From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
SiO2 | Al2O3 | Fe2O3 | CaO | MgO | SO3 | LOI 1 | Na2Oeq * | |
---|---|---|---|---|---|---|---|---|
OPC | 18.12 | 5.21 | 3.03 | 62.06 | 2.70 | 3.21 | 3.98 | 0.72 |
WSA | 85.19 | 1.43 | 1.02 | 0.05 | 7.71 | 0.36 | 1.88 | 1.59 |
WSA (at 670 °C for 5 h) [39] | 68.70 | 3.73 | 2.58 | 7.84 | 2.68 | 2.34 | 7.32 | 4.60 |
3CaO.SiO2 (C3S) | 2CaO.SiO2 (C2S) | 3CaO.Al2O3 (C3A) | 4CaO.Al2O3. Fe2O3 (C4AF) |
---|---|---|---|
66.40 | 1.87 | 8.68 | 9.22 |
2.2. Methods
2.2.1. Air Quality Measurements
2.2.2. Preparation of WSA
2.2.3. Specimen Preparation
2.2.4. Experimental Procedure
3. Results and Discussion
3.1. Devastating Effects of Uncontrolled Stubble Burning on Air Pollution
3.2. Mechanical Properties
3.2.1. Compressive Strength Test
3.2.2. Flexural Strength Test
3.3. TGA, FT-IR, XRD, and SEM-EDS Analysis
Mix ID | Mass Loss (%) Temperature Range | ||
---|---|---|---|
0–250 °C Bound H2O [68,69,70] | 400–500 °C Ca (OH)2 (Dehydration) [68,69,70] | 1000 °C Total Mass Loss | |
PL | 7.01 | 1.76 | 29.34 |
WSA2.5 | 2.76 | 0.85 | 21.00 |
WSA5 | 3.07 | 0.26 | 19.65 |
WSA7.5 | 5.60 | 0.88 | 24.94 |
WSA10 | 5.04 | 0.92 | 25.00 |
3.4. Ultrasonic Pulse Velocity Test (UPV)
4. Conclusions and Recommendations
- A 5% WSA replacement (WSA5) achieves the highest compressive strength (48.42 MPa at 90 days) and flexural strength (7.93 MPa at 28 days), outperforming the control mix. Replacements above 7.5% result in diminished strength gains due to clinker dilution.
- SEM-EDS, XRD, and TGA analyses confirm that WSA enhances the formation of C–S–H gel and leads to almost complete consumption of CH.
- UPV testing shows improved internal matrix quality with WSA incorporation, especially at 7.5%. Thermal analysis reveals reduced bound water and CH content, indicating denser and more stable microstructures. However, care must be taken to avoid excessive carbonation and ASR risks, particularly at higher WSA dosages.
- The use of WSA supports circular economy principles by reducing clinker demand, offering a productive solution to agricultural waste management. The study associates the use of WSA with reduced uncontrolled stubble burning and reduced pollution levels in provinces such as Diyarbakir.
- This study quantitatively reveals the devastating impacts of the severe stubble fire on air quality in Diyarbakir between 20 and 24 June 2024. Ground-based measurements show that PM10 concentrations during the fire period reach 157 μg/m3, four times higher than the June average (≈35 μg/m3). Similarly, satellite (Sentinel-5P) measurements confirm the critical threat of agricultural burning on regional air quality and public health, with NO2 and SO2 levels increasing by 23% and 41%, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bakanlığı, T.V.O. Bitkisel Üretim Verileri. 2024. Available online: https://arastirma.tarimorman.gov.tr/ (accessed on 3 March 2025).
- USDA Foreign Agricultural Service. Global Wheat Production. 2024. Available online: https://fas.usda.gov/data/production/commodity/0410000 (accessed on 3 March 2025).
- Montero, G.; Coronado, M.A.; García, C.; Campbell, H.E.; Montes, D.G.; Torres, R.; Pérez, L.; León, J.A.; Ayala, J.R. Wheat straw open burning: Emissions and impact on climate change. In Global Wheat Production; IntechOpen: London, UK, 2018. [Google Scholar]
- Mohite, J.; Sawant, S.; Pandit, A.; Pappula, S. Impact of lockdown and crop stubble burning on air quality of India: A case study from wheat-growing region. Environ. Monit. Assess 2022, 194, 77. [Google Scholar] [CrossRef]
- Ajansı, A. Diyarbakır ve Mardin’de 15 Kişinin Hayatını Kaybettiği Yangına Ilişkin yeni Bilirkişi Raporu Hazırlandı. 2024. Available online: https://www.aa.com.tr/tr/gundem/diyarbakir-ve-mardinde-15-kisinin-hayatini-kaybettigi-yangina-iliskin-yeni-bilirkisi-raporu-hazirlandi/3428728 (accessed on 21 May 2025).
- Bbc.com. Diyarbakır ve Mardin’de Yangın: 15 kişi Hayatını Kaybetti. 2024. Available online: https://www.bbc.com/turkce/articles/cx88zyz8nz5o (accessed on 21 May 2025).
- Gursel, A.P. Life-Cycle Assessment of Concrete: Decision-Support Tool and Case Study Application. Ph.D. Thesis, University of California, Berkeley, CA, USA, 2014. [Google Scholar]
- Dadd, L.; Bennett, B.; Xie, T.; Visintin, P. Shear behaviour and environmental impact of single and multi-generation recycled aggregate concrete beams. Eng. Struct. 2025, 322, 119200. [Google Scholar] [CrossRef]
- Turkish Cement Sector. 2023. Available online: https://turkcimento.org.tr/ (accessed on 3 March 2025).
- Karar.com. 2024. Available online: https://www.karar.com/guncel-haberler/diyarbakir-ve-mardindeki-yanginin-zarari-700-milyon-lira-aileler-maddi-1873191 (accessed on 21 May 2025).
- Al-Akhras, N.M. Durability of wheat straw ash concrete exposed to freeze–thaw damage. Proc. Inst. Civ. Eng. Constr. Mater. 2011, 164, 79–86. [Google Scholar] [CrossRef]
- Binici, H.; Yucegok, F.; Aksogan, O.; Kaplan, H. Effect of Corncob, Wheat Straw, and Plane Leaf Ashes as Mineral Admixtures on Concrete Durability. J. Mater. Civ. Eng. 2008, 20, 478–483. [Google Scholar] [CrossRef]
- Doğruyol, M. Characterization of historic mortars and the effect of rice husk ash (RHA) on quicklime. Case Stud. Constr. Mater. 2024, 21, e03542. [Google Scholar] [CrossRef]
- Durmaz, M.; Doğruyol, M. Pistachio Shell Ash in Agro-Waste Cement Composites: A Pathway to Low-Carbon Binders. Sustainability 2025, 17, 4003. [Google Scholar] [CrossRef]
- Kamau, J.; Ahmed, A.; Hirst, P.; Kangwa, J. Suitability of Corncob Ash as a Supplementary Cementitious Material. Int. J. Mater. Sci. Eng. 2016, 4, 215–228. [Google Scholar]
- Biricik, H.; Aköz, F.; Berktay, I.; Tulgar, A.N. Study of pozzolanic properties of wheat straw ash. Cem. Concr. Res. 1999, 29, 637–643. [Google Scholar] [CrossRef]
- Ahmad, J.; Arbili, M.M.; Alabduljabbar, H.; Deifalla, A.F. Concrete made with partially substitution corn cob ash: A review. Case Stud. Constr. Mater. 2023, 18, e02100. [Google Scholar] [CrossRef]
- Chopra, D.; Siddique, R. Strength, permeability and microstructure of self-compacting concrete containing rice husk ash. Biosyst. Eng. 2015, 130, 72–80. [Google Scholar] [CrossRef]
- Șerbănoiu, A.A.; Grădinaru, C.M.; Muntean, R.; Cimpoeșu, N.; Șerbănoiu, B.V. Corn Cob Ash versus Sunflower Stalk Ash, Two Sustainable Raw Materials in an Analysis of Their Effects on the Concrete Properties. Materials 2022, 15, 868. [Google Scholar] [CrossRef]
- BS EN 196-6:2018; Methods of Testing Cement Is Classified in These ICS Categories: 91.100.10 Cement. Gypsum. Lime. Mortar. European Standards: Plzen, Czech Republic, 2018.
- ASTM 204; Standard Test Methods for Fineness of Hydraulic Cement by Air-Permeability Apparatus. ASTM International: West Conshohocken, PA, USA, 2023.
- Qudoos, A.; Kakar, E.; Rehman, A.U.; Jeon, I.K.; Kim, H.G. Influence of Milling Techniques on the Performance of Wheat Straw Ash in Cement Composites. Appl. Sci. 2020, 10, 3511. [Google Scholar] [CrossRef]
- Taylor, J.C.; Aldridge, L.P. Full-profile Rietveld quantitative XRD analysis of Portland cement: Standard XRD profiles for the major phase tricalcium silicate (C3S: 3CaO.SiO2). Powder Diffr. 1993, 8, 138–144. [Google Scholar] [CrossRef]
- Quennoz, A.; Scrivener, K.L. Hydration of C3A–gypsum systems. Cem. Concr. Res. 2012, 42, 1032–1041. [Google Scholar] [CrossRef]
- Doğruyol, M. Determination of ASR in Concrete Using Characterization Methods. Buildings 2024, 14, 657. [Google Scholar] [CrossRef]
- Gulmez, N. Roles of aluminum shavings and calcite on engineering properties of cement-based composites. J. Clean. Prod. 2020, 277, 124104. [Google Scholar] [CrossRef]
- Doğruyol, M.; Karaşin, A. Sülfatın beton ve betonarme elemanlara olumsuz etkisi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Derg. 2011, 2, 79–85. [Google Scholar]
- Karasin, A.; Hadzima-Nyarko, M.; Işık, E.; Doğruyol, M.; Karasin, I.B.; Czarnecki, S. The Effect of Basalt Aggregates and Mineral Admixtures on the Mechanical Properties of Concrete Exposed to Sulphate Attacks. Materials 2022, 15, 1581. [Google Scholar] [CrossRef]
- Collepardi, M. Thaumasite formation and deterioration in historic buildings. Cem. Concr. Compos. 1999, 21, 147–154. [Google Scholar] [CrossRef]
- ASTM C618-22; Methods of Testing Cement—Part 6: Determination of Fineness. iTeh standards: Toronto, AB, Canada, 2010.
- Bheel, N.; Sohu, S.; Awoyera, P.; Kumar, A.; Abbasi, S.A.; Olalusi, O.B. Effect of Wheat Straw Ash on Fresh and Hardened Concrete Reinforced with Jute Fiber. Adv. Civ. Eng. 2021, 2021, 6659125. [Google Scholar] [CrossRef]
- Elahi, M.A.; Shearer, C.R.; Reza, A.N.R.; Saha, A.K.; Khan, N.N.; Hossain, M.; Sarker, P.K. Improving the sulfate attack resistance of concrete by using supplementary cementitious materials (SCMs): A review. Constr. Build. Mater. 2021, 281, 122628. [Google Scholar] [CrossRef]
- Liu, K.; Sun, D.; Wang, A.; Zhang, G.; Tang, J. Long-Term Performance of Blended Cement Paste Containing Fly Ash against Sodium Sulfate Attack. J. Mater. Civ. Eng. 2018, 30, 04018309. [Google Scholar] [CrossRef]
- Shakouri, M.; Exstrom, C.L.; Ramanathan, S.; Suraneni, P. Hydration, strength, and durability of cementitious materials incorporating untreated corn cob ash. Constr. Build. Mater. 2020, 243, 118171. [Google Scholar] [CrossRef]
- Doğruyol, M.; Durmaz, M. The Effect Of Pistachio Vera Shell Ash (PSA) on Concrete Performance. Bitlis Eren Üniversitesi Fen Bilim. Derg. 2025, 14, 513–528. [Google Scholar] [CrossRef]
- Chancey, R.T.; Stutzman, P.; Juenger, M.C.; Fowler, D.W. Comprehensive phase characterization of crystalline and amorphous phases of a Class F fly ash. Cem. Concr. Res. 2010, 40, 146–156. [Google Scholar] [CrossRef]
- Yan, K.; Guo, Y.; Ma, Z.; Zhao, Z.; Cheng, F. Quantitative analysis of crystalline and amorphous phases in pulverized coal fly ash based on the Rietveld method. J. Non-Crystalline Solids 2018, 483, 37–42. [Google Scholar] [CrossRef]
- Šupić, S.; Malešev, M.; Radonjanin, V.; Bulatović, V.; Milović, T. Reactivity and Pozzolanic Properties of Biomass Ashes Generated by Wheat and Soybean Straw Combustion. Materials 2021, 14, 1004. [Google Scholar] [CrossRef] [PubMed]
- Qudoos, A.; Kim, H.G.; Rehman, A.U.; Ryou, J.-S. Effect of mechanical processing on the pozzolanic efficiency and the microstructure development of wheat straw ash blended cement composites. Constr. Build. Mater. 2018, 193, 481–490. [Google Scholar] [CrossRef]
- Hava kalitesi Çevre Şehircilik ve İklim Değişikliği Bakanlığı. 2024. Available online: https://sim.csb.gov.tr/STN/STN_Report/DataBank (accessed on 5 January 2025).
- Moon, J.; Bae, S.; Celik, K.; Yoon, S.; Kim, K.-H.; Kim, K.S.; Monteiro, P.J. Characterization of natural pozzolan-based geopolymeric binders. Cem. Concr. Compos. 2014, 53, 97–104. [Google Scholar] [CrossRef]
- Aksoğan, O.; Binici, H.; Ortlek, E. Durability of concrete made by partial replacement of fine aggregate by colemanite and barite and cement by ashes of corn stalk, wheat straw and sunflower stalk ashes. Constr. Build. Mater. 2016, 106, 253–263. [Google Scholar] [CrossRef]
- ASTM C305-20; Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM C 490; Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete. ASTM International: West Conshohocken, PA, USA, 2011.
- ASTM C 597-02; Pulse Velocity Through Concrete. American Society for Testing and Material: West Conshohocken, PA, USA, 2003.
- EN 12504-4; Testing Concrete–Part 4: Determination of Ultrasonic Pulse Velocity. ASTM International: West Conshohocken, PA, USA, 2004; Volume 18.
- Amin, M.N.; Siffat, M.A.; Shahzada, K.; Khan, K. Influence of Fineness of Wheat Straw Ash on Autogenous Shrinkage and Mechanical Properties of Green Concrete. Crystals 2022, 12, 588. [Google Scholar] [CrossRef]
- Liu, T.; He, G.; Lau, A.K.H. Statistical evidence on the impact of agricultural straw burning on urban air quality in China. Sci. Total Environ. 2020, 711, 134633. [Google Scholar] [CrossRef]
- Yildirim, A. The Stubble Burning Problem in Sustainable Agriculture. Int. J. Innov. Eng. Appl. 2023, 7, 1–6. [Google Scholar] [CrossRef]
- Çetin, S.Y. An experimental study of basalt aggregate concrete according to different size effect laws. Alex. Eng. J. 2025, 120, 358–370. [Google Scholar] [CrossRef]
- Memon, S.A.; Wahid, I.; Khan, M.K.; Tanoli, M.A.; Bimaganbetova, M. Environmentally friendly utilization of wheat straw ash in cement-based composites. Sustainability 2018, 10, 1322. [Google Scholar] [CrossRef]
- Al-Akhras, N.M.; Abu-Alfoul, B.A. Effect of wheat straw ash on mechanical properties of autoclaved mortar. Cem. Concr. Res. 2002, 32, 859–863. [Google Scholar] [CrossRef]
- Ahmad, M.R.; Sharif, M.B.; Ali, H.A.; Hussain, M.; Chen, B. Experimental investigation of pozzolanic concrete containing wheat straw ash. Can. J. Civ. Eng. 2019, 46, 941–951. [Google Scholar] [CrossRef]
- Chaturvedi, K.; Srivastava, A.K.; Verma, S. Comparative study on the thermal insulating potential of rice and wheat straw ash-based composite using marble waste. Mater. Sci. Eng. B 2025, 322, 118670. [Google Scholar] [CrossRef]
- Wu, S.; Chen, J.; Peng, D.; Wu, Z.; Li, Q.; Huang, T. Effects of Water Leaching on the Ash Sintering Problems of Wheat Straw. Energies 2019, 12, 387. [Google Scholar] [CrossRef]
- Wang, B.; Yao, W.; Stephan, D. Preparation of calcium silicate hydrate seeds by means of mechanochemical method and its effect on the early hydration of cement. Adv. Mech. Eng. 2019, 11. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J.M. Concrete: Microstructure, Properties, and Materials, 4th ed.; McGraw Hill: New York, NY, USA, 2014. [Google Scholar]
- Strandberg, A.; Skoglund, N.; Thyrel, M. Morphological characterisation of ash particles from co-combustion of sewage sludge and wheat straw with X-ray microtomography. Waste Manag. 2021, 135, 30–39. [Google Scholar] [CrossRef]
- Chen, C.; Peng, F.; Zhang, R.; Jiu, S.; Chen, Y. Enhancement of interfacial corrosion resistance between aluminum powder–modified zinc silicate–potassium silicate coating and steel bars for sand-based autoclaved aerated concrete. Colloids Surfaces A Physicochem. Eng. Asp. 2024, 698, 134533. [Google Scholar] [CrossRef]
- Mohsen, A.; Ramadan, M.; Habib, A.; Abdel-Gawwad, H.A. Evaluating the role of magnesium aluminate nano spinel in phase composition, meso-porosity, compressive strength, and drying shrinkage of alkali-activated slag. Constr. Build. Mater. 2023, 409, 133857. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Xiao, G.; Ding, D.; Yin, C.; Wang, Q.; Li, X.; Zang, Y.; Dong, B.; Xiong, F. The effect of pre-dehydrated magnesium-silicate-hydrate on the properties of the castables bonded with hydrable magnesium carboxylate. Ceram. Int. 2024, 50, 53502–53510. [Google Scholar] [CrossRef]
- Doğruyol, M.; Gönül, A.; Tunçel, O.; Altun, B.; Yılmaz, A.; Durmaz, M.; Hansu, F. Integrated assessment of mechanical, microstructural, and thermal behaviour of a fly ash-stabilized earthen building material. J. Build. Eng. 2025, 113, 113871. [Google Scholar] [CrossRef]
- Doğruyol, M.; Ayhan, E.; Karaşin, A. Effect of waste steel fiber use on concrete behavior at high temperature. Case Stud. Constr. Mater. 2024, 20, e03051. [Google Scholar] [CrossRef]
- Kioumarsi, M.; Azarhomayun, F.; Haji, M.; Shekarchi, M. Effect of Shrinkage Reducing Admixture on Drying Shrinkage of Concrete with Different w/c Ratios. Materials 2020, 13, 5721. [Google Scholar] [CrossRef]
- Zhou, B.; Ma, Y.; Sha, S.; Wang, Y.; Liu, Y.; Xiao, Y.; Shi, C. Synthesis, performance and mechanism of shrinkage-reducing agents with water-reducing function for cement-based materials. Constr. Build. Mater. 2024, 425, 135994. [Google Scholar] [CrossRef]
- Demirbas, A. Carbon dioxide disposal via carbonation, Energy Sources, Part A: Recovery. Util. Environ. Eff. 2007, 29, 59–65. [Google Scholar] [CrossRef]
- Khan, K.; Ishfaq, M.; Amin, M.N.; Shahzada, K.; Wahab, N.; Faraz, M.I. Evaluation of Mechanical and Microstructural Properties and Global Warming Potential of Green Concrete with Wheat Straw Ash and Silica Fume. Materials 2022, 15, 3177. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Kaplan, M.F.; Bazant, Z.P. Concrete at High Temperatures: Material Properties and Mathematical Models; Longman Group Limited: London, UK, 1996. [Google Scholar]
- Noumowe, A. Effet de Hautes Températures (20–600 °C) Sur le Béton: Cas Particulier du Béton a Hautes Performances. Ph.D. Thesis, University of Lyon, Lyon, France, 1995. [Google Scholar]
- Platret, G. Suivi de l’hydratation du ciment et de l’évolution des phases solides dans les bétons par analyse thermique, caractéristiques microstructurales et propriétés relativesa la durabilité des bétons. 2002; 58. [Google Scholar]
- Nari, V.; Praneeth, P.H.; Manchana, V. A comparative study on the thermal behaviour of PPC and OPC cement. Mater. Today: Proc. 2020, 39, 1588–1593. [Google Scholar] [CrossRef]
- Malathy, R.; Shanmugam, R.; Chung, I.-M.; Kim, S.-H.; Prabakaran, M. Mechanical and Microstructural Properties of Composite Mortars with Lime, Silica Fume and Rice Husk Ash. Processes 2022, 10, 1424. [Google Scholar] [CrossRef]
- Horgnies, M.; Chen, J.J.; Bouillon, C. Overview about the use of Fourier transform infrared spectroscopy to study cementitious materials. In WIT Transactions on Engineering Sciences; WIT Press: Billerica, MA, USA, 2013; Volume 77. [Google Scholar]
- Doğruyol, M. Characterisation of acrylic copolymer treated concretes and concretes of reinforced concrete buildings collapsed in the 6 February 2023 Mw = 7.8 Kahramanmaraş (Türkiye) earthquake. Eng. Fail. Anal. 2024, 161, 108249. [Google Scholar] [CrossRef]
- Doğruyol, M.; Gönül, A.; Başboğa, M. Comparative analysis of cement-based and historic gypsum-based mortars for historical Restoration: Implications on mechanical and thermal compatibility. J. Build. Eng. 2025, 109, 112982. [Google Scholar] [CrossRef]
- Ahmed, D.; Abdallah, S.H.; Ragai, S.M. Hydration Characteristics and Leaching Behavior of Different Mixes of Slag Based—Geopolymer Cement in Presence of Heavy Metals. Egypt. J. Chem. 2023, 66, 37–48. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Wang, Y.; Men, J.; Wang, J.; Zhao, X.; Zou, S. Valorization of Alkali–Thermal Activated Red Mud for High-Performance Geopolymer: Performance Evaluation and Environmental Effects. Buildings 2025, 15, 2471. [Google Scholar] [CrossRef]
- Isgor, O.B.; Razaqpur, A. Finite element modeling of coupled heat transfer, moisture transport and carbonation processes in concrete structures. Cem. Concr. Compos. 2004, 26, 57–73. [Google Scholar] [CrossRef]
- Chollet, M.; Horgnies, M. Analyses of the surfaces of concrete by Raman and FT-IR spectroscopies: Comparative study of hardened samples after demoulding and after organic post-treatment. Surf. Interface Anal. 2011, 43, 714–725. [Google Scholar] [CrossRef]
- Li, Z.; Dong, H.; Zhao, X.; Wang, K.; Gao, X. Utilisation of Bayer red mud for high-performance geopolymer: Competitive roles of different activators. Case Stud. Constr. Mater. 2025, 23, e05047. [Google Scholar] [CrossRef]
- Dumoulin, Y.; Alex, S.; Szabo, P.; Cartilier, L.; Mateescu, M.A. Cross-linked amylose as matrix for drug-controlled release. X-ray and FT-IR structural analysis. Carbohydr. Polym. 1998, 37, 361–370. [Google Scholar] [CrossRef]
- Koksal, F.; Gencel, O.; Kaya, M. Combined effect of silica fume and expanded vermiculite on properties of lightweight mortars at ambient and elevated temperatures. Constr. Build. Mater. 2015, 88, 175–187. [Google Scholar] [CrossRef]
- Zebari, Z.; Bedirhanoğlu, İ.; Aydın, E. Beton basınç dayanımının ultrasonik ses dalgası yayılma hızı ile tahmin edilmesi. Dicle Üniversitesi Mühendislik Fakültesi Mühendislik Dergisi 2016, 8, 43–52. [Google Scholar]
- IS 1331; Non-Destructive Testing of Concrete Methods of Test, Part 1. Bureau of Indian Standards: New Delhi, India, 1992; 110002.
Countries | Share of World Production, % | Production, Million Tonnes |
---|---|---|
China | 17.50 | 136.59 |
European Union | 17.00 | 134.87 |
India | 14.00 | 110.55 |
Russia | 12.00 | 91.50 |
United States | 6.00 | 49.10 |
The total world production | 100.00 | 803.00 |
Countries | Share of World Production, % | Production, Metric Tonnes |
---|---|---|
China | 50.36 | 2100 |
India | 9.83 | 410 |
Vietnam | 2.64 | 110 |
United States | 2.18 | 91 |
Türkiye | 1.89 | 79 |
The total world production | 100.00 | 4170 |
Mix ID | OPC | WSA | Sand | Water | W/B * |
---|---|---|---|---|---|
PL | 450 | 0 | 1350 | 225 | 0.50 |
WSA2.5 | 438.75 | 11.25 | 1350 | 225 | 0.50 |
WSA5 | 427.50 | 22.50 | 1350 | 225 | 0.50 |
WSA7.5 | 412.50 | 37.50 | 1350 | 225 | 0.50 |
WSA10 | 405.00 | 45.00 | 1350 | 225 | 0.50 |
Code | UPV (ms−1) | Concrete Quality Grading as Per BIS 13311-92 [84]. | |
---|---|---|---|
UPV (ms−1) | Quality Classification | ||
PL | 4150 | Above 4500 | Excellent |
WSA2.5 | 4250 | 3500–4500 | Good |
WSA5 | 4300 | 3000–3500 | Medium |
WSA7.5 | 4355 | Less than 3000 | Doubtful |
WSA10 | 4255 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Doğruyol, M.; Çetin, S.Y. From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars. Sustainability 2025, 17, 8960. https://doi.org/10.3390/su17198960
Doğruyol M, Çetin SY. From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars. Sustainability. 2025; 17(19):8960. https://doi.org/10.3390/su17198960
Chicago/Turabian StyleDoğruyol, Murat, and Senem Yılmaz Çetin. 2025. "From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars" Sustainability 17, no. 19: 8960. https://doi.org/10.3390/su17198960
APA StyleDoğruyol, M., & Çetin, S. Y. (2025). From Agricultural Waste to Green Binder: Performance Optimization of Wheat Straw Ash in Sustainable Cement Mortars. Sustainability, 17(19), 8960. https://doi.org/10.3390/su17198960