei Sadi, M. Petroleum Production Impacts on the Economic Growth of the OPEC Countries: Panel ARDL Approach. SN Appl. Sci. 2020, 2, 693. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification Tests in Econometrics. Appl. Econom. 2015, 38, 112–134. [Google Scholar] [CrossRef]
- Haans, R.F.J.; Pieters, C.; He, Z.-L. Thinking about U: Theorizing and Testing U- and Inverted U-Shaped Relationships in Strategy Research. Strateg. Manag. J. 2016, 37, 1177–1195. [Google Scholar] [CrossRef]
- Lind, J.T.; Mehlum, H.W. The Appropriate Test Fora U-Shaped Relationship. Oxf. Bull. Econ. Stat. 2010, 72, 109–118. [Google Scholar] [CrossRef]
- Alola, A.A.; Kirikkaleli, D. The Nexus of Environmental Quality with Renewable Consumption, Immigration, and Healthcare in the US: Wavelet and Gradual-Shift Causality Approaches. Environ. Sci. Pollut. Res. 2019, 26, 35208–35217. [Google Scholar] [CrossRef]
- Çoban, O.; Onifade, S.T.; Yussif, A.R.B.; Haouas, I. Reconsidering Trade and Investment-Led Growth Hypothesis: New Evidence from Nigerian Economy. J. Int. Stud. 2020, 13, 98–110. [Google Scholar] [CrossRef]
- Akadiri, S.S.; Bekun, F.V.; Sarkodie, S.A. Contemporaneous Interaction between Energy Consumption, Economic Growth and Environmental Sustainability in South Africa: What Drives What? Sci. Total Environ. 2019, 686, 468–475. [Google Scholar] [CrossRef]
- Boukhelkhal, A. Energy Use, Economic Growth and CO2 Emissions in Africa: Does the Environmental Kuznets Curve Hypothesis Exist? New Evidence from Heterogeneous Panel under Cross-Sectional Dependence. Environ. Dev. Sustain. 2022, 24, 13083–13110. [Google Scholar] [CrossRef]
- Dumitrescu, E.-I.; Hurlin, C. Testing for Granger Non-Causality in Heterogeneous Panels to Cite This Version: HAL Id: Halshs-00224434 Testing for Granger Non-Causality in Heterogeneous Panels. Econ. Model. 2012, 29, 450–1460. [Google Scholar]
- Al-Sakkaf, A.S.; Zhang, J.; Yao, F.; Hamed, M.M.; Simbi, C.H.; Ahmed, A.; Shahid, S. Assessing Exposure to Climate Extremes over the Arabian Peninsula Using ERA5 Reanalysis Data: Spatial Distribution and Temporal Trends. Atmos. Res. 2024, 300, 107224. [Google Scholar] [CrossRef]
- World Bank Country Classifications Data. Available online: https://blogs.worldbank.org/en/opendata/world-bank-country-classifications-by-income-level-for-2024-2025 (accessed on 26 May 2023).
- UN-WPP. World Population Prospects 2019: Methodology of the United Nations Population Estimates and Projections (ST/ESA/SER.A/425); UN-WPP: New York, NY, USA, 2019; Available online: https://www.un.org/development/desa/pd/sites/www.un.org.development.desa.pd/files/files/documents/2020/Jan/un_2019_wpp_methodology.pdf (accessed on 30 June 2023).
- IEA. Africa Energy Outlook 2022; IEA: Paris, France, 2022. [Google Scholar] [CrossRef]
- Attiaoui, I.; Toumi, H.; Ammouri, B.; Gargouri, I. Causality Links among Renewable Energy Consumption, CO2 Emissions, and Economic Growth in Africa: Evidence from a Panel ARDL-PMG Approach. Environ. Sci. Pollut. Res. 2017, 24, 13036–13048. [Google Scholar] [CrossRef] [PubMed]
- Marques, A.C.; Fuinhas, J.A.; Tomás, C. Energy Efficiency and Sustainable Growth in Industrial Sectors in European Union Countries: A Non-linear ARDL Approach. J. Clean. Prod. 2019, 239, 118045. [Google Scholar] [CrossRef]
- Schröder, E.; Storm, S. Economic Growth and Carbon Emissions: The Road to “Hothouse Earth” Is Paved with Good Intentions. Int. J. Political Econ. 2020, 49, 153–173. [Google Scholar] [CrossRef]
- Oyeniran, W.I.; Babatunde, K.A. Growth Thresholds and Environmental Degradation in Sub-Saharan African Countries: An Exploration of Kuznets Hypothesis. Int. J. Manag. Account. Econ. 2015, 2, 858–871. [Google Scholar]
- Wang, Q.; Zhang, F. The Effects of Trade Openness on Decoupling Carbon Emissions from Economic Growth—Evidence from 182 Countries. J. Clean. Prod. 2021, 279, 123838. [Google Scholar] [CrossRef]
- Esso, L.J.; Keho, Y. Energy Consumption, Economic Growth and Carbon Emissions: Cointegration and Causality Evidence from Selected African Countries. Energy 2016, 114, 492–497. [Google Scholar] [CrossRef]
Author(s) | Variables | Countries | Period | Method | Major Findings |
---|---|---|---|---|---|
[27] | CO2, GDP, TO, FD, HC, and BC | 6 | 1970–2017 | Panel quantile regression | U-shaped |
[17] | CO2, GDP, FEC, SFE, RNE, and Urb | 34 | 1995–2015 | GMM | Inverted U-shape |
[34] | CO2, GDP, GLOB, FDI, Pop, and POLIT | 12 | 1990–2013 | PMG | Bell-shaped |
[24] | CO2, GDP, REW, Pop, DCP, REG, FDI, TRADE | 46 | 1980–2015 | Fixed and random effect | Inverted U-shape |
[43] | EPI, HDI, GDP, OPN, TECH, GCF, and LAB | 38 | 2000–2018 | 2SLS, 3SLS, MVREG, and GMM | Non-linear |
[54] | CO2, EI, GDP, and GLOB | 19 | 1971–2012 | ARDL | U-shaped |
[25] | ED, GDP, REC, Urb, and IND | 16 | 1990–2018 | AMG, CCEMG, and Granger causality test | Monotonic increasing |
[55] | CO2, FDI, IP, FD, and E | 13 | 1995–2019 | FMOLS | Inverted U-shaped |
[56] | CO2, GDP | 20 | 2000–2015 | ARDL, PMG | Monotonic increasing |
[57] | CO2, GDP, BCR, REC, and Pop | 39 | 1990–2018 | VAR | U-shaped |
[58] | CO2, GDP, BF, and REC | 39 | 1990–2018 | VAR | Inverted U-shaped |
[59] | CO2, GDP, AGR, RE, and NRE | 54 | 1990–2015 | FMOLS | Inverted U-shape |
[60] | CFP, GDP, URB, INST, and TO | 48 | 1970–2019 | Panel quantile regression | N-shaped |
[61] | CO2, GDP, EC, and URB | 46 | 1990–2020 | ARDL, PMG, CCE-PMG | U-shaped |
Variable | Definition | Unit | Source |
---|---|---|---|
lnCO2 | Environmental degradation | CO2 emissions per capita (Metric tons per capita) | Our World In Data [62] |
lnGDP | Economic Growth | GDP per capita (Constant 2015 US$) | WDI Database [2] |
lnREC | Renewable Energy Consumption | Percentage of total energy consumption | Our World In Data [62] |
lnTO | Trade Openness | Total value of exports and imports of goods and services as a percentage of GDP | WDI Database [2] |
Urb | Urbanization | Percentage (%) of the population residing in urban areas. | WDI Database [2] |
Pop | Population Growth | Annual growth rate (%) | WDI Database [2] |
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
lnCO2 | −0.88 | 1.41 | −3.94 | 2.28 |
lnGDP | 7.29 | 0.93 | 5.25 | 9.73 |
lnTO | 4.06 | 0.47 | 2.30 | 5.40 |
lnREC | 3.75 | 1.25 | −2.81 | 4.58 |
Urb | 3.67 | 1.82 | −2.15 | 31.14 |
Pop | 2.32 | 1.32 | −16.88 | 16.63 |
Variable | CD-Test | p-Value | Correlation | Absolute Correlation |
---|---|---|---|---|
lnCO2 | 44.21 | 0.00 | 0.32 | 0.55 |
lnGDP | 52.86 | 0.00 | 0.38 | 0.67 |
lnGDP2 | 53.13 | 0.00 | 0.38 | 0.67 |
lnTO | 20.16 | 0.00 | 0.14 | 0.35 |
lnREC | 46.91 | 0.00 | 0.34 | 0.54 |
Urb | 20.42 | 0.00 | 0.15 | 0.39 |
Pop | 12.97 | 0.00 | 0.09 | 0.36 |
Variable | LLC | IPS | ADF | PP | Order of Integration | ||||
---|---|---|---|---|---|---|---|---|---|
Intercept | Intercept + Trend | Intercept | Intercept + Trend | Intercept | Intercept + Trend | Intercept | Intercept + Trend | ||
lnCO2 | −0.37 | 0.57 | 2.20 | 0.63 | 69.21 | 72.63 | 76.65 | 78.45 | I (1) |
D(lnCO2) | −12.29 * | −9.13 * | −16.64 * | −14.21 * | 402.30 * | 323.92 * | 803.42 * | 1154.80 * | |
lnGDP | −2.85 * | 1.93 | 2.19 | 2.46 | 55.58 | 70.26 | 58.75 | 88.58 *** | I (1) |
D(lnGDP) | −4.46 * | −3.43 * | −10.01 * | −7.38 * | 248.53 * | 196.50 * | 438.59 * | 424.38 * | |
lnGDP2 | −2.70 * | 1.98 | 1.14 | 1.58 | 57.12 | 73.18 | 61.82 | 75.87 | I (1) |
D(lnGDP2) | −4.34 * | −1.85 ** | −10.13 * | −6.54 * | 255.32 * | 192.04 * | 440.30 * | 386.67 * | |
lnREC | 3.40 | 7.61 | 4.11 | 2.90 | 43.59 | 43.22 | 57.44 | 318.52 * | I (1) |
D(lnREC) | −3.80 * | −1.52 *** | −14.26 * | −11.59 * | 344.02 * | 270.16 * | 647.38 * | 919.09 * | |
lnTO | −2.12 ** | −1.74 ** | −1.85 ** | −0.80 | 85.97 | 81.49 | 102.93 * | 104.50 * | I (1) |
D(lnTO) | −14.46 * | −12.34 * | −18.32 * | −15.89 * | 446.02 * | 361.46 * | 725.29 * | 1661.86 * | |
Urb | −5.18 * | −7.03 * | −9.25 * | −7.87 * | 251.03 * | 442.59 * | 258.12 * | 462.01 * | I (0) |
D(Urb) | – | – | – | – | – | – | – | – | |
Pop | −7.14 * | −6.26 * | −10.06 * | −7.64 * | 264.76 * | 217.67 * | 198.55 * | 158.51 * | I (0) |
D(Pop) | – | – | – | – | – | – | – | – |
Kao Cointegration Test | Statistic | p-Value |
---|---|---|
Modified Dickey–Fuller t | 0.91 | 0.18 |
Dickey–Fuller t | 0.29 | 0.39 |
Augmented Dickey–Fuller t | 1.08 | 0.14 |
Unadjusted modified Dickey–Fuller t | −1.40 *** | 0.08 |
Unadjusted Dickey–Fuller t | −1.44 *** | 0.08 |
Pedroni cointegration test | ||
Modified Phillips–Perron t | 4.77 * | 0.00 |
Phillips–Perron t | −3.12 * | 0.00 |
Augmented Dickey–Fuller t | −3.67 * | 0.00 |
Variables | PMG | |
---|---|---|
Long-run Coefficients | ln GDP | 1.18 * (0.00) |
ln GDP2 | −0.30 * (0.00) | |
ln TO | −0.03 (0.45) | |
ln REC | −0.05 *** (0.08) | |
Urb | 0.01 (0.38) | |
Pop | 0.11 * (0.00) | |
Short-run Coefficients | Error Correction | −0.22 * (0.00) |
ln GDP | 2.05 *** (0.08) | |
∆ln GDP2 | 1.19 *** (0.10) | |
∆ln TO | 0.03 (0.43) | |
∆ln REC | −2.33 * (0.00) | |
∆Urb | 0.04 (0.71) | |
∆Pop | 0.02 (0.87) | |
Constant | −0.09 ** (0.02) | |
Appropriate U-test | Turning point | 9.27 |
Interval | [5.25–9.73] | |
Slope at lower bound | 2.41 * (0.00) | |
Slope at upper bound | −0.27 ** (0.04) | |
Overall test | 1.81 ** (0.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Habimana Simbi, C.; Yao, F.; Zhang, J. Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO2 Emissions, and Socio-Economic Factors. Sustainability 2025, 17, 679. https://doi.org/10.3390/su17020679
Habimana Simbi C, Yao F, Zhang J. Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO2 Emissions, and Socio-Economic Factors. Sustainability. 2025; 17(2):679. https://doi.org/10.3390/su17020679
Chicago/Turabian StyleHabimana Simbi, Claudien, Fengmei Yao, and Jiahua Zhang. 2025. "Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO2 Emissions, and Socio-Economic Factors" Sustainability 17, no. 2: 679. https://doi.org/10.3390/su17020679
APA StyleHabimana Simbi, C., Yao, F., & Zhang, J. (2025). Sustainable Development in Africa: A Comprehensive Analysis of GDP, CO2 Emissions, and Socio-Economic Factors. Sustainability, 17(2), 679. https://doi.org/10.3390/su17020679