Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Processing
2.3. Methods
2.3.1. Stability Analysis
2.3.2. Trend Analysis
2.3.3. Gravity Center Model
2.3.4. Hurst Index
2.3.5. Optimal Parameters-Based Geographical Detector Model (OPGD)
2.3.6. Partial Least Squares Structural Equation Modeling (PLS-SEM)
3. Results
3.1. Spatiotemporal Variation in Vegetation NPP
3.1.1. Spatial Variability of NPP
3.1.2. Spatial Trend in Vegetation NPP
3.1.3. The Center of Gravity Shift in Vegetation NPP
3.1.4. Future Development Trends
3.2. Driving Factors
3.2.1. Discretization of Continuous Variables
3.2.2. Factor Detection
3.2.3. Interaction Detection
3.3. Pathway Analysis of the Influence
4. Discussion
4.1. Interpretation of the Spatial Distribution Characteristics of Vegetation NPP
4.2. Future Trends of Vegetation NPP
4.3. Effect Pathways of Different Driving Factors
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richter, G.; Topp, C. Climate Factors Contribute to Grassland Net Primary Productivity. Agronomy 2021, 11, 1076. [Google Scholar] [CrossRef]
- Duveneck, M.J.; Thompson, J.R. Climate change imposes phenological trade-offs on forest net primary productivity. J. Geophys. Res. Biogeosci. 2017, 122, 2298–2313. [Google Scholar] [CrossRef]
- Donmez, C.; Berberoglu, S.; Curran, P.J. Modelling the current and future spatial distribution of NPP in a Mediterranean watershed. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 336–345. [Google Scholar] [CrossRef]
- Huang, L.; Li, L.; Wang, W. Research on comprehensive evaluation and regionalization of natural resources in North China based on GIS. North China Geol. 2023, 46, 83–88. [Google Scholar]
- Liu, G.; Shao, Q.; Fan, J.; Ning, J.; Rong, K.; Huang, H.; Liu, S.; Zhang, X.; Niu, L.; Liu, J. Change Trend and Restoration Potential of Vegetation Net Primary Productivity in China over the Past 20 Years. Remote Sens. 2022, 14, 1634. [Google Scholar] [CrossRef]
- Woolley, T.J.; Harmon, M.E.; O Connell, K.B. Inter-annual variability and spatial coherence of net primary productivity across a western Oregon Cascades landscape. For. Ecol. Manag. 2015, 335, 60–70. [Google Scholar] [CrossRef]
- Hao, L.; Wang, S.; Cui, X.; Zhai, Y. Spatiotemporal Dynamics of Vegetation Net Primary Productivity and Its Response to Climate Change in Inner Mongolia from 2002 to 2019. Sustainability 2021, 13, 13310. [Google Scholar] [CrossRef]
- Hadian, F.; Jafari, R.; Bashari, H.; Tartesh, M.; Clarke, K.D. Estimation of spatial and temporal changes in net primary production based on Carnegie Ames Stanford Approach (CASA) model in semi-arid rangelands of Semirom County, Iran. J. Arid Land 2019, 11, 477–494. [Google Scholar] [CrossRef]
- Xiao, F.; Liu, Q.; Xu, Y. Estimation of Terrestrial Net Primary Productivity in the Yellow River Basin of China Using Light Use Efficiency Model. Sustainability 2022, 14, 7399. [Google Scholar] [CrossRef]
- Mao, S.; Shangguan, Z. Evolution of spatiotemporal patterns in vegetation net primary productivity and the driving forces on the Loess Plateau. Front. Environ. Sci. 2023, 11, 1134917. [Google Scholar] [CrossRef]
- Zhang, J.; Qi, Y.; Yang, R.; Ma, X.; Zhang, J.; Qi, W.; Guo, Q.; Wang, H. Impacts of Climate Change and Land Use/Cover Change on the Net Primary Productivity of Vegetation in the Qinghai Lake Basin. Int. J. Environ. Res. Public Health 2023, 20, 2179. [Google Scholar] [CrossRef]
- Hong, X.; Huang, Y.; Sun, T. Spatiotemporal evolution of vegetation net primaryproductivity in the karst region of southwest China from 2001 to 2018. Acta Ecol. Sin. 2021, 41, 9836–9846. [Google Scholar]
- Ji, P.; Gao, M.; Yang, X. Analysis of NPP driving force in an arid region of Northwest China: A case study in Yili Valley and parts of Tianshan Mountains, Xinjiang, China. Acta Ecol. Sin. 2019, 39, 2995–3006. [Google Scholar] [CrossRef]
- Wei, J.Z.; Niu, X.N.; Shi, Z.H.; Wang, X.S.; Zhang, M.L. Analysis on the Driving Factors of Grassland NPP Dynamic Changes in the Loess Plateau. Environ. Sci. Technol. 2022, 45, 203–211. [Google Scholar]
- Wang, J.F.; Li, X.H.; Christakos, G.; Liao, Y.L.; Zhang, T.; Gu, X.; Zheng, X.Y. Geographical Detectors-Based Health Risk Assessment and its Application in the Neural Tube Defects Study of the Heshun Region, China. Int. J. Geogr. Inf. Sci. 2010, 24, 107–127. [Google Scholar] [CrossRef]
- Gao, S.Q.; Dong, G.T.; Jiang, X.H.; Nie, T.; Yin, H.J.; Guo, X.W. Quantification of Natural and Anthropogenic Driving Forces of Vegetation Changes in the Three-River Headwater Region during 1982–2015 Based on Geographical Detector Model. Remote Sens. 2021, 13, 4175. [Google Scholar] [CrossRef]
- Chen, S.T.; Guo, B.; Zhang, R.; Zang, W.Q.; Wei, C.X.; Wu, H.W.; Yang, X.; Zhen, X.Y.; Li, X.; Zhang, D.F.; et al. Quantitatively determine the dominant driving factors of the spatial-temporal changes of vegetation NPP in the Hengduan Mountain area during 2000–2015. J. Mt. Sci. 2021, 18, 427–445. [Google Scholar] [CrossRef]
- Xue, H.Z.; Chen, Y.P.; Dong, G.T.; Li, J.Y. Quantitative analysis of spatiotemporal changes and driving forces of vegetation net primary productivity (NPP) in the Qimeng region of Inner Mongolia. Ecol. Indic. 2023, 154, 110610. [Google Scholar] [CrossRef]
- Lv, J.X.; Zhao, W.W. Variations of vegetation gross primary productivity and its driving factors in Tibetan Plateau. Acta Ecol. Sin. 2025, 45, 6934–6947. [Google Scholar]
- Yang, L.; Shen, F.; Zhang, L.; Cai, Y.; Yi, F.; Zhou, C. Quantifying influences of natural and anthropogenic factors on vegetation changes using structural equation modeling: A case study in Jiangsu Province, China. J. Clean. Prod. 2021, 280, 124330. [Google Scholar] [CrossRef]
- Gu, Z.N.; Zhang, Z.; Yang, J.H.; Wang, L.L. Quantifying the Influences of Driving Factors on Vegetation EVI Changes Using Structural Equation Model: A Case Study in Anhui Province, China. Remote Sens. 2022, 14, 4203. [Google Scholar] [CrossRef]
- Cao, Y.; Li, H.W.; Liu, Y.L.; Zhang, Y.F.; Jiang, Y.K.; Dai, W.T.; Shen, M.X.; Guo, X.; Qi, W.N.; Li, L.; et al. Regional Contribution and Attribution of the Interannual Variation of Net Primary Production in the Yellow River Basin, China. Remote Sens. 2023, 15, 5212. [Google Scholar] [CrossRef]
- Wang, D.D.; Qin, W.; Jia, G.D.; Shan, Z.J.; Hao, M. Assessing the effects of climate variability and vegetation conversion on variations of net primary productivity in the mountainous area of North China. For. Ecol. Manag. 2021, 506, 119957. [Google Scholar] [CrossRef]
- Zhao, L.; Chen, Y.; Wang, X.; Su, M.; Xu, H.; Zhang, P. Spatiotemporal changes in net primary productivity before and after the development of unused land in the hilly areas of Hebei, China. PLoS ONE 2022, 17, e0270010. [Google Scholar] [CrossRef]
- Lu, Z.; Chen, P.; Yang, Y.; Zhang, S.; Zhang, C.; Zhu, H. Exploring quantification and analyzing driving force for spatial and temporal differentiation characteristics of vegetation net primary productivity in Shandong Province, China. Ecol. Indic. 2023, 153, 110471. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, J.; Peng, B.; Wang, J.L.; Yu, J.J.; Wu, J.Y. Research on the optimization of land spatial patternbased on “dual evaluation”: Taking Anyuan County, Jiangxi province as an example. North China Geol. 2023, 46, 69–78. [Google Scholar]
- Peng, S.Z. 1-km Monthly Precipitation Dataset for China (1901–2024). National Tibetan Plateau/Third Pole Environment Data Center 2020. Available online: https://data.tpdc.ac.cn/en/data/faae7605-a0f2-4d18-b28f-5cee413766a2 (accessed on 20 June 2025).
- Peng, S.Z. 1-km Monthly Mean Temperature Dataset for China (1901–2022). National Tibetan Plateau/Third Pole Environment Data Center 2019. Available online: https://data.tpdc.ac.cn/en/data/71ab4677-b66c-4fd1-a004-b2a541c4d5bf/ (accessed on 20 June 2025).
- Peng, S.Z.; Ding, Y.X.; Wen, Z.M.; Chen, Y.M.; Cao, Y.; Ren, J.Y. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. Available online: http://loess.geodata.cn/data/datadetails.html?dataguid=34595274939620&docid=3 (accessed on 20 June 2025). [CrossRef]
- Xu, X.L. Spatial Interpolation Data Set of Mean State of Meteorological Elements in China. Resource and Environment Science and Data Center 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=39 (accessed on 25 June 2025).
- Zhang, D.X.; Peng, J.F. A Dataset of 1km Grid Drainage Density in China (2022). V1. Science Data Bank 2024. Available online: https://www.scidb.cn/en/detail?dataSetId=626c5afaeaf841088335262a8e39b9ab (accessed on 30 June 2025).
- Sun, H.; Xu, Q.; Zhao, Z.Y. Monthly Gap-Filled CCI Soil Moisture Over Region of China (Combined Product). V1. Science Data Bank 2023. Available online: https://www.scidb.cn/en/detail?dataSetId=434a6fad0daa4c32a7396dc7db575fc8 (accessed on 20 June 2025).
- Li, J.L.; He, H.B.; Zeng, Q.H.; Chen, L.D.; Sun, R.H. Dataset of Soil Conservation Capacity Preventing Water Erosion in China (1992–2019). V1. Science Data Bank, 2023. Available online: https://www.scidb.cn/en/detail?dataSetId=3b2e9ea9d65c4c92b6357519a7ddc6dd&version=V1 (accessed on 20 June 2025).
- Xu, X.L.; Liu, J.Y.; Zhang, S.W.; Li, R.D.; Yan, C.Z.; Wu, S.X. Remote Sensing Data Set of Multi-Period Land Use Monitoring in China(CNLUCC). Resource and Environment Science and Data Center 2018. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=54 (accessed on 25 June 2025).
- Xu, X.L. China GDP Spatial Distribution Kilometer Grid Dataset. Resource and Environment Science and Data Center, 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=33 (accessed on 25 June 2025).
- Xu, X.L. China Population Spatial Distribution Kilometer Grid Dataset. Resource and Environment Science and Data Center, 2017. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=32 (accessed on 25 June 2025).
- Kesteven, G.L. The Coefficient of Variation. Nature 1946, 158, 520–521. [Google Scholar] [CrossRef]
- Kang, Y.; Guo, E.; Wang, Y.; Bao, Y.; Bao, Y.; Mandula, N. Monitoring Vegetation Change and Its Potential Drivers in Inner Mongolia from 2000 to 2019. Remote Sens. 2021, 13, 3357. [Google Scholar] [CrossRef]
- Tosunoglu, F.; Kisi, O. Trend Analysis of Maximum Hydrologic Drought Variables Using Mann-Kendall and Şen’s Innovative Trend Method. River Res. Appl. 2017, 33, 597–610. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests Against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Yang, R.; Cao, G.; Cao, S.; Lan, Y.; Zhang, Z.; Chen, Z.; Chen, Z.; Xu, Z.B.; Chen, D.Q.; Liu, J.Y. Temporal and spatial variation of NPP and its response to climatic factors in main river valleys on the southern slope of Qilian Mountains. E3S Web Conf. 2019, 131, 1044. [Google Scholar] [CrossRef]
- Meng, X.; Gao, X.; Li, S.; Li, S.; Lei, J. Monitoring desertification in Mongolia based on Landsat images and Google Earth Engine from 1990 to 2020. Ecol. Indic. 2021, 129, 107908. [Google Scholar] [CrossRef]
- Guo, B.; Zang, W.Q.; Yang, F.; Han, B.M.; Chen, S.T.; Liu, Y.; Yang, X.; He, T.L.; Chen, X.; Liu, C.T.; et al. Spatial and temporal change patterns of net primary productivity and its response to climate change in the Qinghai-Tibet Plateau of China from 2000 to 2015. J. Arid Land 2020, 12, 1–17. [Google Scholar] [CrossRef]
- Emamian, A.; Rashki, A.; Kaskaoutis, D.G.; Gholami, A.; Opp, C.; Middleton, N. Assessing vegetation restoration potential under different land uses and climatic classes in northeast Iran. Ecol. Indic. 2021, 122, 107325. [Google Scholar] [CrossRef]
- Wang, X.G.; Li, T.X.; Ikhumhen, H.O.; Sá, R.M. Spatio-temporal variability and persistence of PM2.5 concentrations in China using trend analysis methods and Hurst exponent. Atmos. Pollut. Res. 2022, 13, 101274. [Google Scholar] [CrossRef]
- Wang, J.F.; Xu, C.D. Geodetector: Principle and prospective. Acta Geogr. Sin. 2017, 72, 116–134. [Google Scholar]
- Song, Y.Z.; Wang, J.F.; Ge, Y.; Xu, C.D. An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: Cases with different types of spatial data. GIScience Remote Sens. 2020, 57, 593–610. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Tan, S.C.; Li, Y.P.; Wu, H.; Wu, R.J. Quantitative analysis of fractional vegetation cover in southern Sichuan urban agglomeration using optimal parameter geographic detector model, China. Ecol. Indic. 2024, 158, 111529. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Xie, H.L.; Wang, Z.F.; Hu, X.T.; Wang, X.K.; Xie, X.Q.; Lin, H.; Liu, X.Z. Analysis of spatiotemporal heterogeneity of habitat quality and their drivingfactors based on optimal parameters-based geographicdetector for Fuzhou City, China. J. Environ. Eng. Technol. 2023, 13, 1921–1930. [Google Scholar]
- Fan, Y.; Chen, J.Q.; Shirkey, G.; John, R.; Wu, S.R.; Park, H.; Shao, C.L. Applications of structural equation modeling (SEM) in ecological studies: An updated review. Ecol. Process. 2016, 5, 19. [Google Scholar] [CrossRef]
- Shen, W.; Xiao, W.; Wang, X. Passenger satisfaction evaluation model for Urban rail transit: A structural equation modeling based on partial least squares. Transp. Policy 2016, 46, 20–31. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Zhao, Z.Y.; Zhu, J.; Wang, Y.L.; Wang, H.Y.; Fu, B.J.; Lue, Y.H.; Jiang, W.; Hu, Y.; Wu, X. The dynamic patterns of critical ecological areas in the Yellow River Basin are driven primarily by climate factors but threatened by human activities. J. Environ. Manag. 2024, 371, 123282. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Chen, J.P.; Chen, Z.P.; Sha, Z.Y.; Yin, J.H.; Chen, Z.T. Quantifying the contributions of climate factors and human activities to variations of net primary productivity in China from 2000 to 2020. Front. Earth Sci. 2023, 11, 1084399. [Google Scholar] [CrossRef]
- Wu, N.T.; Liu, A.J.; Ye, R.H.; Yu, D.S.; Du, W.L.; Chaolumeng, Q.G.; Liu, G.X.; Yu, S. Quantitative analysis of relative impacts of climate change and human activities on Xilingol grassland in recent 40 years. Glob. Ecol. Conserv. 2021, 32, e01884. [Google Scholar] [CrossRef]
- Yan, Y.C.; Liu, X.P.; Wen, Y.Y.; Ou, J.P. Quantitative analysis of the contributions of climatic and human factors to grassland productivity in northern China. Ecol. Indic. 2019, 103, 542–553. [Google Scholar] [CrossRef]
- Sun, T.; Sun, R.H.; Chen, L.D. Research on the relationship between changes in vegetation net productivity and land use type transformation in urban agglomeration. Environ. Ecol. 2020, 2, 9. [Google Scholar]
- Wu, J.S.; Cao, Q.W.; Shi, S.Q.; Huang, X.L.; Lu, Z.Q. Spatio-temporal variability of habitat quality in Beijing-Tianjin-Hebei Area based on land use change. Chin. J. Appl. Ecol. 2015, 26, 3457–3466. [Google Scholar]
Factor Type | Number | Factor | Spatial Scale | Source | |
---|---|---|---|---|---|
Climate factor | X1 | Temperature | 1 km | https://data.tpdc.ac.cn/home, accessed on 24 August 2025 | |
X2 | Precipitation | ||||
X3 | Evapotranspiration | https://loess.geodata.cn, accessed on 24 August 2025 | |||
X4 | Soil temperature | https://www.resdc.cn, accessed on 24 August 2025 | |||
Remote sensing data | NPP | Y | NPP | 500 m | https://lpdaac.usgs.gov, accessed on 24 August 2025 |
Landform | X5 | Elevation | 90 m | https://www.gscloud.cn/, accessed on 24 August 2025 | |
X6 | Slope | ||||
X7 | Relief amplitude | ||||
Soil factor | X8 | Soil type | 1 km | https://gaez.fao.org/pages/hwsd, accessed on 24 August 2025 | |
X9 | Soil moisture | https://www.scidb.cn, accessed on 24 August 2025 | |||
X10 | Soil erosion intensity | ||||
Hydrological factor | X11 | Water network density | 1 km | https://www.scidb.cn, accessed on 24 August 2025 | |
Human factor | X12 | Population density | 1 km | https://www.resdc.cn, accessed on 24 August 2025 | |
X13 | GDP density | ||||
X14 | Land use types | 30 m |
Hurst | Sen&M-K | Future Development Trends | Sustainability | Proportion |
---|---|---|---|---|
0 < H < 0.5 | β < 0, p < 0.01 | Anti-persistence highly significant reduction | Improvement | 0.15% |
β < 0, 0.01 < p < 0.05 | Anti-persistence significant reduction | 0.15% | ||
β = 0 or p > 0.05 | No significant trend in resistance | Stable development | 21.37% | |
β > 0, 0.01 < p < 0.05 | Anti-persistence significant increase | Significant degradation | 11.39% | |
β > 0, p < 0.01 | Anti-persistence highly significant increase | 32.96% | ||
H = 0.5 | ||||
0.5 < H ≤ 0.98 | β < 0, p < 0.01 | Highly significant reduction | Degradation | 0.33% |
β < 0, 0.01 < p < 0.05 | Significant reduction | 0.31% | ||
β = 0 or p > 0.05 | No significant trend | Stable development | 16.21% | |
β > 0, 0.01 < p < 0.05 | Significant increase | Significant improvement | 5.62% | |
β > 0, p < 0.01 | Highly significant increase | 11.52% |
Number | Variable Type | Classification Method | Number of Boxes | Number | Variable Type | Classification Method | Number of Boxes |
---|---|---|---|---|---|---|---|
X1 | Continuous variable | natural | 9 | X8 | Type variable | ||
X2 | natural | 9 | X9 | Continuous variable | quantile | 9 | |
X3 | quantile | 9 | X10 | natural | 8 | ||
X4 | quantile | 9 | X11 | sd | 9 | ||
X5 | geometric | 9 | X12 | natural | 9 | ||
X6 | quantile | 9 | X13 | quantile | 8 | ||
X7 | quantile | 7 | X14 | Type variable |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Liu, H.; Miao, J.; Bai, Y.; Han, B.; Xu, D.; Yang, F.; Xia, Y. Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China. Sustainability 2025, 17, 8877. https://doi.org/10.3390/su17198877
Li Z, Liu H, Miao J, Bai Y, Han B, Xu D, Yang F, Xia Y. Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China. Sustainability. 2025; 17(19):8877. https://doi.org/10.3390/su17198877
Chicago/Turabian StyleLi, Zhuang, Hongwei Liu, Jinjie Miao, Yaonan Bai, Bo Han, Danhong Xu, Fengtian Yang, and Yubo Xia. 2025. "Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China" Sustainability 17, no. 19: 8877. https://doi.org/10.3390/su17198877
APA StyleLi, Z., Liu, H., Miao, J., Bai, Y., Han, B., Xu, D., Yang, F., & Xia, Y. (2025). Quantifying the Contribution of Driving Factors on Distribution and Change in Vegetation NPP in the Huang–Huai–Hai Plain, China. Sustainability, 17(19), 8877. https://doi.org/10.3390/su17198877