Deployment Potential of Concentrating Solar Power Technologies in California
Abstract
1. Introduction
2. Materials and Methods
2.1. Resource Planning Model
2.2. Model Input Assumptions
2.2.1. Baseline System Description
2.2.2. Electricity Generation Technologies and Costs
2.2.3. SB100 Policy and Regulatory Assumptions
2.3. Model Scenarios
2.4. Resource Potential
3. Results
3.1. Summary of RPM Results in California
3.2. CSP and Combustion Generator Results Outside of California
3.3. Sensitivity to CSP Technology Cost
3.4. CSP Project Siting and Transmission Discussion
4. Discussion
4.1. Comparison to Previous Work
4.2. Discussion of Cost Projections
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ATB | annual technology baseline |
CSP | concentrating solar power |
GWe | gigawatt-electric |
kWe | kilowatt-electric |
LADWP | Los Angeles Department of Water and Power |
MWe | megawatt-electric |
NREL | National Renewable Energy Laboratory |
NSRDB | National Solar Radiation Database |
OCC | overnight capital costs |
PV | photovoltaic |
RPS | renewable portfolio standard |
SAM | system advisor model |
SB100 | Senate Bill 100 |
SM | solar multiple |
TES | thermal energy storage |
TWhe | terawatt-hour-electric |
WECC | Western Electricity Coordinating Council |
WI | Western Interconnection |
References
- Bhattacharya, S.; Giannakas, K.; Schoengold, K. Market and welfare effects of renewable portfolio standards in United States electricity markets. Energy Econ. 2017, 64, 384–401. [Google Scholar] [CrossRef]
- Golden, K.S. Senate bill 1078: The renewable portfolio standard-California asserts its renewable energy leadership. Ecol. LQ 2003, 30, 693. [Google Scholar]
- Gill, L.; Gutierrez, A.; Weeks, T. 2021 SB 100 Joint Agency Report; Technical Report CEC-200-2021-001; California Energy Commission: Sacramento, CA, USA, 2021. [Google Scholar]
- Ferruzzi, G.; Delcea, C.; Barberi, A.; Di Dio, V.; Di Somma, M.; Catrini, P.; Guarino, S.; Rossi, F.; Parisi, M.L.; Sinicropi, A.; et al. Concentrating solar power: The state of the art, research gaps and future perspectives. Energies 2023, 16, 8082. [Google Scholar] [CrossRef]
- Pfenninger, S.; Gauché, P.; Lilliestam, J.; Damerau, K.; Wagner, F.; Patt, A. Potential for concentrating solar power to provide baseload and dispatchable power. Nat. Clim. Change 2014, 4, 689–692. [Google Scholar] [CrossRef]
- Sioshansi, R.; Denholm, P. The Value of Concentrating Solar Power and Thermal Energy Storage. IEEE Trans. Sustain. Energy 2010, 1, 173–183. [Google Scholar] [CrossRef]
- Narimani, A.; Abeygunawardana, A.; Khoo, B.; Maistry, L.; Ledwich, G.F.; Walker, G.R.; Nourbakhsh, G. Energy and ancillary services value of CSP with thermal energy storage in the Australian national electricity market. In Proceedings of the 2017 IEEE Power & Energy Society General Meeting, Chicago, IL, USA, 16–20 July 2017; pp. 1–5. [Google Scholar] [CrossRef]
- Abiodun, K.; Hood, K.; Cox, J.L.; Newman, A.M.; Zolan, A.J. The value of concentrating solar power in ancillary services markets. Appl. Energy 2023, 334, 120518. [Google Scholar] [CrossRef]
- Denholm, P.; Wan, Y.H.; Hummon, M.; Mehos, M. The Value of CSP with Thermal Energy Storage in the Western United States. Energy Procedia 2014, 49, 1622–1631. [Google Scholar] [CrossRef]
- Khan, M.I.; Gutiérrez-Alvarez, R.; Asfand, F.; Bicer, Y.; Sgouridis, S.; Al-Ghamdi, S.G.; Jouhara, H.; Asif, M.; Kurniawan, T.A.; Abid, M.; et al. The economics of concentrating solar power (CSP): Assessing cost competitiveness and deployment potential. Renew. Sustain. Energy Rev. 2024, 200, 114551. [Google Scholar] [CrossRef]
- Price, H.; Morse, F. Concentrating Solar Power (CSP) Plant Optimization Study for the California Power Market (CalCSP). In Proceedings of the 2022 SolarPACES Conference, Albuquerque, NM, USA, 27–30 September 2024; Volume 1. [Google Scholar] [CrossRef]
- Barrows, C.; Mai, T.; Haase, S.; Melius, J.; Mooney, M. Renewable Energy Deployment in Colorado and the West: A Modeling Sensitivity and GIS Analysis; Technical Report NREL/TP-6A20-65350; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. [Google Scholar] [CrossRef]
- Hurlbut, D.; Haase, S.; Barrows, C.; Bird, L.; Brinkman, G.; Cook, J.; Day, M.; Diakov, V.; Hale, E.; Keyser, D.; et al. Navajo Generating Station and Federal Resource Planning; Volume 1: Sectoral, Technical, and Economic Trends; Technical Report NREL/TP-6A20-66506; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2016. [Google Scholar] [CrossRef]
- Jorgenson, J.; Hale, E.; Cowiestoll, B. Managing Solar Photovoltaic Integration in the Western United States: Power System Flexibility Requirements and Supply; Technical Report NREL/TP-6A20-72471; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2020. [Google Scholar] [CrossRef]
- Stephen, G.; Hale, E.; Cowiestoll, B. Managing Solar Photovoltaic Integration in the Western United States: Resource Adequacy Considerations; Technical Report NREL/TP-6A20-72472; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- Ammari, N.; Alami Merrouni, A.; Mendyl, A.; Chaabelasri, E.; Weidinger, T. Energy, Economic and Environmental (3E) Analysis for an Optimal CSP Technology Integration in Morocco. Energies 2024, 17, 3020. [Google Scholar] [CrossRef]
- Brumana, G.; Ghirardi, E.; Franchini, G. Comparison of Different Power Generation Mixes for High Penetration of Renewables. Sustainability 2024, 16, 8435. [Google Scholar] [CrossRef]
- Sment, J.; Zolan, A. Status Quo and Gap Analysis of Heliostat Field Deployment Processes for Concentrating Solar Tower Plants. J. Sol. Energy Eng. 2024, 146, 061004. [Google Scholar] [CrossRef]
- Del Río, P.; Peñasco, C.; Mir-Artigues, P. An overview of drivers and barriers to concentrated solar power in the European Union. Renew. Sustain. Energy Rev. 2018, 81, 1019–1029. [Google Scholar] [CrossRef]
- Aprà, F.M.; Smit, S.; Sterling, R.; Loureiro, T. Overview of the enablers and barriers for a wider deployment of CSP tower technology in Europe. Clean Technol. 2021, 3, 377–394. [Google Scholar] [CrossRef]
- Mohammadi, K.; Khorasanizadeh, H. The potential and deployment viability of concentrated solar power (CSP) in Iran. Energy Strategy Rev. 2019, 24, 358–369. [Google Scholar] [CrossRef]
- Lilliestam, J.; Barradi, T.; Caldés, N.; Gomez, M.; Hanger, S.; Kern, J.; Komendantova, N.; Mehos, M.; Hong, W.M.; Wang, Z.; et al. Policies to keep and expand the option of concentrating solar power for dispatchable renewable electricity. Energy Policy 2018, 116, 193–197. [Google Scholar] [CrossRef]
- Wagner, M.J.; Newman, A.M.; Hamilton, W.T.; Braun, R.J. Optimized dispatch in a first-principles concentrating solar power production model. Appl. Energy 2017, 203, 959–971. [Google Scholar] [CrossRef]
- Cox, J.L.; Hamilton, W.T.; Newman, A.M.; Wagner, M.J.; Zolan, A.J. Real-time dispatch optimization for concentrating solar power with thermal energy storage. Optim. Eng. 2023, 24, 847–884. [Google Scholar] [CrossRef]
- Martinek, J.; Jorgenson, J.; Mehos, M.; Denholm, P. A comparison of price-taker and production cost models for determining system value, revenue, and scheduling of concentrating solar power plants. Appl. Energy 2018, 231, 854–865. [Google Scholar] [CrossRef]
- Norambuena-Guzmán, V.; Palma-Behnke, R.; Hernández-Moris, C.; Cerda, M.T.; Ángela Flores-Quiroz. Towards CSP technology modeling in power system expansion planning. Appl. Energy 2024, 364, 123211. [Google Scholar] [CrossRef]
- Madaeni, S.H.; Sioshansi, R.; Denholm, P. Estimating the Capacity Value of Concentrating Solar Power Plants With Thermal Energy Storage: A Case Study of the Southwestern United States. IEEE Trans. Power Syst. 2013, 28, 1205–1215. [Google Scholar] [CrossRef]
- Steinberg, D.; Denholm, P.; Cochran, J.; Cowiestoll, B.; Irish, M.; Jorgenson, J.; Stephen, G.; Awara, S.; Jain, H.; Wu, L. The Los Angeles 100% Renewable Energy Study (LA100): Chapter 6. Renewable Energy Investments and Operations; Technical Report NREL/TP-6A20-85427; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- Mai, T.; Drury, E.; Eurek, K.; Bodington, N.; Lopez, A.; Perry, A. Resource Planning Model: An Integrated Resource Planning and Dispatch Tool for Regional Electric Systems; Technical Report NREL/TP-6A20-56723; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar] [CrossRef]
- Oikonomou, K.; Vyakaranam, B.G.; Nguyen, T.B.; Harris, K.M.; Samaan, N.A.; Qin, C.; Bereta dos Reis, F.; Abdelmalak, M.M.; Kintner-Meyer, M.C.; Dagle, J.E. Western Interconnection Baseline Study; Technical Report PNNL-36452; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2024. [Google Scholar] [CrossRef]
- Mai, T.; Barrows, C.; Lopez, A.; Hale, E.; Dyson, M.; Eurek, K. Implications of Model Structure and Detail for Utility Planning. Scenario Case Studies Using the Resource Planning Model; Technical Report NREL/TP-6A20-63972; National Renewable Energy Laboratory(NREL): Golden, CO, USA, 2015. [Google Scholar] [CrossRef]
- Cowiestoll, B.; Jorgenson, J.; Irish, M. Modeling Methods for Capturing System Interactions of Combined Technologies: A Study of PV+Battery; Technical Report NREL/TP-5C00-79769; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar] [CrossRef]
- Hale, E.; Cowiestoll, B.; Jorgenson, J.; Mai, T.; Hettinger, D. Methods for Representing Flexible, Energy-Constrained Technologies in Utility Planning Tools; Technical Report NREL/TP-6A20-72120; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- Zhou, E.; Cole, W.; Frew, B. Valuing variable renewable energy for peak demand requirements. Energy 2018, 165, 499–511. [Google Scholar] [CrossRef]
- Pham, A.T.; Cole, W.; Gagnon, P. Average and Marginal Capacity Credit Values of Renewable Energy and Battery Storage in the United States Power System; Technical report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar] [CrossRef]
- Stephen, G. Probabilistic Resource Adequacy Suite (PRAS) v0.6 Model Documentation; Technical report; National Renewable Energy Lab.(NREL): Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- EIA. Annual Energy Outlook 2022; US Energy Information Administration: Washington, DC, USA, 2022. [Google Scholar]
- Vimmerstedt, L.; Akar, S.; Mirletz, B.; Sekar, A.; Stright, D.; Augustine, C.; Beiter, P.; Bhaskar, P.; Blair, N.; Cohen, S.; et al. Annual Technology Baseline: The 2022 Electricity Update; Technical Report NREL/PR-6A20-83064; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar]
- Gagnon, P.; Pham, A.; Cole, W.; Awara, S.; Barlas, A.; Brown, M.; Brown, P.; Carag, V.; Cohen, S.; Hamilton, A.; et al. 2023 Standard Scenarios Report: A US Electricity Sector Outlook; Technical Report NREL/TP-6A40-87724; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2024. [Google Scholar] [CrossRef]
- Rodat, S.; Thonig, R. Status of Concentrated Solar Power Plants Installed Worldwide: Past and Present Data. Clean Technol. 2024, 6, 365–378. [Google Scholar] [CrossRef]
- Viebahn, P.; Lechon, Y.; Trieb, F. The potential role of concentrated solar power (CSP) in Africa and Europe—A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy 2011, 39, 4420–4430. [Google Scholar] [CrossRef]
- Turchi, C.S.; Heath, G.A. Molten Salt Power Tower Cost Model for the System Advisor Model (SAM); Technical report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2013. [Google Scholar] [CrossRef]
- Sengupta, M.; Xie, Y.; Habte, A.; Buster, G.; Maclaurin, G.; Edwards, P.; Sky, H.; Bannister, M.; Rosenlieb, E. The National Solar Radiation Database (NSRDB) Fiscal Years 2019–2021; Technical Report NREL/TP-5D00-82063; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2022. [Google Scholar] [CrossRef]
- Maclaurin, G.; Grue, N.; Lopez, A.; Heimiller, D.; Rossol, M.; Buster, G.; Williams, T. The Renewable Energy Potential (reV) Model: A Geospatial Platform for Technical Potential and Supply Curve Modeling; Technical report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2021. [Google Scholar] [CrossRef]
- Borge-Diez, D.; Rosales-Asensio, E.; Palmero-Marrero, A.I.; Acikkalp, E. Optimization of CSP Plants with Thermal Energy Storage for Electricity Price Stability in Spot Markets. Energies 2022, 15, 1672. [Google Scholar] [CrossRef]
- Lilliestam, J.; Du, F.; Gilmanova, A.; Mehos, M.; Wang, Z.; Thonig, R. Scaling up CSP: How long will it take? In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2023; Volume 2815. [Google Scholar] [CrossRef]
- IRENA. Renewable Power Generation Costs in 2024; Technical report; International Renewable Energy Agency: Abu Dhabi, United Arab Emirates, 2025. [Google Scholar]
- Plewe, K.; Sment, J.N.; Albrecht, K.; Ho, C.K.; Chen, D. Transient system analysis of a Gen3 particle-based CSP plant with spatially resolved thermal storage charging and discharging. In AIP Conference Proceedings; AIP Publishing: Melville, NY, USA, 2023; Volume 2815. [Google Scholar] [CrossRef]
- Zhu, G.; Augustine, C.; Mitchell, R.; Muller, M.; Kurup, P.; Zolan, A.; Yellapantula, S.; Brost, R.; Armijo, K.; Sment, J.; et al. HelioCon: A roadmap for advanced heliostat technologies for concentrating solar power. Sol. Energy 2023, 264, 111917. [Google Scholar] [CrossRef]
- Steinberg, D.C.; Brown, M.; Wiser, R.; Donohoo-Vallett, P.; Gagnon, P.; Hamilton, A.; Mowers, M.; Murphy, C.; Prasanna, A. Evaluating Impacts of the Inflation Reduction Act and Bipartisan Infrastructure Law on the U.S. Power System; Technical report; National Renewable Energy Laboratory (NREL): Golden, CO, USA, 2023. [Google Scholar] [CrossRef]
- Price, H.; Kattke, K.; Boyle, K.; Price, D.; Shininger, R.; Morse, F.; Zolan, A.; Awara, S.; Augustine, C.; Lara, X. Expanding the Western U.S. Grid with CSP: An Update on the Findings of the CalCSP Study. In Proceedings of the 2024 SolarPACES Conference, Rome, Italy, 10–13 October 2024. Under review. [Google Scholar]
Solar Multiple | TES Duration (Hours) |
---|---|
1.0 | 6/9 |
2.0 | 9/12/15 |
3.0 | 12/15/18 |
CSP Installations | Baseline (GWe) | +10% (GWe) | +20% (GWe) |
---|---|---|---|
California | 9.1 | 3.9 | 2.2 |
Western Interconnection | 4.5 | 3.2 | 1.4 |
Total | 13.6 | 7.1 | 3.7 |
% of Baseline | 100% | 52% | 27% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Augustine, C.; Awara, S.; Price, H.; Zolan, A. Deployment Potential of Concentrating Solar Power Technologies in California. Sustainability 2025, 17, 8785. https://doi.org/10.3390/su17198785
Augustine C, Awara S, Price H, Zolan A. Deployment Potential of Concentrating Solar Power Technologies in California. Sustainability. 2025; 17(19):8785. https://doi.org/10.3390/su17198785
Chicago/Turabian StyleAugustine, Chad, Sarah Awara, Hank Price, and Alexander Zolan. 2025. "Deployment Potential of Concentrating Solar Power Technologies in California" Sustainability 17, no. 19: 8785. https://doi.org/10.3390/su17198785
APA StyleAugustine, C., Awara, S., Price, H., & Zolan, A. (2025). Deployment Potential of Concentrating Solar Power Technologies in California. Sustainability, 17(19), 8785. https://doi.org/10.3390/su17198785