A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks
Abstract
1. Introduction
2. Theoretical Framework
3. Methodology
3.1. Research Design and Approach
3.2. Case Study Context: The Fosso Imperatore Industrial Park
3.3. Model Development Process and Data Analysis
4. The Proposed Circular Land Use Symbiosis Model
4.1. Spatial Configuration and Technical Parameters
4.2. Resource Flows and Industrial Integration
4.3. Stakeholder Engagement Framework
4.4. Implementation Pathway and Regulatory Adaptation
5. Discussion
5.1. The Scale–Distance Relationship and Its Implications
5.2. Governance Infrastructure as a Foundation for Physical Infrastructure
5.3. Economic Viability Within Mediterranean Constraints
5.4. Learning from Absence: The Missing Failure Analysis
5.5. Adaptive Implementation Strategy
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
IP | Industrial Park |
H4C | Hubs for Circularity |
EIP | Eco-Industrial Park |
IS | Industrial Symbiosis |
CE | Circular Economy |
APEA | Aree Produttive Ecologicamente Attrezzate |
Rete NO PIP | Rete No Piano Insediamenti Produttivi |
GIS | Geographic Information System |
DOP | Denominazione di Origine Protetta (Protected Designation of Origin) |
References
- Geng, Y.; Hengxin, Z. Industrial Park Management in the Chinese Environment. J. Clean. Prod. 2009, 17, 1289–1294. [Google Scholar] [CrossRef]
- Hu, X.; Zhang, Y.W.; Geng, Y.; Yu, H.; Li, L. Exploring Carbon Emission Effects of National-Level Industrial Park Policies on Cities in China. Carbon Footpr. 2024, 3, 16. [Google Scholar] [CrossRef]
- Shevchuk, N.; Tulchynska, S.; Severyn-Mrachkovska, L.; Pidlisna, O.; Kryshtopa, I. Conceptual Principles of the Transformation of Industrial Parks into Eco-Industrial Ones in the Conditions of Sustainable Development. Int. J. Comput. Sci. Netw. Secur. 2021, 21, 349–355. [Google Scholar] [CrossRef]
- Licastro, A.; D’Alessandro, C.; Szopik-Depczyńska, K.; Arbolino, R.; Ioppolo, G. From Data Scarcity to Strategic Action: A Managerial Framework for Circular Economy Implementation in Mediterranean Small Towns. Sustainability 2025, 17, 6474. [Google Scholar] [CrossRef]
- Costa, I.; Massard, G.; Agarwal, A. Waste Management Policies for Industrial Symbiosis Development: Case Studies in European Countries. J. Clean. Prod. 2010, 18, 815–822. [Google Scholar] [CrossRef]
- Chertow, M.R. Industrial Symbiosis: Literature and Taxonomy. Annu. Rev. Energy Environ. 2000, 25, 313–337. [Google Scholar] [CrossRef]
- Ghisellini, P.; Cialani, C.; Ulgiati, S. A Review on Circular Economy: The Expected Transition to a Balanced Interplay of Environmental and Economic Systems. J. Clean. Prod. 2016, 114, 11–32. [Google Scholar] [CrossRef]
- Mendez Alva, F.; De Boever, R.; Van Eetvelde, G. Hubs for Circularity: Geo-Based Industrial Clustering towards Urban Symbiosis in Europe. Sustainability 2021, 13, 13906. [Google Scholar] [CrossRef]
- Wang, J.; Trivella, A.; Guericke, D.; Yazan, D.M. An Optimization Framework for Managing Resource Flows in Hubs for Circularity. Circ. Econ. Sustain. 2025. [Google Scholar] [CrossRef]
- Tleuken, A.; Rogetzer, P.; Fraccascia, L.; Yazan, D.M. Designing a Stakeholder Engagement Framework with Critical Success Factors for Hubs for Circularity. J. Environ. Manag. 2025, 384, 125324. [Google Scholar] [CrossRef]
- Zhang, Y.; Zheng, H.; Chen, B.; Su, M.; Liu, G. A Review of Industrial Symbiosis Research: Theory and Methodology. Front. Earth Sci. 2015, 9, 91–104. [Google Scholar] [CrossRef]
- Notarnicola, B.; Tassielli, G.; Renzulli, P.A. Industrial Symbiosis in the Taranto Industrial District: Current Level, Constraints and Potential New Synergies. J. Clean. Prod. 2016, 122, 133–143. [Google Scholar] [CrossRef]
- Daddi, T.; Iraldo, F.; Frey, M.; Gallo, P.; Gianfrate, V. Regional Policies and Eco-Industrial Development: The Voluntary Environmental Certification Scheme of the Eco-Industrial Parks in Tuscany (Italy). J. Clean. Prod. 2016, 114, 62–70. [Google Scholar] [CrossRef]
- Sakr, D.; Baas, L.; El-Haggar, S.; Huisingh, D. Critical Success and Limiting Factors for Eco-Industrial Parks: Global Trends and Egyptian Context. J. Clean. Prod. 2011, 19, 1158–1169. [Google Scholar] [CrossRef]
- Amenta, L.; Van Timmeren, A. Beyond Wastescapes: Towards Circular Landscapes. Addressing the Spatial Dimension of Circularity through the Regeneration of Wastescapes. Sustainability 2018, 10, 4740. [Google Scholar] [CrossRef]
- Tsui, T.; Venverloo, T.; Benson, T.; Duarte, F. Spatial Optimization of Circular Timber Hubs. npj Urban Sustain. 2024, 4, 13. [Google Scholar] [CrossRef]
- Manz, P.; Kermeli, K.; Persson, U.; Neuwirth, M.; Fleiter, T.; Crijns-Graus, W. Decarbonizing District Heating in EU-27 + UK: How Much Excess Heat Is Available from Industrial Sites? Sustainability 2021, 13, 1439. [Google Scholar] [CrossRef]
- Tian, C.; Han, C. How Can China Resolve the NIMBY Dilemma in a Network Society? Government and Society-Negotiated Decisions Based on Evolutionary Game Analysis. Sustainability 2022, 14, 1308. [Google Scholar] [CrossRef]
- Arsova, S.; Genovese, A.; Ketikidis, P.H.; Alberich, J.P.; Solomon, A. Implementing Regional Circular Economy Policies: A Proposed Living Constellation of Stakeholders. Sustainability 2021, 13, 4916. [Google Scholar] [CrossRef]
- Jabareen, Y. Building a Conceptual Framework: Philosophy, Definitions, and Procedure. Int. J. Qual. Methods 2009, 8, 49–62. [Google Scholar] [CrossRef]
- Yin, R.K. Case Study Research and Applications; Sage: Thousand Oaks, CA, USA, 2018; Volume 6. [Google Scholar]
- Swarts, T.; Morren, J.; Van Den Akker, W.; Slootweg, J.G.; Van Voorden, A. Techno-Economic Analysis of Low-Temperature Electrolysis’ Waste-Heat Utilization. In Proceedings of the 2023 IEEE Belgrade PowerTech, Belgrade, Serbia, 25–29 June 2023; IEEE: Belgrade, Serbia, 2023; pp. 1–6. [Google Scholar]
- Riazi, F.; Fidélis, T.; Teles, F. Exploring the Role of Inter-Municipal Cooperation for Promoting Water Circular Economy: Insights from a Southern European Country. Water Policy 2025, 27, 161–181. [Google Scholar] [CrossRef]
- Ioppolo, G.; Saija, G.; Salomone, R. Developing a Territory Balanced Scorecard Approach to Manage Projects for Local Development: Two Case Studies. Land Use Policy 2012, 29, 629–640. [Google Scholar] [CrossRef]
- Marcinkowski, A. The Spatial Limits of Environmental Benefit of Industrial Symbiosis—Life Cycle Assessment Study. J. Sustain. Dev. Energy Water Environ. Syst. 2019, 7, 521–538. [Google Scholar] [CrossRef]
- Rezaei, F.; Burg, V.; Pfister, S.; Hellweg, S.; Roshandel, R. Spatial Optimization of Industrial Symbiosis for Heat Supply of Agricultural Greenhouses. J. Ind. Ecol. 2024, 28, 1507–1523. [Google Scholar] [CrossRef]
- Ioppolo, G.; Heijungs, R.; Cucurachi, S.; Salomone, R.; Kleijn, R. Urban Metabolism: Many Open Questions for Future Answers. In Pathways to Environmental Sustainability; Salomone, R., Saija, G., Eds.; Springer: Cham, Switzerland, 2014. [Google Scholar] [CrossRef]
- Loibl, W.; Stollnberger, R.; Österreicher, D. Residential Heat Supply by Waste-Heat Re-Use: Sources, Supply Potential and Demand Coverage—A Case Study. Sustainability 2017, 9, 250. [Google Scholar] [CrossRef]
- Yu, M.; Nam, Y. Feasibility Assessment of Using Power Plant Waste Heat in Large Scale Horticulture Facility Energy Supply Systems. Energies 2016, 9, 112. [Google Scholar] [CrossRef]
- Chaher, N.E.H.; Nassour, A.; Nelles, M. Cross-Mediterranean Insights: Governance in Action for Circular Economy and Sustainable Waste Management Solutions in Tunisia’s Tourism. Recycling 2025, 10, 9. [Google Scholar] [CrossRef]
- Ehrenfeld, J.; Gertler, N. Industrial Ecology in Practice: The Evolution of Interdependence at Kalundborg. J. Ind. Ecol. 1997, 1, 67–79. [Google Scholar] [CrossRef]
- D’Amico, G.; Taddeo, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Ecological Indicators of Smart Urban Metabolism: A Review of the Literature on International Standards. Ecol. Indic. 2020, 118, 106808. [Google Scholar] [CrossRef]
- D’Amico, G.; Arbolino, R.; Shi, L.; Yigitcanlar, T.; Ioppolo, G. Digital Technologies for Urban Metabolism Efficiency: Lessons from Urban Agenda Partnership on Circular Economy. Sustainability 2021, 13, 6043. [Google Scholar] [CrossRef]
Category | Parameter/Source | Value/Information | Application in Model |
---|---|---|---|
Site Data | IP current size | 144,846 m2 | Baseline condition |
Proposed expansion | 220,000 m2 | Land requirement to address | |
Active companies | 25 (including 3 food processors) | Potential exchange partners | |
Stakeholder opposition | 552 signatures | Governance challenge | |
Resource Flows | Organic waste generation | 547 tons/year | Biogas system input |
Waste heat temperature | 150–200 °C after recovery [17] | Heat cascade starting point | |
Biogas conversion rate | 200 L CH4/kg volatile solids [4] | Conversion factor | |
Methane production | 87,520 m3/year (calculated) | Biogas output volume | |
Energy equivalent | 875,200 kWh/year | Electrical generation potential | |
Spatial Parameters | Optimal exchange radius | 3 km [16] | Maximum zone extent |
Temperature decay | Exponential function [22] | Heat loss over distance | |
Data Limitations | GIS mapping | Not available | Limits spatial precision |
Material flow analysis | Only 3 food processors surveyed | Full park flows unknown |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Alessandro, C.; Licastro, A.; Arbolino, R.; Calabrò, G.; Ioppolo, G. A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks. Sustainability 2025, 17, 8830. https://doi.org/10.3390/su17198830
D’Alessandro C, Licastro A, Arbolino R, Calabrò G, Ioppolo G. A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks. Sustainability. 2025; 17(19):8830. https://doi.org/10.3390/su17198830
Chicago/Turabian StyleD’Alessandro, Carlotta, Antonio Licastro, Roberta Arbolino, Grazia Calabrò, and Giuseppe Ioppolo. 2025. "A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks" Sustainability 17, no. 19: 8830. https://doi.org/10.3390/su17198830
APA StyleD’Alessandro, C., Licastro, A., Arbolino, R., Calabrò, G., & Ioppolo, G. (2025). A Circular Land Use Model for Reconciling Industrial Expansion with Agricultural Heritage in Italian Industrial Parks. Sustainability, 17(19), 8830. https://doi.org/10.3390/su17198830