Comparative Economic Analysis of Rainbow Trout Aquaculture Systems Considering Greenhouse Gas Emissions
Abstract
1. Introduction
2. Trout Aquaculture
3. Materials and Methods
3.1. Trout Farms Field Survey
3.2. GHG Emissions Estimation
3.3. Economic Analysis
4. Results
4.1. GHG Emissions Estimation
4.2. Economic Analysis
5. Discussions
5.1. GHG Emissions Estimation
5.2. Economic Analysis
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- IPCC. Global Warming of 1.5 °C; IPCC: Geneva, Switzerland, 2018. [Google Scholar]
- Government of the Republic of Korea. 2050 Carbon Neutrality Promotion Strategy; Government of the Republic of Korea: Sejong, Republic of Korea, 2020.
- Ministry of Oceans and Fisheries. Marine and Fisheries, Beyond Carbon Neutrality to Carbon Negatives—Greenhouse Gas Emissions in 2050—Establishment of the 2050 Carbon Neutral Road Map in the Marine and Fisheries Sector with the Goal of 3.24 Million Tons; Ministry of Oceans and Fisheries: Sejong, Republic of Korea, 2021.
- Ministry of Oceans and Fisheries. 2050 Carbon Neutrality Road Map for the Marine and Fisheries Sector; Ministry of Oceans and Fisheries: Sejong, Republic of Korea, 2021.
- Bae, J.; Yang, Y.; Kim, H.; Hwang, B.; Lee, C.; Park, S.; Lee, J. A quantitative analysis of greenhouse gas emissions from the major offshore fisheries. J. Korean Soc. Fish. Technol. 2019, 55, 50–61. [Google Scholar] [CrossRef]
- Jeon, Y.; Cho, H.-S.; Nam, J. Analysis on dynamic causal relationship between greenhouse gas emissions and fisheries revenue based on fishing efforts in offshore fisheries. J. Korean Soc. Fish. Mar. Sci. Educ. 2024, 36, 1136–1146. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Park, S.; Yang, Y.; Lee, K. Estimation of Green-House-Gas emissions from domestic eel farm. J. Korean Soc. Fish. Technol. 2014, 50, 58–66. [Google Scholar] [CrossRef]
- National Institute of Fisheries Science. Greenhouse Gas Information of Offshore Fisheries. Available online: https://www.nifs.go.kr (accessed on 6 September 2025).
- Yang, Y.; Lee, K.; Lee, D.; Shin, H.; Lim, H. Estimation of Green-House-Gas emissions from domestic aquaculture farm for flounders. J. Korean Soc. Fish. Technol. 2015, 51, 614–623. [Google Scholar] [CrossRef]
- Korea Energy Economics Institute. Overseas Carbon Tax Management Trends and Effects on Carbon Prices; Korea Energy Economics Institute: Ulsan, Republic of Korea, 2022. [Google Scholar]
- Jeon, Y.; Nam, J. The estimation of greenhouse gas emissions for major coastal fisheries using dynamic optimal fisheries theory. Ocean Policy Res. 2020, 35, 23–51. [Google Scholar] [CrossRef]
- Ministry of Oceans and Fisheries. The 4th Basic Plan for Development of Aquaculture Industry; Ministry of Oceans and Fisheries: Sejong, Republic of Korea, 2018.
- d’Orbcastel, E.R.; Blancheton, J.-P.; Aubin, J. Towards environmentally sustainable aquaculture: Comparison between two trout farming systems using Life Cycle Assessment. Aquacult. Eng. 2009, 40, 113–119. [Google Scholar] [CrossRef]
- Samuel-Fitwi, B.; Nagel, F.; Meyer, S.; Schroeder, J.P.; Schulz, C. Comparative life cycle assessment (LCA) of raising rainbow trout (Oncorhynchus mykiss) in different production systems. Aquacult. Eng. 2013, 54, 85–92. [Google Scholar] [CrossRef]
- Baek, J.; Park, K. An economic analysis of rainbow trout (Oncorhynchus mykiss) aquaculture farms. J. Fish. Mar. Sci. Educ. 2016, 28, 1280–1289. [Google Scholar] [CrossRef]
- Korean Statistical Information Service. Fishery Production Survey. Available online: https://kosis.kr (accessed on 6 September 2025).
- Korea Trout Farmer’s Association. Member Company Introduction. Available online: http://www.krtaa.or.kr (accessed on 6 September 2025).
- Korea Maritime Institute. Observational Statistics (Trout). Available online: https://www.foc.re.kr (accessed on 6 September 2025).
- Korea Maritime Institute. Trout Fishery Observation June 2022 Issue; Korea Maritime Institute: Busan, Republic of Korea, 2022. [Google Scholar]
- Korea Maritime Institute. Trout Fishery Observation August 2022 Issue; Korea Maritime Institute: Busan, Republic of Korea, 2022. [Google Scholar]
- Ayer, N.W.; Tyedmers, P.H. Assessing alternative aquaculture technologies: Life cycle assessment of salmonid culture systems in Canada. J. Clean. Prod. 2009, 17, 362–373. [Google Scholar] [CrossRef]
- Badiola, M.; Basurko, O.C.; Gabiña, G.; Mendiola, D. Integration of energy audits in the life cycle assessment methodology to improve the environmental performance assessment of recirculating aquaculture systems. J. Clean. Prod. 2017, 157, 155–166. [Google Scholar] [CrossRef]
- Liu, Y.; Rosten, T.W.; Henriksen, K.; Hognes, E.S.; Summerfelt, S.; Vinci, B. Comparative economic performance and carbon footprint of two farming models for producing Atlantic salmon (Salmo salar): Land-based closed containment system in freshwater and open net pen in seawater. Aquacult. Eng. 2016, 71, 1–12. [Google Scholar] [CrossRef]
- Robb, D.H.; MacLeod, M.; Hasan, M.R.; Soto, D. Greenhouse Gas Emissions from Aquaculture: A Life Cycle Assessment of Three Asian systems; FAO Fisheries and Aquaculture Technical Papers: Rome, Italy, 2017. [Google Scholar]
- Ministry of the Environment. National Greenhouse Gas Inventory Report 2021; Ministry of the Environment: Sejong, Republic of Korea, 2022.
- Ministry of the Environment. Green Campus. Greenhouse Gas Inventory Establishment. Available online: https://www.gihoo.or.kr/greencampus (accessed on 6 September 2025).
- Korea Energy Agency. Energy Greenhouse Gas Comprehensive Information Platform. Carbon Dioxide Emissions Calculation Formula. Available online: https://tips.energy.or.kr (accessed on 6 September 2025).
- Brown, H.L. Energy Analysis of 108 Industrial Processes; The Fairmont Press, Inc.: Lilburn, GA, USA, 1996; pp. 1–314. [Google Scholar]
- Tyedmers, P. Salmon and Sustainability: The Biophysical Cost of Producing Salmon Through the Commercial Salmon Fishery and the Intensive salmon Culture Industry. Ph.D. Thesis, University of British Columbia, Vancouver, BC, Canada, 2000; pp. 1–270. [Google Scholar]
- Colt, J.; Summerfelt, S.; Pfeiffer, T.; Fivelstad, S.; Rust, M. Energy and resource consumption of land-based Atlantic salmon smolt hatcheries in the Pacific Northwest (USA). Aquaculture 2008, 280, 94–108. [Google Scholar] [CrossRef]
- Ministry of Government Legislation. General Guidelines for Performing Preliminary Feasibility Study. Available online: https://www.law.go.kr (accessed on 6 September 2025).
- Park, D. A Comparative Analysis on Economic Viability of Rainbow Trout Aquaculture by Farming Method. Master’s Thesis, Pukyong National University, Busan, Republic of Korea, 2019. [Google Scholar]
- Korea Exchange Emissions Market Information Platform. Emission Permit Price Inquiry. Available online: https://ets.krx.co.kr/main/main.jsp (accessed on 6 September 2025).
- IMF. Fiscal monitor, October 2019: In How to Mitigate Climate Change; IMF: Washington, DC, USA, 2019. [Google Scholar]
- IMF. Fiscal monitor, April 2022. In Fiscal Policy from Pandemic to War; IMF: Washington, DC, USA, 2022. [Google Scholar]
- Badiola, M.; Basurko, O.C.; Piedrahita, R.; Hundley, P.; Mendiola, D. Energy use in recirculating aquaculture systems (RAS): A review. Aquacult. Eng. 2018, 81, 57–70. [Google Scholar] [CrossRef]
- Ahmed, N.; Turchini, G.M. Recirculating aquaculture systems (RAS): Environmental solution and climate change adaptation. J. Clean. Prod. 2021, 297, 126604. [Google Scholar] [CrossRef]
- Dekamin, M.; Veisi, H.; Safari, E.; Liaghati, H.; Khoshbakht, K.; Dekamin, M.G. Life cycle assessment for rainbow trout (Oncorhynchus mykiss) production systems: A case study for Iran. J. Clean. Prod. 2015, 91, 43–55. [Google Scholar] [CrossRef]
- Ministry of Oceans and Fisheries. A Guideline for the Implementation of Marine and Fisheries Projects in 2022; Ministry of Oceans and Fisheries: Sejong, Republic of Korea, 2022.
- Korea Fisheries Economy. Jeonnam Aquaculture Farm Eco-Friendly Energy Supply Is the Largest in the Korea. 2020. Available online: http://www.fisheco.com/news/articleView.html?idxno=71847 (accessed on 6 September 2025).
- Nam, G. A Study on the Monitoring for GHG Reduction in Aquaculture Industry; Korea Rural Community Corporation: Naju, Republic of Korea, 2022. [Google Scholar]
- Martins, C.I.M.; Eding, E.H.; Verdegem, M.C.J.; Heinsbroek, L.T.N.; Schneider, O.; Blancheton, J.P.; Verreth, J.A.J. New developments in recirculating aquaculture systems in Europe: A perspective on environmental sustainability. Aquacult. Eng. 2010, 43, 83–93. [Google Scholar] [CrossRef]
Method | Region | Water Area (m2) | Adding Fry Numbers | Survival Rate (%) | Production (kg) | Market Price (US$/kg) | |
---|---|---|---|---|---|---|---|
A | FTS | Gangwon | 2436 | 100,000 | 80 | 55,000 | 9.07 |
B | FTS | Gyeongbuk | 3960 | 80,000 | 90 | 80,000 | 9.83 |
C | FTS | Gyeongbuk | 1155 | 55,000 | 80–90 | 45,000 | 9.83 |
D | FTS | Chungbuk | 3421 | 45,000 | 83 | 45,000 | 9.83 |
E | FTS | Gangwon | 2640 | 25,000 | 80 | 20,000 | 8.31 |
F | RAS | Chungbuk | 2354 | 70,000 | 78–80 | 52,500 | 9.83 |
G | RAS | Chungbuk | 732 | 28,000 | 90 | 45,000 | 8.31 |
H | RAS | Gyeongbuk | 4208 | 130,000 | 77 | 100,000 | 9.07 |
A | B | C | D | E | F | G | H | FTS Average | RAS Average | Total Average | Unit | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
(1) Fry transport | 103 | 95 | 103 | 88 | 56 | 49 | 8 | 268 | 89 | 108 | 96 | Diesel usage (L) |
(2) Electricity | 651 | 320 | 256 | 828 | 176 | 600 | 252 | 1080 | 446 | 644 | 520 | Electricity usage (1000 kWh) |
(3) Fuel | 1019 | 12,232 | - | 16,289 | 9174 | - | - | - | 9679 | - | 9679 | Diesel usage (L) |
(4) Feed | 70,000 | 85,106 | 61,905 | 70,000 | 20,000 | 70,000 | 46,000 | 130,000 | 61,402 | 82,000 | 69,126 | Feed usage (kg) |
(5) Liquid oxygen | 148,500 | -- | - | - | - | 37,800 | - | 90,000 | 148,500 | 63,900 | 92,100 | LOX usage (kg) |
(6) Infrastructure | 269,000 | 303,000 | 34,000 | 175,000 | 170,000 | 295,000 | 244,000 | 443,000 | 190,000 | 327,000 | 242,000 | tank conversion (kg) |
(7) Fish transport | 3080 | 2800 | 14 | 2016 | 792 | 1152 | 2952 | 17,250 | 1740 | 7118 | 3757 | Diesel usage (L) |
GHG | Emission Factor | Conversion Factor | Net Calorific Value | |
---|---|---|---|---|
(1) Fry transport (3) Fuel (7) Fish transport | CO2 | (Diesel) 20,111 kg C/TJ | - | 35.2 MJ/l |
CH4 | (Diesel) 5 kg/TJ | 0.931 MJ/MJ | - | |
N2O | (Diesel) 0.6 kg/TJ | 0.931 MJ/MJ | - | |
(2) Electricity | CO2 eq | 0.4594 tCO2 eq./MWh | - | - |
(4) Feed | CO2 eq | 1.7967 kg CO2 eq | - | - |
(5) Liquid Oxygen | CO2 eq | 0.00178 kg CO2 eq | - | - |
(6) Infrastructure | CO2 eq | (Concrete) 0.15 kg CO2 eq/SL (Plastic) 0.3 kg CO2 eq/SL | - | - |
A | B | C | D | E | F | G | H | FTS Average | RAS Average | Total Average | |
---|---|---|---|---|---|---|---|---|---|---|---|
Fry | 8.4 | 5.5 | 6.7 | 2.3 | 5.8 | 6.9 | 3.5 | 7.5 | 5.8 | 6.6 | 5.8 |
Labor | 27.1 | 15.9 | 22.6 | 15.9 | 35.0 | 23.2 | 25.2 | 18.5 | 22.1 | 21.2 | 22.9 |
Feed | 38.4 | 52.3 | 48.9 | 46.5 | 26.2 | 43.3 | 48.3 | 50.1 | 43.8 | 47.6 | 44.2 |
Electricity and fuel | 7.3 | 7.9 | 4.5 | 15.4 | 15.0 | 6.9 | 7.1 | 8.3 | 9.6 | 7.6 | 9.1 |
Medicine | 0.02 | 2.6 | 0.2 | 0.8 | 2.9 | 0.7 | 0.2 | 0.8 | 1.1 | 0.7 | 1.0 |
Other material costs * | 7.6 | - | 0.2 | - | - | 2.5 | - | 3.1 | 2.2 | 2.3 | 1.7 |
Facilities maintenance | 0.9 | 0.03 | 1.9 | 9.3 | 2.9 | 4.9 | 1.3 | 3.7 | 3.0 | 3.6 | 3.1 |
Other management ** | 2.3 | 3.1 | 3.1 | 5.6 | 3.2 | 4.9 | 3.4 | 2.8 | 3.4 | 3.5 | 3.5 |
Interest loans | 1.1 | 6.3 | 2.3 | - | - | 0.2 | - | 1.5 | 2.1 | 0.9 | 1.4 |
Depreciations | 6.9 | 6.4 | 9.8 | 4.2 | 8.9 | 6.4 | 11.1 | 3.7 | 6.8 | 5.9 | 7.2 |
A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|
(1) Fry transport | 269 | 247 | 269 | 228 | 146 | 128 | 20 | 698 |
(2) Electricity | 299,156 | 147,010 | 117,832 | 380,388 | 80,850 | 275,640 | 124,035 | 496,152 |
(3) Fuel | 2657 | 31,889 | - | 42,466 | 23,917 | - | - | - |
(4) Feed | 125,790 | 152,936 | 111,243 | 125,690 | 35,940 | 125,790 | 82,662 | 233,610 |
(5) Liquid oxygen | 264 | - | - | - | - | 67 | - | 160 |
(6) Infrastructure | 1100 | 1136 | 582 | 657 | 638 | 1965 | 1011 | 2214 |
(7) Fish transport | 8030 | 7300 | 38 | 5256 | 2065 | 3003 | 7695 | 45,675 |
Total | 437,266 | 340,517 | 229,963 | 554,785 | 143,556 | 406,593 | 215,423 | 778,508 |
A | B | C | D | E | F | G | H | |
---|---|---|---|---|---|---|---|---|
(1) Fry transport | 0.005 | 0.003 | 0.006 | 0.005 | 0.007 | 0.002 | 0.0005 | 0.0007 |
(2) Electricity | 5.44 | 1.84 | 2.62 | 8.45 | 4.04 | 5.25 | 2.76 | 4.96 |
(3) Fuel | 0.05 | 0.40 | - | 0.94 | 1.20 | - | - | - |
(4) Feed | 2.29 | 1.91 | 2.47 | 2.80 | 1.80 | 2.40 | 1.84 | 2.34 |
(5) Liquid oxygen | 0.005 | - | - | - | - | 0.001 | - | 0.002 |
(6) Infrastructure | 0.02 | 0.01 | 0.01 | 0.01 | 0.03 | 0.04 | 0.02 | 0.02 |
(7) Fish transport | 0.15 | 0.09 | 0.001 | 0.12 | 0.10 | 0.06 | 0.17 | 0.46 |
Total | 7.95 | 4.26 | 5.11 | 12.33 | 7.18 | 7.74 | 4.79 | 7.79 |
FTS | RAS | |
---|---|---|
GHG emissions per 1 kg of trout | 7.36 | 6.77 |
Total GHG emissions | 341,218 | 466,841 |
A | B | C | D | E | F | G | H | FTS | RAS | |
---|---|---|---|---|---|---|---|---|---|---|
NPV (US$) | 487,062 | 2,703,818 | 645,485 | 597,629 | −191,821 | 768,086 | 508,420 | 2,382,194 | 848,435 | 1,219,566 |
IRR (%) | 15 | 38 | 17 | 18 | −1 | 19 | 12 | 29 | 17 | 20 |
BCR | 1.14 | 1.96 | 1.30 | 1.22 | 0.89 | 1.27 | 1.23 | 1.51 | 1.30 | 1.33 |
Imposed ETS | Imposed Carbon Tax | Original | |
---|---|---|---|
NPV (US$) | 922,931 | 750,867 | 987,609 |
IRR (%) | 17 | 15 | 18 |
BCR | 1.29 | 1.22 | 1.31 |
50% of Energy Reduction Rate | 70% of Energy Reduction Rate | Non-Renewable Energy | |
---|---|---|---|
GHG emissions per 1 kg of trout | 4.77 | 3.82 | 7.14 |
Total GHG emissions | 261,952 | 211,402 | 388,327 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.; Lee, K.; Kim, D.-H. Comparative Economic Analysis of Rainbow Trout Aquaculture Systems Considering Greenhouse Gas Emissions. Sustainability 2025, 17, 8831. https://doi.org/10.3390/su17198831
Kim Y, Lee K, Kim D-H. Comparative Economic Analysis of Rainbow Trout Aquaculture Systems Considering Greenhouse Gas Emissions. Sustainability. 2025; 17(19):8831. https://doi.org/10.3390/su17198831
Chicago/Turabian StyleKim, Yunje, Kyounghoon Lee, and Do-Hoon Kim. 2025. "Comparative Economic Analysis of Rainbow Trout Aquaculture Systems Considering Greenhouse Gas Emissions" Sustainability 17, no. 19: 8831. https://doi.org/10.3390/su17198831
APA StyleKim, Y., Lee, K., & Kim, D.-H. (2025). Comparative Economic Analysis of Rainbow Trout Aquaculture Systems Considering Greenhouse Gas Emissions. Sustainability, 17(19), 8831. https://doi.org/10.3390/su17198831