Systematic Review on the Life Cycle Assessment of Manure-Based Anaerobic Digestion System
Abstract
1. Introduction
2. Data Sources and Analysis Methods
2.1. Information Sources and Search Strategy
2.2. Selection Criteria and Process
2.3. Data Collection and Processing
- (1)
- Methodological information: This includes the specific processes covered within the system boundaries, the functional unit, allocation methods, and inventory analysis methods. Focus is placed on key processes and pollutants, such as the calculation methods and coefficients for CH4 emissions, N2O emissions, NH3 emissions, and NO3− and phosphorus (P) losses. Life cycle impact assessment methods used in each study were also recorded.
- (2)
- Environmental impact indicators: This refers to the environmental impact indicators evaluated in each study along with their corresponding values. Indicators assessed in more than 5% of the studies are presented in Figure 3.
2.4. Limitations and Risk of Bias
3. Results and Discussion
3.1. Goal and Scope Definition
3.1.1. Research Objective
3.1.2. Functional Unit
Type of Functional Units | Unit | Percentage of Literature (%) | |
---|---|---|---|
Manure and animal farm effluents * | Manure, slurry, feces | t | 30.30, 6.06, 6.06 |
Feedstock ** | Feedstock | t | 15.15 |
Bioenergy *** | Generated bioelectricity, net bioelectricity generation, generated bioelectricity and heat, net generation of bioelectricity and heat, generated bio-methane, generated biogas | kwh/MJ/ MJ LHV/m3 | 12.12, 7.58, 4.55, 1.52, 1.52, 6.06 |
Others **** | Digestate, a slaughter pig, pig carcass, milk, livestock units | t, kg, LU | 1.52, 1.52, 1.52, 3.03, 1.52 |
3.1.3. Allocation Method
Main Functions | Co-Functions | Type of Functional Units | Environmental Credits | References |
---|---|---|---|---|
Treating livestock and poultry manure | Producing bioenergy and organic matter | per unit of livestock manure | Substituting traditional energy and fertilizers | [1,8,9,25,27,28,29,30,32,33,34,35,37,40,41,42,45] |
Treating livestock and poultry manure | Producing bioenergy and organic matter | per unit of digestion feedstock | Substituting traditional energy and chemical fertilizers | [10,47,48,50,52,53] |
Producing bioenergy | Treating manure and producing organic matter | per unit of bioenergy | Substituting traditional manure management methods and chemical fertilizers | [22,59,60,62,66,67] |
3.1.4. System Boundary
3.2. Life Cycle Inventory Analysis
3.2.1. Environmental Emissions from Manure AD Systems
- CH4, N2O, and NH3 from manure and digestate storage.
- CH4 leakage during anaerobic digestion and biogas utilization.
CH4 Leakage Coefficient * (% of CH4 Produced) | Storage Process of Digestate | Land Application of Digestate | ||||||
---|---|---|---|---|---|---|---|---|
CH4 (MCF, %) | N2O (kg N2O/kg N) | NH3 (kg NH3/kg N) | N2O (kg N2O/kg N) | NH3 (kg NH3/kg N) | NO3− (kg NO3−-N/kg N) | P (kg P/kg P) | ||
Min | 0.50 | 1 | 0.002 | 0.004 | 0.001 | 0.001 | 0.021 | 0.006 |
Max | 15.00 | 42 | 0.075 | 0.491 | 0.031 | 0.510 | 0.510 | 0.300 |
3.2.2. Environmental Credits and Lost Opportunity of Manure Based AD Systems
Environmental Credits of Traditional Energy Substitution
Environmental Credits Substituting Chemical Fertilizer
Environmental Credits from Avoiding Original Manure Treatment
Lost Opportunity and Environmental Credits of Co-Digested Substrates
Original Uses/Original Treatment Methods | Alternatives | Lost Opportunity/Environmental Credit | References |
---|---|---|---|
Compost | - | Environmental credit | [72] |
Landfilling | - | Environmental credit | [52] |
Incineration for power generation | Fossil fuels | Lost opportunity | [6] |
Incineration for power generation | Natural gas | Lost opportunity | [54] |
Animal feed | Corn | Lost opportunity | [52] |
3.3. Life Cycle Impact Assessment
3.4. Interpretation of Results
4. Conclusions and Prospects
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
LCA | Life Cycle Assessment |
AD | Anaerobic Digestion |
LCI | Life Cycle Inventory |
ISO | International Organization for Standardization |
IPCC | Intergovernmental Panel on Climate Change |
Appendix A
No. | Publication Title | Region | Year | Functional Unit | Environmental Impact Category | Reference |
---|---|---|---|---|---|---|
1 | A Life Cycle Assessment of integrated dairy farm greenhouse systems in British Columbia | Canada | 2013 | 1100 t feedstock | GWP, EP, AP, FDP, HTP, PMF | [48] |
2 | Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies | China | 2020 | 1 t manure | GWP, FDP | [8] |
3 | Assuring the sustainable production of biogas from anaerobic mono-digestion | Italy | 2014 | 1t slurry | GWP, FEP, MEP, AP, FDP, PO, ODP | [26] |
4 | Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change | Indian | 2017 | 1.4 × 1010 MJ generated biogas | GWP, FDP | [55] |
5 | GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment | Denmark | 2016 | 1 kWh generated bioelectricity | GWP | [56] |
6 | Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy-A life cycle perspective | Netherlands | 2012 | 1 t feedstock | GWP, FEP, MEP, AP, FDP, PMF, LU | [49] |
7 | Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms | British | 2015 | Large/medium dairy farm: 4,149,102/1,013,548 L milk and 9242/2446 kg live weight | GWP, EP, AP, FDP | [72] |
8 | Eco-efficiency assessment of farm-scaled biogas plants | Italy | 2017 | 1 MWh generated bioelectricity | FEP, MEP, AP | [57] |
9 | Environmental consequences of processing manure to produce mineral fertilizer and bio-energy | Netherlands | 2012 | 1 t manure | GWP, MEP, AP, FDP, PMF | [27] |
10 | Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment | Colombia | 2019 | 1 m3 generated biogas | GWP, FEP, MEP, AP, FDP, PO, ODP | [11] |
11 | Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach | Brazil | 2021 | 1 t manure | GWP, FEP, MEP, AP, HTP, PO | [28] |
12 | The BioValueChain model: a Norwegian model for calculating environmental impacts of biogas value chains | Norway | 2015 | 12.5 t manure | GWP, AP, FDP | [29] |
13 | Green-house gas mitigation capacity of a small-scale rural biogas plant calculations for Bangladesh through a general life cycle assessment | Bangladesh | 2017 | 1 kg feces | GWP | [15] |
14 | Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland | Ireland | 2021 | 26,000 t feedstock | GWP, EP, AP, FDP, HTP, PO, ODP, E, ADP | [10] |
15 | Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer | Egypt | 2021 | 1 m3 generated biogas | GWP, FEP, MEP, AP, FDP, HTP, PMF, PO, ODP, E, WDP, ADP | [16] |
16 | Comparison of the environmental effects of manure-and crop-based agricultural biogas plants using life cycle analysis | Germany | 2015 | the net bioelectricity | GWP, EP, AP | [58] |
17 | Environmental consequences of different carbon alternatives for increased manure-based biogas | Denmark | 2014 | 1 t manure | GWP, FEP, MEP, AP | [6] |
18 | Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate | Ireland | 2021 | 15,070 t manure | GWP, FDP | [30] |
19 | Manure management coupled with bioenergy production: An environmental and economic assessment of large dairies in New Mexico | USA | 2018 | 59,851.386 t manure | GWP, EP | [31] |
20 | Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops | Italy | 2015 | 1 MJ generated bioelectricity | GWP, FEP, MEP, AP, FDP, PMF, PO, WDP | [59] |
21 | Environmental and sustainability evaluation of livestock waste management practices in Cyprus | Cyprus | 2018 | 1 t manure | GWP, FEP, MEP, AP, FDP, PO, WDP | [1] |
22 | Influence of different practices on biogas sustainability | European | 2013 | 1 MJ generated bioelectricity | GWP, FEP, MEP, AP, HTP, PMF, PO, ODP, ADP | [60] |
23 | Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment | Mexico | 2020 | 1 t manure | GWP, EP, AP, FDP, PO, ADP | [32] |
24 | Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam | Vietnam | 2015 | 1.1 t manure | GWP, FEP, MEP, FDP | [33] |
25 | Life cycle assessment of biogas production through anaerobic codigestion of nopal cladodes and dairy cow manure | USA | 2018 | 1 MJ generated biogas | GWP, EP, AP, HTP, PO, ODP, TE, ADP | [61] |
26 | Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops | Italy | 2014 | 100 kWh generated bioelectricity | GWP, EP, AP, FDP, PO, ODP, ADP | [17] |
27 | Environmental impacts of manure management based on life cycle assessment approach | Finland | 2020 | 1 t feces | GWP, EP, AP | [34] |
28 | Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment | China | 2018 | 1 t manure | GWP, MEP, AP, FDP, TEP | [25] |
29 | Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: The link between environmental impacts and operational parameters | Spain | 2014 | 110,000 t manure | GWP, EP, AP, PO, ODP, ADP | [35] |
30 | Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste | European | 2021 | 1 MJ generated biomethane | GWP, FEP, MEP, AP | [62] |
31 | Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion | British | 2014 | 1 MWh generated bioelectricity and heat | GWP, EP, AP, FDP, PO, ODP, TEP, ADP | [63] |
32 | Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure | Spain | 2018 | 274 t feedstock | GWP, FEP, MEP, AP, FDP, WDP | [47] |
33 | Life Cycle Assessment of Large-scale Piggery for Environmental Assessment | China | 2012 | a slaughter pig | GWP, EP, AP, FDP | [18] |
34 | Life Cycle Assessment of Two Manure Treatment Modes in Intensive Dairy Farms | China | 2021 | 1 t manure | GWP, EP, AP | [36] |
35 | Life Cycle Assessment of Different Treatment Modes of Pig Manure Based on Integrated Planting and Raising System in Intensive Agricultural Region | China | 2015 | 90 t slurry | GWP, EP, AP | [37] |
36 | Environmental impact analysis on the production and utilization of digestate based on LCA method | China | 2015 | 1 t digestate | GWP, EP, AP, FDP, HTP, PO, TEP | [19] |
37 | Environmental impacts of biogas deployment Part I: life cycle inventory for evaluation of production process emissions to air | Germany | 2012 | 1 t feedstock | GWP, MEP, AP, FDP, HTP, PO, ODP | [50] |
38 | Assessing the environmental sustainability of grass silage and cattle slurry for biogas production | Ireland | 2021 | Feedstock | GWP, FEP, AP | [51] |
39 | Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process | Italy | 2013 | 1 kWh generated bioelectricity | GWP, FDP | [64] |
40 | Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production | USA | 2013 | 2069.55 t manure | GWP, EP, FDP | [38] |
41 | Life cycle assessment of large-scale and household biogas plants in northwest China | China | 2018 | 2136 t feces | GWP, EP, AP, FDP, HTP, PO | [39] |
42 | Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste | USA | 2015 | 1 t feedstock | GWP | [52] |
43 | Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm | China | 2014 | 1956 livestock units (LU) (1 LU = 500 kg life weight) | GWP, EP, AP | [73] |
44 | Life cycle assessment of swine production in Brazil: a comparison of four manure management systems | Brazil | 2015 | 1000 kg pig carcass | GWP, FEP, MEP, AP, FDP | [74] |
45 | Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria | Italy | 2014 | Generated bioelectricity and heat | GWP | [65] |
46 | Life cycle assessment of energy generation from biogas-Attributional vs. consequential approach | British | 2012 | 1 MJ net bioelectricity | GWP, EP, AP, FDP | [66] |
47 | Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry | Pakistan | 2017 | 20,000 kg slurry | GWP, FEP, AP | [40] |
48 | Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment | British | 2016 | 1 t dry matter of feedstock | GWP, EP, AP, FDP | [20] |
49 | A case study on integrating anaerobic digestion into agricultural activities in British Columbia: Environmental, economic and policy analysis | Canada | 2021 | 1 t dry matter of feedstock | GWP | [53] |
50 | A life cycle assessment of an enterprise’s low-carbon emissions model: The Xinjiang Shihezi pig farm fecal treatment biogas project as a case study | China | 2022 | 7.4 t manure | GWP, EP, AP, FDP | [9] |
51 | Agricultural small anaerobic digestion plants: Combining economic and environmental assessment | Italy | 2019 | 1kWh net bioelectricity | GWP, FEP, MEP, AP | [67] |
52 | Anaerobic digestion of agricultural wastes from liquid to solid state: Performance and environ-economic comparison | China | 2021 | 38,200 t manure | GWP, EP, AP | [41] |
53 | Anaerobic digestion of poultry litter–A consequential life cycle assessment | Ireland | 2020 | 20,000 t feces | GWP, FEP, AP | [3] |
54 | Choosing co-substrates to supplement biogas production from animal slurry—A life cycle assessment of the environmental consequences | Denmark | 2014 | 1000 kg slurry | GWP, FEP, MEP, AP, FDP | [42] |
55 | Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry | Europe | 2020 | 1 MJ generated bioelectrity | GWP, EP, AP | [68] |
56 | Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: a life cycle perspective | Mexico | 2015 | 1 L milk | GWP, FEP, MEP, AP, FDP | [75] |
57 | Environmental performance of manure co-digestion with natural and cultivated grass—A consequential life cycle assessment | Estonia | 2017 | 1 t manure | GWP, FEP, MEP, AP | [43] |
58 | From waste-to-worth: energy, emissions, and nutrient implications of manure processing pathways | USA | 2014 | 1 t manure | GWP | [44] |
59 | Greenhouse gas mitigation and rural electricity generation by a novel two-stroke biogas engine | Indonesia | 2021 | 1 kWh generated bioelectricity | GWP, FEP, MEP, AP, FDP | [21] |
60 | LCA of anaerobic digestion: Emission allocation for energy and digestate | Europe | 2019 | 1 MJ generated bioelectricity and heat | GWP | [69] |
61 | LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability | Italy | 2011 | 1 MJ net generated bioelectricity and heat | GWP, EP, AP | [70] |
62 | Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production | Germany | 2021 | 1 t manure | GWP | [45] |
63 | Environmental and economic analysis of power generation in a thermophilic biogas plant | Spain | 2018 | 1 kWh net generated bioelectricity | GWP, FEP, AP | [22] |
64 | Use of agricultural by-products in the development of an agro-energy chain: A case study from the Umbria region | Italy | 2018 | 1 kWh net generated bioelectricity | GWP | [71] |
65 | Comparative life cycle assessment of anaerobic co-digestion for dairy waste management in large-scale farms | UAE | 2020 | 1 t manure | GWP, EP, AP, FDP | [46] |
66 | Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions: A multi-dimensional sustainability assessment | Sweden | 2018 | 1 t dry matter of feedstock | GWP, EP, AP, FDP | [54] |
System Boundary | Allocation Method | Reference | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Processes Included in AD System | Processes Introduced Through System Expansion | |||||||||||||||
No. | P1 | P2 | P3 | P4 | P5 | P6 | P7 | P8 | SEP1 | SEP2 | SEP3 | SEP4 | A1 | A2 | A3 | |
1 | √ | √ | √ | √ | √ | √ | √ | [48] | ||||||||
2 | √ | √ | √ | √ | √ | √ | √ | √ | [8] | |||||||
3 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [26] | |||||
4 | √ | √ | √ | √ | √ | √ | √ | [55] | ||||||||
5 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [56] | ||||||
6 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [49] | |||||
7 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [49] | |||
8 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [72] | ||||||
9 | √ | √ | √ | √ | √ | √ | √ | √ | [57] | |||||||
10 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [57] | ||||||
11 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [27] | ||||||
12 | √ | √ | √ | √ | √ | √ | √ | √ | [11] | |||||||
13 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [28] | ||||||
14 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [29] | ||||||
15 | √ | √ | √ | √ | √ | √ | √ | √ | [29] | |||||||
16 | √ | √ | √ | √ | [15] | |||||||||||
17 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [10] | ||||||
18 | √ | √ | √ | √ | √ | [16] | ||||||||||
19 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [58] | ||||||
20 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [58] | |||||
21 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [6] | ||||
22 | √ | √ | √ | √ | √ | √ | √ | √ | [30] | |||||||
23 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [30] | |||||
24 | √ | √ | √ | √ | √ | √ | [31] | |||||||||
25 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [59] | |||||
26 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [1] | ||||||
27 | √ | √ | √ | √ | √ | √ | √ | [60] | ||||||||
28 | √ | √ | √ | √ | √ | √ | √ | √ | [60] | |||||||
29 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [32] | ||||||
30 | √ | √ | √ | √ | √ | √ | √ | [33] | ||||||||
31 | √ | √ | √ | √ | √ | √ | [61] | |||||||||
32 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [17] | |||||
33 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [34] | |||||
34 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [25] | ||||||
35 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [25] | |||||
36 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [35] | ||||||
37 | √ | √ | √ | √ | √ | √ | √ | [62] | ||||||||
38 | √ | √ | √ | √ | √ | √ | √ | √ | [62] | |||||||
39 | √ | √ | √ | √ | √ | √ | √ | √ | [63] | |||||||
40 | √ | √ | √ | √ | √ | √ | √ | √ | [47] | |||||||
41 | √ | √ | √ | √ | √ | [18] | ||||||||||
42 | √ | √ | √ | √ | √ | √ | √ | [36] | ||||||||
43 | √ | √ | √ | √ | √ | √ | √ | √ | [37] | |||||||
44 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [19] | |||||
45 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [50] | ||||||
46 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [50] | |||||
47 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [51] | |||||
48 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [51] | ||||
49 | √ | √ | √ | √ | √ | √ | √ | √ | [64] | |||||||
50 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [64] | ||||||
51 | √ | √ | √ | √ | √ | √ | √ | [38] | ||||||||
52 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [39] | |||||
53 | √ | √ | √ | √ | √ | √ | √ | √ | [52] | |||||||
54 | √ | √ | √ | √ | √ | √ | √ | √ | [73] | |||||||
55 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [74] | ||||||
57 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [66] | ||||||
58 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [40] | ||||||
59 | √ | √ | √ | √ | √ | √ | √ | √ | [20] | |||||||
60 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [53] | ||||||
61 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [9] | ||||||
62 | √ | √ | √ | √ | √ | √ | √ | [67] | ||||||||
63 | √ | √ | √ | √ | √ | √ | √ | √ | [67] | |||||||
64 | √ | √ | √ | √ | √ | √ | √ | √ | [41] | |||||||
65 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [3] | ||||||
66 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [42] | |||||
67 | √ | √ | √ | √ | [68] | |||||||||||
68 | √ | √ | √ | √ | √ | √ | [75] | |||||||||
69 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] | ||||
70 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [43] | |||
71 | √ | √ | √ | √ | √ | √ | √ | [44] | ||||||||
72 | √ | √ | √ | √ | [21] | |||||||||||
73 | √ | √ | √ | √ | √ | √ | √ | [69] | ||||||||
74 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [70] | ||||||
75 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [45] | ||||||
76 | √ | √ | √ | √ | √ | √ | √ | [22] | ||||||||
77 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [71] | ||||||
78 | √ | √ | √ | √ | √ | √ | [46] | |||||||||
79 | √ | √ | √ | √ | √ | √ | √ | √ | √ | [54] | ||||||
80 | √ | √ | √ | √ | √ | √ | √ | √ | √ | √ | [54] |
References
- Lijó, L.; Frison, N.; Fatone, F.; González-García, S.; Feijoo, G.; Moreira, M.T. Environmental and sustainability evaluation of livestock waste management practices in Cyprus. Sci. Total Environ. 2018, 634, 127–140. [Google Scholar] [CrossRef]
- Yuan, k.; Xiong, S.Y.; Liang, J.; Li, Y.M.; Qiao, Y.H.; Li, H.F.; Chen, Q. Status and risk analysis of copper and zinc pollution in livestock manure. J. Agro-Environ. Sci. 2020, 39, 1837–1842. [Google Scholar]
- Beausang, C.; McDonnell, K.; Murphy, F. Anaerobic digestion of poultry litter-A consequential life cycle assessment. Sci. Total Environ. 2020, 735, 139494. [Google Scholar] [CrossRef]
- Ferreira, J.; Santos, L.; Ferreira, M.; Ferreira, A.; Domingos, I. Environmental Assessment of Pig Manure Treatment Systems through Life Cycle Assessment: A Mini-Review. Sustainability 2024, 16, 3521. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change (IPCC). Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Agriculture, Forestry and Other Land Use. In Emissions from Livestock and Manure Management; Institute for Global Environmental Strategies: Hayama, Japan, 2019; Volume 4, Chapter 10; Available online: https://www.ipcc-nggip.iges.or.jp/public/2019rf/vol4.html (accessed on 28 May 2023).
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- Li, Y.L.; Bai, J.S.; Zhao, L.P.; Li, Z.Z. Spatiotemporal distribution of livestock and poultry waste and its resource utilization potential in China. Soil Fertil. Sci. China 2023, 5, 114–124. [Google Scholar]
- Duan, N.; Khoshnevisan, B.; Lin, C.; Liu, Z.D.; Liu, H.B. Life cycle assessment of anaerobic digestion of pig manure coupled with different digestate treatment technologies. Environ. Int. 2020, 137, 105522. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Dong, X.; Wang, X.C.; Zhang, P.; Liu, R.R.; Klemeš, J.J.; Zheng, J.H. A life cycle assessment of an enterprise’s low-carbon emissions model: The Xinjiang Shihezi pig farm faecal treatment biogas project as a case study. J. Environ. Manag. 2022, 304, 114251. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, Y.; Wang, S.; Wang, Z.Z.; Liu, Y.C.; Hu, Z.H.; Zhan, X.M. Improved environmental sustainability and bioenergy recovery through pig manure and food waste on-farm co-digestion in Ireland. J. Clean. Prod. 2021, 280, 125034. [Google Scholar] [CrossRef]
- Garfí, M.; Castro, L.; Montero, N.; Escalante, H.; Ferrer, I. Evaluating environmental benefits of low-cost biogas digesters in small-scale farms in Colombia: A life cycle assessment. Bioresour. Technol. 2019, 274, 541–548. [Google Scholar] [CrossRef]
- ISO 14044:2006; International Organization for Standardization (ISO). Environmental Management-Life Cycle Assessment-Requirements and Guidelines. ISO: Geneva, Switzerland, 2006.
- Jiang, R.; Wang, H.T.; Zhang, H.; Chen, X.X. Life cycle assessment of cement technologies in China and recommendations. Acta Sci. Circumstantiae 2010, 30, 2361–2368. [Google Scholar]
- Esteves, E.M.M.; Herrera, A.M.N.; Esteves, V.P.P.; Morgado, C.R.V. Life cycle assessment of manure biogas production: A review. J. Clean. Prod. 2019, 219, 411–423. [Google Scholar] [CrossRef]
- Rahman, K.M.; Melville, L.; Fulford, D.; Huq, S.I. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment. Waste Manag. Res. J. A Sustain. Circ. Econ. 2017, 35, 1023–1033. [Google Scholar] [CrossRef] [PubMed]
- Ioannou-Ttofa, L.; Foteinis, S.; Moustafa, A.S.; Abdelsalam, E.; Samer, M.; Fatta-Kassinos, D. Life cycle assessment of household biogas production in Egypt: Influence of digester volume, biogas leakages, and digestate valorization as biofertilizer. J. Clean. Prod. 2021, 286, 125468. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Fiala, M.; Feijoo, G.; Lema, J.M.; Moreira, M.T. Life Cycle Assessment of electricity production in Italy from anaerobic co-digestion of pig slurry and energy crops. Renew. Energy 2014, 68, 625–635. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, X.F.; Zhou, S.X.; He, Z.S.; Meng, R.; Xi, B.D. Life Cycle Assessment of Large-scale Piggery for Environmental Assessment. J. Environ. Eng. Technol. 2012, 2, 428–432. [Google Scholar]
- Yi, R.J.; Zhang, W.Q.; Zhou, J.; Li, W.; Wu, S.B.; Chen, L.; Dong, R.J. Environmental impact analysis on the production and utilization of digestate based on LCA method. Renew. Energy Resour. 2015, 33, 301–307. [Google Scholar]
- Styles, D.; Dominguez, E.M.; Chadwick, D. Environmental balance of the UK biogas sector: An evaluation by consequential life cycle assessment. Sci. Total Environ. 2016, 560–561, 241–253. [Google Scholar] [CrossRef]
- Nindhia, T.G.T.; McDonald, M.; Styles, D. Greenhouse gas mitigation and rural electricity generation by a novel two-stroke biogas engine. J. Clean. Prod. 2021, 280, 124473. [Google Scholar] [CrossRef]
- Ruiz, D.; San Miguel, G.; Corona, B.; Domínguez, A. Environmental and economic analysis of power generation in a thermophilic biogas plant. Sci. Total Environ. 2018, 633, 1418–1428. [Google Scholar] [CrossRef]
- Baidini, C.; Gardoni, D.; Guarino, M. A critical review of the recent evolution of Life Cycle Assessment applied to milk production. J. Clean. Prod. 2017, 140, 421–435. [Google Scholar] [CrossRef]
- Yang, J.X. Life Cycle Assessment Methods and Applications for Products; China Meteorological Press: Beijing, China, 2002. [Google Scholar]
- Li, Y.; Manandhar, A.; Li, G.; Shah, A. Life cycle assessment of integrated solid state anaerobic digestion and composting for on-farm organic residues treatment. Waste Manag. 2018, 76, 294–305. [Google Scholar] [CrossRef]
- Lijó, L.; González-García, S.; Bacenetti, J.; Fiala, M.; Feijoo, G.; Moreira, M.T. Assuring the sustainable production of biogas from anaerobic mono-digestion. J. Clean. Prod. 2014, 72, 23–34. [Google Scholar] [CrossRef]
- De Vries, J.W.; Groenestein, C.M.; De Boer, I.J.M. Environmental consequences of processing manure to produce mineral fertilizer and bio-energy. J. Environ. Manag. 2012, 102, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Hollas, C.E.; Bolsan, A.C.; Chini, A.; Venturin, B.; Bonassa, G.; Cândido, D.; Antes, F.G.; Steinmetz, R.L.R.; Prado, N.V.; Kunz, A. Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach. Renew. Sustain. Energy Rev. 2021, 150, 111472. [Google Scholar] [CrossRef]
- Lyng, K.A.; Modahl, I.S.; Møller, H.; Morken, J.; Briseid, T.; Hanssen, O. The BioValueChain model: A Norwegian model for calculating environmental impacts of biogas value chains. Int. J. Life Cycle Assess. 2015, 20, 490–502. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiang, Y.; Wang, S.; Wang, Z.Z.; Liu, Y.C.; Hu, Z.H.; Zhan, X.M. Environmental sustainability assessment of pig manure mono- and co-digestion and dynamic land application of the digestate. Renew. Sustain. Energy Rev. 2021, 137, 110476. [Google Scholar] [CrossRef]
- Joshi, J.; Wang, J.J. Manure management coupled with bioenergy production: An environmental and economic assessment of large dairies in New Mexico. Energy Econ. 2018, 74, 197–207. [Google Scholar] [CrossRef]
- Ramírez-Islas, M.E.; Güereca, L.P.; Sosa-Rodriguez, F.S.; Cobos-Peralta, M.A. Environmental assessment of energy production from anaerobic digestion of pig manure at medium-scale using life cycle assessment. Waste Manag. 2020, 102, 85–96. [Google Scholar] [CrossRef]
- Vu, T.K.V.; Vu, D.Q.; Jensen, L.S.; Sommer, S.G.; Bruun, S. Life Cycle Assessment of Biogas Production in Small-scale Household Digesters in Vietnam. Asian-Australas. J. Anim. Sci. 2015, 28, 716–729. [Google Scholar] [CrossRef]
- Havukainen, J.; Väisänen, S.; Rantala, T.; Saunila, M.; Ukko, J. Environmental impacts of manure management based on life cycle assessment approach. J. Clean. Prod. 2020, 264, 121576. [Google Scholar] [CrossRef]
- Rodriguez-Verde, I.; Regueiro, L.; Carballa, M.; Hospido, A.; Lema, J.M. Assessing anaerobic co-digestion of pig manure with agroindustrial wastes: The link between environmental impacts and operational parameters. Sci. Total Environ. 2014, 497–498, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Li, D.Y.; Hu, J.; Dong, Y.W.; Jin, H.M. Life Cycle Assessment of Two Manure Treatment Modes in Intensive Dairy Farms. J. Ecol. Rural Environ. 2021, 37, 257–264. [Google Scholar]
- Jin, H.M.; Chang, Z.Z.; Ma, Y.; Yan, S.H.; Sheng, J.; Huang, H.Y.; Wu, H.S.; Sun, G.F. Life Cycle Assessment of Different Treatment Modes of Pig Manure Based on Integrated Planting and Raising System in Intensive Agricultural Region. J. Agro-Environ. Sci. 2015, 34, 1625–1632. [Google Scholar]
- Zhang, Y.; White, M.A.; Colosi, L.M. Environmental and economic assessment of integrated systems for dairy manure treatment coupled with algae bioenergy production. Bioresour. Technol. 2013, 130, 486–494. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, X.; Tong, X.; Li, T.T.; Wu, F.Q. Life cycle assessment of large-scale and household biogas plants in northwest China. J. Clean. Prod. 2018, 192, 221–235. [Google Scholar] [CrossRef]
- Yasar, A.; Rasheed, R.; Tabinda, A.B.; Tahir, A.; Sarwar, F. Life cycle assessment of a medium commercial scale biogas plant and nutritional assessment of effluent slurry. Renew. Sustain. Energy Rev. 2017, 67, 364–371. [Google Scholar] [CrossRef]
- Li, Y.Y.; Qi, C.; Zhang, Y.; Li, Y.M.; Wang, Y.Q.; Li, G.X.; Luo, W.H. Anaerobic digestion of agricultural wastes from liquid to solid state: Performance and environ-economic comparison. Bioresour. Technol. 2021, 332, 125080. [Google Scholar] [CrossRef]
- Croxatto Vega, G.C.; Hoeve, M.T.; Birkved, M.; Sommer, S.G.; Bruun, S.B. Choosing co-substrates to supplement biogas production from animal slurry-A life cycle assessment of the environmental consequences. Bioresour. Technol. 2014, 171, 410–420. [Google Scholar] [CrossRef]
- Pehme, S.; Veromann, E.; Hamelin, L. Environmental performance of manure co-digestion with natural and cultivated grass-A consequential life cycle assessment. J. Clean. Prod. 2017, 162, 1135–1143. [Google Scholar] [CrossRef]
- Aguirre-Villegas, H.A.; Larson, R.; Reinemann, D.J. From waste-to-worth: Energy, emissions, and nutrient implications of manure processing pathways. Biofuels Bioprod. Biorefining 2014, 8, 770–793. [Google Scholar] [CrossRef]
- Kreidenweis, U.; Breier, J.; Herrmann, C.; Libra, J.; Prochnow, A. Greenhouse gas emissions from broiler manure treatment options are lowest in well-managed biogas production. J. Clean. Prod. 2021, 280, 124969. [Google Scholar] [CrossRef]
- Adghim, M.; Abdallah, M.; Saad, S.; Shanableh, A.; Sartaj, M.; Mansouri, A.E.E. Comparative life cycle assessment of anaerobic co-digestion for dairy waste management in large-scale farms. J. Clean. Prod. 2020, 256, 120320. [Google Scholar] [CrossRef]
- Pedizzi, C.; Noya, I.; Sarli, J.; González-García, S.; Lema, J.M.; Moreira, M.T.; Carballa, M. Environmental assessment of alternative treatment schemes for energy and nutrient recovery from livestock manure. Waste Manag. 2018, 77, 276–286. [Google Scholar] [CrossRef]
- Zhang, S.; Bi, X.T.; Clift, R. A Life Cycle Assessment of integrated dairy farm-greenhouse systems in British Columbia. Bioresour. Technol. 2013, 150, 496–505. [Google Scholar] [CrossRef]
- De Vries, J.W.; Vinken, T.M.W.J.; Hamelin, L.; De Boer, I.J.M. Comparing environmental consequences of anaerobic mono- and co-digestion of pig manure to produce bio-energy-A life cycle perspective. Bioresour. Technol. 2012, 125, 239–248. [Google Scholar] [CrossRef]
- Poeschl, M.; Ward, S.; Owende, P. Environmental impacts of biogas deployment-Part I: Life cycle inventory for evaluation of production process emissions to air. J. Clean. Prod. 2012, 24, 168–183. [Google Scholar] [CrossRef]
- Beausang, C.; McDonnell, K.; Murphy, F. Assessing the environmental sustainability of grass silage and cattle slurry for biogas production. J. Clean. Prod. 2021, 298, 126838. [Google Scholar] [CrossRef]
- Ebner, J.H.; Labatut, R.A.; Rankin, M.J.; Pronto, J.L.; Gooch, C.A.; Williamson, A.A.; Trabold, T.A. Lifecycle Greenhouse Gas Analysis of an Anaerobic Codigestion Facility Processing Dairy Manure and Industrial Food Waste. Environ. Sci. Technol. 2015, 49, 11199–11208. [Google Scholar] [CrossRef]
- Wang, H.; Bi, X.; Clift, R. A case study on integrating anaerobic digestion into agricultural activities in British Columbia: Environmental, economic and policy analysis. Environ. Pollut. 2021, 271, 116279. [Google Scholar] [CrossRef]
- Vaneeckhaute, C.; Styles, D.; Prade, T.; Adams, P.; Thelin, G.; Rodhe, L.; Gunnarsson, I.; Hertefeldt, T. Closing nutrient loops through decentralized anaerobic digestion of organic residues in agricultural regions: A multi-dimensional sustainability assessment. Resour. Conserv. Recycl. 2018, 136, 110–117. [Google Scholar] [CrossRef]
- Sfez, S.; De Meester, S.; Dewulf, J. Co-digestion of rice straw and cow dung to supply cooking fuel and fertilizers in rural India: Impact on human health, resource flows and climate change. Sci. Total Environ. 2017, 609, 1600–1615. [Google Scholar] [CrossRef]
- Tonini, D.; Hamelin, L.; Alvarado-Morales, M.; Fruergaard Astrup, T. GHG emission factors for bioelectricity, biomethane, and bioethanol quantified for 24 biomass substrates with consequential life-cycle assessment. Bioresour. Technol. 2016, 208, 123–133. [Google Scholar] [CrossRef]
- Lijó, L.; Lorenzo-Toja, Y.; González-García, S.; Bacenetti, J.; Negri, M.; Moreira, M.T. Eco-efficiency assessment of farm-scaled biogas plants. Bioresour. Technol. 2017, 237, 146–155. [Google Scholar] [CrossRef] [PubMed]
- Fuchsz, M.; Kohlheb, N. Comparison of the environmental effects of manure- and crop-based agricultural biogas plants using life cycle analysis. J. Clean. Prod. 2015, 86, 60–66. [Google Scholar] [CrossRef]
- Agostini, A.; Battini, F.; Giuntoli, J.; Tabaglio, V.; Padella, M.; Baxter, D.; Marelli, L.; Amaducci, S. Environmentally Sustainable Biogas? The Key Role of Manure Co-Digestion with Energy Crops. Energies 2015, 8, 5234–5265. [Google Scholar] [CrossRef]
- Boulamanti, A.K.; Donida, M.S.; Giuntoli, J.; Agostini, A. Influence of different practices on biogas sustainability. Biomass Bioenergy 2013, 53, 149–161. [Google Scholar] [CrossRef]
- Ramírez-Arpide, F.R.; Demirer, G.N.; Gallegos-Vázquez, C.; Hernández-Eugenio, G.; Santoyo-Cortés, V.H.; Espinosa-Solares, T. Life cycle assessment of biogas production through anaerobic co-digestion of nopal cladodes and dairy cow manure. J. Clean. Prod. 2018, 172, 2313–2322. [Google Scholar] [CrossRef]
- Van den Oever, A.E.M.; Cardellini, G.; Sels, B.F.; Messagie, M. Life cycle environmental impacts of compressed biogas production through anaerobic digestion of manure and municipal organic waste. J. Clean. Prod. 2021, 306, 127156. [Google Scholar] [CrossRef]
- Whiting, A.; Azapagic, A. Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion. Energy 2014, 70, 181–193. [Google Scholar] [CrossRef]
- Bacenetti, J.; Negri, M.; Fiala, M.; González-García, S. Anaerobic digestion of different feedstocks: Impact on energetic and environmental balances of biogas process. Sci. Total Environ. 2013, 463–464, 541–551. [Google Scholar] [CrossRef]
- Torquati, B.; Venanzi, S.; Ciani, A.; Diotallevi, F.; Tamburi, V. Environmental Sustainability and Economic Benefits of Dairy Farm Biogas Energy Production: A Case Study in Umbria. Sustainability 2014, 6, 6696–6713. [Google Scholar] [CrossRef]
- Rehl, T.; Lansche, J.; Müller, J. Life cycle assessment of energy generation from biogas—Attributional vs. consequential approach. Renew. Sustain. Energy Rev. 2012, 16, 3766–3775. [Google Scholar] [CrossRef]
- Lovarelli, D.; Falcone, G.; Orsi, L.; Bacenetti, J. Agricultural small anaerobic digestion plants: Combining economic and environmental assessment. Biomass Bioenergy 2019, 128, 105302. [Google Scholar] [CrossRef]
- Hijazi, O.; Abdelsalam, E.; Samer, M.; Amer, B.M.A.; Yacoub, I.H.; Moselhy, M.A.; Attia, Y.A.; Bernhardt, H. Environmental impacts concerning the addition of trace metals in the process of biogas production from anaerobic digestion of slurry. J. Clean. Prod. 2020, 243, 118593. [Google Scholar] [CrossRef]
- Timonen, K.; Sinkko, T.; Luostarinen, S.; Tampio, E.; Joensuu, K. LCA of anaerobic digestion: Emission allocation for energy and digestate. J. Clean. Prod. 2019, 235, 1567–1579. [Google Scholar] [CrossRef]
- Blengini, G.A.; Brizio, E.; Cibrario, M.; Genon, G. LCA of bioenergy chains in Piedmont (Italy): A case study to support public decision makers towards sustainability. Resour. Conserv. Recycl. 2011, 57, 36–47. [Google Scholar] [CrossRef]
- Venanzi, S.; Pezzolla, D.; Cecchini, L.; Pauselli, M.; Ricci, A.; Sordi, A.; Torquati, B.; Gigliotti, G. Use of agricultural by-products in the development of an agro-energy chain: A case study from the Umbria region. Sci. Total Environ. 2018, 627, 494–505. [Google Scholar] [CrossRef]
- Styles, D.; Gibbons, J.; Williams, A.P.; Stichnothe, H.; Chadwick, D.R.; Healey, J.R. Cattle feed or bioenergy? Consequential life cycle assessment of biogas feedstock options on dairy farms. GCB Bioenergy 2015, 7, 1034–1049. [Google Scholar] [CrossRef]
- Luo, Y.; Stichnothe, H.; Schuchardt, F.; Li, G.X.; Huaitalla, R.M.; Xu, W. Life cycle assessment of manure management and nutrient recycling from a Chinese pig farm. Waste Manag. Res. J. Sustain. Circ. Econ. 2014, 32, 4–12. [Google Scholar] [CrossRef]
- Cherubini, E.; Zanghelini, G.M.; Alvarenga, R.A.F.; Franco, D.; Soares, S.R. Life cycle assessment of swine production in Brazil: A comparison of four manure management systems. J. Clean. Prod. 2015, 87, 68–77. [Google Scholar] [CrossRef]
- Rivas-García, P.; Botello-Álvarez, J.E.; Seabra, J.E.A.; da Silva Walter, A.C.; Estrada-Baltazar, A. Environmental implications of anaerobic digestion for manure management in dairy farms in Mexico: A life cycle perspective. Environ. Technol. 2015, 36, 2198–2209. [Google Scholar] [CrossRef]
- Jungbluth, N.; Chudacoff, M.; Dauriat, A.; Emmenegger, M.C.F. Life Cycle Inventories of Bioenergy. Ecoinvent Report No. 17; Swiss Centre for Life Cycle Inventories: Dübendorf, Switzerland, 2007. [Google Scholar]
- European Environment Agency (EEA). EMEP/EEA Air Pollutant Emission Inventory Guidebook 2019. 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019 (accessed on 5 September 2023).
- Trozzi, C. EMEP/EEA Air Pollutant Emission Inventory Guidebook 2013. 2013. Available online: https://www.eea.europa.eu/en/analysis/publications/emep-eea-guidebook-2013 (accessed on 10 September 2023).
- Intergovernmental Panel on Climate Change (IPCC). Revised 1996 IPCC Guidelines for National Greenhouse Gas Inventories. 1996. Available online: https://www.ipcc-nggip.iges.or.jp/public/gl/invs1.html (accessed on 19 September 2023).
- Intergovernmental Panel on Climate Change (IPCC). IPCC publishes full report Climate Change 2013: The Physical Science Basis-IPCC. 2006. Available online: https://www.ipcc.ch/2013/01/30/ipcc-publishes-full-report-climate-change-2013-the-physical-science-basis/ (accessed on 17 May 2023).
- Lin, C.Y.; Chai, W.S.; Lay, C.H.; Chen, C.C.; Lee, C.Y.; Show, P.L. Optimization of hydrolysis—Acidogenesis phase of swine manure for biogas production using two-stage anaerobic digestion. Processes 2021, 9, 1324. [Google Scholar] [CrossRef]
- Chen, C.l.; Wang, M.M.; Jia, J.X.; Li, J.M.; Cao, M.J.; Song, X.L.; Duan, N.; Liu, Z.D. Operation and management analysis of large-scale biogas projects under third-party mode. Trans. Chin. Soc. Agric. Eng. 2023, 39, 256–264. [Google Scholar]
- Liu, Y.; Li, X. Study on the Operation Status of Large and Medium-sized Biogas Projects in Beijing. Chem. Eng. Manag. 2015, 28, 108–111. [Google Scholar]
- Strotmann, U.J.; Eismann, F.; Hauth, B.; Bias, W.R. An integrated test strategy for the assessment of anaerobic biodegradability of wastewaters. Chemosphere 1993, 26, 2241–2254. [Google Scholar] [CrossRef]
- Akinremi, W.; Ige, D.V.; Sayem, S.M. Nitrogen mineralization in beef and pig manure amended soils measured using anion resin method. Can. J. Soil Sci. 2015, 95, 305–319. [Google Scholar]
- Hei, Z.; Peng, Y.; Hao, S.; Li, Y.; Yang, X.; Zhu, T.; Müller, C.; Zhang, H.; Hu, H.; Chen, Y. Full substitution of chemical fertilizer by organic manure decreases soil N2 O emissions driven by ammonia oxidizers and gross nitrogen transformations. Glob. Chang. Biol. 2023, 29, 7117–7130. [Google Scholar] [CrossRef] [PubMed]
- CML-Department of Industrial Ecology. CML-IA Characterisation Factors. Leiden University. Available online: https://www.universiteitleiden.nl/en/research/research-output/science/cml-ia-characterisation-factors (accessed on 12 February 2024).
- Huijbregts, M.A.J.; Steinmann, Z.J.N.; Elshout, P.M.F.; Stam, G.; Verones, F.; Vieira, M.; Zijp, M.; Hollander, A.; van Zelm, R. ReCiPe2016: A harmonised life cycle impact assessment method at midpoint and endpoint level. Int. J. Life Cycle Assess. 2017, 22, 138–147. [Google Scholar] [CrossRef]
- Yin, P.; Zhang, H.W.; Liu, H.D.; Wang, Y.M.; Xiang, X.F.; Peng, J.J.; Wan, X.C.; AI, P. Analysis of nutrients and heavy metals of biogas residue and biogas slurry in four provinces and cities. China Biogas 2021, 39, 43–50. [Google Scholar]
- Su, C. Research progress on ecotoxic effects of heavy metal pollution on aquatic organisms. Contemp. Chem. Res. 2023, 22, 12–14. [Google Scholar]
Environmental Impact Categories | Functional Units | |||||
---|---|---|---|---|---|---|
1 t Manure | CV | 1 t Feedstocks | CV | 1 kwh Bioenergy | CV | |
GWP (kg CO2eq) | −460.53~1018 | 501% | −372.55~252.17 | 1479% | −16.00~0.97 | 367% |
EP (kg PO4eq) | −3.76~6.96 | 268% | −0.48~4.04 | 114% | 0.000~0.001 | 131% |
FEP (kg P eq) | −0.21~0.08 | 500% | −0.08~0.25 | 3800% | −0.001~0.005 | 400% |
MEP (kg N eq) | −1.01~2.6 | 231% | −0.39~2.38 | 132% | −0.004~0.010 | 227% |
AP (kg SO2eq) | −2.35~11.13 | 146% | −1.13~12.65 | 124% | −0.003~0.04 | 160% |
FD(MJ) | −2300.00~1680.00 | 262% | −22,884.07~1390.00 | 287% | −9.26~5.60 | 166% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wang, J.; Duan, C.; Wang, X.; Liang, D. Systematic Review on the Life Cycle Assessment of Manure-Based Anaerobic Digestion System. Sustainability 2025, 17, 8926. https://doi.org/10.3390/su17198926
Wang X, Wang J, Duan C, Wang X, Liang D. Systematic Review on the Life Cycle Assessment of Manure-Based Anaerobic Digestion System. Sustainability. 2025; 17(19):8926. https://doi.org/10.3390/su17198926
Chicago/Turabian StyleWang, Xiaoqin, Jia Wang, Congcong Duan, Xinjing Wang, and Dongli Liang. 2025. "Systematic Review on the Life Cycle Assessment of Manure-Based Anaerobic Digestion System" Sustainability 17, no. 19: 8926. https://doi.org/10.3390/su17198926
APA StyleWang, X., Wang, J., Duan, C., Wang, X., & Liang, D. (2025). Systematic Review on the Life Cycle Assessment of Manure-Based Anaerobic Digestion System. Sustainability, 17(19), 8926. https://doi.org/10.3390/su17198926