Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China
Abstract
1. Introduction
2. Methods and Materials
2.1. Overview of the Research Object
2.2. Data Source
2.3. Research Methods
2.3.1. Local Climate Zone Classification Method
- (1)
- Selection of LCZ Partition Grid Scale
- (2)
- Selection of LCZ Parameters
- (3)
- The Main Classification Process of LCZ
- (4)
- LCZ Internal Type Conversion
2.3.2. Surface Temperature Inversion Method
2.3.3. Heat Island Intensity Calculation Method
2.3.4. Random Forest Regression Model Algorithm
3. Results and Analysis
3.1. Development of a Local Climate Zone Classification Framework for Tongren City
3.1.1. Spatial Resolution Sensitivity Analysis in LCZ Mapping Grid Scales
3.1.2. Spatio-Temporal Pattern Analysis of Local Climate Zone Parameters
3.1.3. Identification of Local Climate Zone Types
3.2. Analysis of Spatio-Temporal Variation in Local Climate Zones (LCZ) for Tongren City
3.2.1. Analysis of Quantitative Changes in Local Climate Zone (LCZ) Parameters
3.2.2. Spatial Pattern Evolution of Local Climate Zone (LCZ) Distributions
3.3. Spatio-Temporal Evolution Analysis of Surface Temperature Dynamics
3.4. Correlation Analysis Between LCZ Types and Heat Island Intensity Gradients
- Rigid heat radiation in high-density built environments.
- Uncontrolled industrial geothermal release.
- Resilient temperature regulation in blue–green spaces.
3.5. Significance of Local Climate Zone (LCZ) Parameters for Seasonal Heat Island Intensity Variations
4. Discussion
4.1. Relationship Between Local Climate Zoning and Urban Heat Island Intensity in Tongren City
4.2. Influence of Local Climate Zone Parameters on Seasonal Surface Urban Heat Island Intensity in Tongren City
4.3. Urban Planning Strategies for Climate Adaptation in Tongren City
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix A.1
LCZ Types | 2020 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | OA (2016) | ||
2016 | 1 | 16 | 16 | ||||||||||||||
2 | 272 | 32 | 48 | 352 | |||||||||||||
3 | 16 | 1360 | 32 | 16 | 32 | 64 | 1520 | ||||||||||
4 | 32 | 16 | 16 | 256 | 48 | 16 | 384 | ||||||||||
5 | 16 | 144 | 320 | 16 | 496 | ||||||||||||
6 | 320 | 128 | 8960 | 32 | 16 | 32 | 704 | 768 | 16 | 10,976 | |||||||
7 | 32 | 32 | |||||||||||||||
8 | 144 | 64 | 96 | 32 | 336 | ||||||||||||
9 | 16 | 16 | 32 | ||||||||||||||
10 | 16 | 16 | 16 | 192 | 16 | 16 | 16 | 288 | |||||||||
AB | 16 | 96 | 32 | 4576 | 704 | 5424 | |||||||||||
CD | 432 | 112 | 160 | 1600 | 16 | 192 | 16 | 192 | 1088 | 14,208 | 192 | 48 | 16 | 18,272 | |||
E | 16 | 16 | 32 | 64 | |||||||||||||
F | 16 | 16 | |||||||||||||||
G | 16 | 16 | |||||||||||||||
OA (2020) | 48 | 320 | 2496 | 416 | 672 | 10,656 | 80 | 288 | 80 | 528 | 6368 | 15,872 | 288 | 80 | 32 | 38,224 |
LCZ Types | 2023 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | OA (2020) | ||
2020 | 1 | 48 | 48 | ||||||||||||||
2 | 16 | 256 | 32 | 16 | 320 | ||||||||||||
3 | 288 | 1968 | 80 | 16 | 80 | 16 | 32 | 16 | 2496 | ||||||||
4 | 48 | 48 | 240 | 32 | 32 | 16 | 416 | ||||||||||
5 | 64 | 64 | 64 | 464 | 16 | 672 | |||||||||||
6 | 144 | 16 | 128 | 7488 | 96 | 16 | 32 | 32 | 2432 | 208 | 32 | 32 | 10,656 | ||||
7 | 16 | 48 | 16 | 80 | |||||||||||||
8 | 16 | 16 | 128 | 16 | 16 | 48 | 16 | 32 | 288 | ||||||||
9 | 16 | 16 | 16 | 16 | 16 | 80 | |||||||||||
10 | 32 | 160 | 16 | 80 | 16 | 224 | 528 | ||||||||||
AB | 32 | 32 | 496 | 16 | 5328 | 432 | 32 | 6368 | |||||||||
CD | 112 | 32 | 352 | 272 | 240 | 432 | 32 | 48 | 144 | 6336 | 7584 | 64 | 128 | 96 | 15,872 | ||
E | 160 | 128 | 288 | ||||||||||||||
F | 32 | 48 | 80 | ||||||||||||||
G | 16 | 16 | 32 | ||||||||||||||
OA (2023) | 480 | 880 | 2720 | 960 | 896 | 8496 | 144 | 112 | 64 | 544 | 14,112 | 8304 | 96 | 224 | 192 | 38,224 |
LCZ Types | 2023 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | OA (2016) | ||
2016 | 1 | 16 | 16 | ||||||||||||||
2 | 16 | 272 | 32 | 32 | 352 | ||||||||||||
3 | 224 | 1088 | 64 | 32 | 48 | 32 | 32 | 1520 | |||||||||
4 | 64 | 64 | 176 | 16 | 16 | 16 | 16 | 16 | 384 | ||||||||
5 | 96 | 160 | 16 | 224 | 496 | ||||||||||||
6 | 16 | 16 | 464 | 48 | 256 | 7072 | 64 | 16 | 32 | 48 | 2288 | 608 | 32 | 16 | 10,976 | ||
7 | 32 | 32 | |||||||||||||||
8 | 32 | 32 | 128 | 64 | 48 | 16 | 16 | 336 | |||||||||
9 | 32 | 32 | |||||||||||||||
10 | 64 | 80 | 64 | 80 | 288 | ||||||||||||
AB | 16 | 32 | 16 | 192 | 16 | 4656 | 464 | 32 | 5424 | ||||||||
CD | 224 | 64 | 816 | 464 | 336 | 1200 | 80 | 48 | 352 | 7168 | 7168 | 48 | 192 | 112 | 18,272 | ||
E | 32 | 16 | 16 | 64 | |||||||||||||
F | 16 | 16 | |||||||||||||||
G | 16 | 16 | |||||||||||||||
OA (2023) | 480 | 880 | 2720 | 960 | 896 | 8496 | 144 | 112 | 64 | 544 | 14,112 | 8304 | 96 | 224 | 192 | 38,224 |
Appendix B
Appendix B.1
Project | Actual Category | User Accuracy (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | Weight | |||
Classification category | 1 | 1 | 1 | 100.00 | ||||||||||||||
2 | 20 | 20 | 100.00 | |||||||||||||||
3 | 50 | 50 | 100.00 | |||||||||||||||
4 | 20 | 20 | 100.00 | |||||||||||||||
5 | 30 | 30 | 100.00 | |||||||||||||||
6 | 8 | 183 | 9 | 200 | 91.50 | |||||||||||||
7 | 2 | 2 | 100.00 | |||||||||||||||
8 | 2 | 18 | 20 | 90.00 | ||||||||||||||
9 | 2 | 2 | 100.00 | |||||||||||||||
10 | 1 | 16 | 1 | 18 | 88.89 | |||||||||||||
AB | 1 | 1 | 100.00 | |||||||||||||||
CD | 195 | 5 | 200 | 97.50 | ||||||||||||||
E | 5 | 5 | 6 | 232 | 2 | 250 | 92.80 | |||||||||||
F | 4 | 4 | 100.00 | |||||||||||||||
G | 1 | 1 | 100.00 | |||||||||||||||
Weight | 1 | 20 | 50 | 20 | 38 | 183 | 18 | 18 | 8 | 16 | 1 | 202 | 237 | 6 | 1 | 819 | ||
Production accuracy (%) | 100.00 | 100.00 | 100.00 | 100.00 | 78.95 | 100.00 | 11.11 | 100.00 | 25.00 | 100.00 | 100.00 | 96.53 | 97.89 | 66.67 | 100.00 | |||
Overall accuracy (%) | 94.63 | |||||||||||||||||
Kappa coefficient | 0.93 |
Project | Actual Category | User Accuracy (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | Weight | |||
Classification category | 1 | 3 | 3 | 100.00 | ||||||||||||||
2 | 20 | 20 | 100.00 | |||||||||||||||
3 | 63 | 63 | 100.00 | |||||||||||||||
4 | 20 | 20 | 100.00 | |||||||||||||||
5 | 38 | 2 | 40 | 95.00 | ||||||||||||||
6 | 192 | 6 | 2 | 200 | 96.00 | |||||||||||||
7 | 5 | 5 | 100.00 | |||||||||||||||
8 | 18 | 18 | 100.00 | |||||||||||||||
9 | 5 | 5 | 100.00 | |||||||||||||||
10 | 18 | 1 | 1 | 20 | 90.00 | |||||||||||||
AB | 2 | 2 | 100.00 | |||||||||||||||
CD | 3 | 2 | 2 | 189 | 2 | 2 | 200 | 94.50 | ||||||||||
E | 5 | 2 | 4 | 183 | 6 | 200 | 91.50 | |||||||||||
F | 1 | 1 | 4 | 12 | 18 | 66.67 | ||||||||||||
G | 5 | 5 | 100.00 | |||||||||||||||
Weight | 3 | 20 | 63 | 20 | 38 | 194 | 12 | 25 | 11 | 24 | 4 | 190 | 190 | 20 | 5 | 819 | ||
Production accuracy (%) | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 98.97 | 41.67 | 72.00 | 45.45 | 75.00 | 50.00 | 99.47 | 96.32 | 60.00 | 100.00 | |||
Overall accuracy (%) | 94.38 | |||||||||||||||||
Kappa coefficient | 0.93 |
Project | Actual Category | User Accuracy (%) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | Weight | |||
Classification category | 1 | 20 | 20 | 100.00 | ||||||||||||||
2 | 20 | 20 | 100.00 | |||||||||||||||
3 | 49 | 49 | 100.00 | |||||||||||||||
4 | 50 | 50 | 100.00 | |||||||||||||||
5 | 1 | 49 | 50 | 98.00 | ||||||||||||||
6 | 2 | 154 | 2 | 1 | 159 | 96.86 | ||||||||||||
7 | 9 | 9 | 100.00 | |||||||||||||||
8 | 7 | 7 | 100.00 | |||||||||||||||
9 | 4 | 4 | 100.00 | |||||||||||||||
10 | 1 | 1 | 1 | 17 | 20 | 85.00 | ||||||||||||
AB | 11 | 11 | 100.00 | |||||||||||||||
CD | 1 | 2 | 1 | 3 | 189 | 4 | 200 | 94.50 | ||||||||||
E | 3 | 2 | 2 | 2 | 187 | 4 | 200 | 93.50 | ||||||||||
F | 2 | 4 | 6 | 66.67 | ||||||||||||||
G | 14 | 14 | 100.00 | |||||||||||||||
Weight | 20 | 20 | 49 | 51 | 51 | 154 | 12 | 13 | 9 | 20 | 14 | 191 | 193 | 8 | 14 | 819 | ||
Production accuracy (%) | 100.00 | 100.00 | 100.00 | 98.04 | 96.08 | 100.00 | 75.00 | 53.85 | 44.44 | 85.00 | 78.57 | 98.95 | 96.89 | 50.00 | 100.00 | |||
Overall accuracy (%) | 95.73 | |||||||||||||||||
Kappa coefficient | 0.95 |
References
- Masson-Delmotte, V.; Zhai, P.; Pörtner, H.-O.; Roberts, D.; Skea, J.; Shukla, P.R.; Pirani, A.; Moufouma-Okia, W.; Péan, C.; Pidcock, R.; et al. Global Warming of 1.5 °C. In An IPCC Special Report; IPCC: Geneva, Switzerland, 2018; pp. 43–50. [Google Scholar]
- Huang, F.; Jiang, S.; Zhan, W.; Yang, H.; Zhao, X.; Gao, S.; Wang, R.; Li, L.; Zhang, Y.; Zhang, L.; et al. Mapping local climate zones for cities: A large review. Remote Sens. Environ. 2023, 292, 113573. [Google Scholar] [CrossRef]
- He, B.J.; Wang, J.; Zhu, J.; Qi, J.; Fu, W.; Wang, H.; Zhao, D.; Wang, H. Beating the urban heat: Situation, background, impacts and the way forward in China. Renew. Sustain. Energy Rev. 2022, 161, 112350. [Google Scholar] [CrossRef]
- Mu, H.J.; Cui, W.G.; Lu, X. Spatio-temporal patterns of impervious surfaces in typical karst mountainous cities. J. Univ. Jinan 2021, 35, 34–40, 61. (In Chinese) [Google Scholar]
- Hu, Z.Y.; Wang, S.J.; Bai, X.Y.; He, R.; Luo, G.J.; Wu, L.H.; Wang, S.S. Evaluation of remote sensing inversion and spatio-temporal differentiation of land surface temperature in Guizhou Province. Chin. J. Ecol. 2018, 37, 2794–2807. (In Chinese) [Google Scholar]
- Cheng, Y.T.; Liu, Z.H.; Lu, L.L.; Wang, J.; Zhang, H.; Li, M. Remote sensing analysis of spatio-temporal characteristics of urban heat islands in coastal megacities along the Belt and Road. Remote Sens. Technol. Appl. 2020, 35, 1197–1205. (In Chinese) [Google Scholar]
- Stewart, I.D.; Oke, T.R. Local climate zones for urban temperature studies. Bull. Am. Meteorol. Soc. 2012, 93, 1879–1900. [Google Scholar] [CrossRef]
- Zheng, Y.; Ren, C.; Xu, Y.; Wang, R.; Lau, K.K.-L. GIS-based mapping of Local Climate Zone in the high-density city of Hong Kong. Urban Clim. 2018, 24, 419–448. [Google Scholar] [CrossRef]
- Yang, J.; Ren, J.; Sun, D.; Xiao, X.; Xia, J.; Jin, C.; Li, X. Understanding land surface temperature impact factors based on Local Climate Zones. Sustain. Cities Soc. 2021, 69, 102818. [Google Scholar] [CrossRef]
- Stewart, I.D.; Oke, T.R.; Krayenhoff, E.S. Evaluation of the “Local Climate Zone” scheme using temperature observations and model simulations. Int. J. Climatol. 2014, 34, 1062–1080. [Google Scholar] [CrossRef]
- Bechtel, B.; Alexander, P.J.; Beck, C.; Böhner, J.; Brousse, O.; Ching, J.; Demuzere, M.; Fonte, C.C. Generating WUDAPT Level 0 data–Current status of production and evaluation. Urban Clim. 2019, 27, 24–45. [Google Scholar] [CrossRef]
- Han, J.; Liu, J.; Liu, L.; Wang, Y.; Zhang, L.; Li, Y.; Zhao, L. Spatiotemporal changes in the urban heat island intensity of distinct local climate zones: Case study of Zhongshan District, Dalian, China. Complexity 2020, 2020, 8820338. [Google Scholar] [CrossRef]
- Chen, Y.; Hu, Y. The urban morphology classification under Local Climate Zone scheme based on the improved method: A case study of Changsha, China. Urban Clim. 2022, 45, 101271. [Google Scholar] [CrossRef]
- Wang, R.; Voogt, J.; Ren, C.; Sun, T.; Liu, M.; Huang, Z.; Cai, M. Spatial-temporal variations of surface urban heat island: An application of Local Climate Zone into Major Chinese Cities. Build. Environ. 2022, 222, 109378. [Google Scholar] [CrossRef]
- Das, M.; Das, A. Assessing the relationship between Local Climatic Zones (LCZs) and Land Surface Temperature (LST): A case study of Sriniketan-Santiniketan Planning Area (SSPA), West Bengal, India. Urban Clim. 2020, 32, 100591. [Google Scholar] [CrossRef]
- Lin, Z.; Xu, H.; Yao, X.; Lin, Y.; He, L.; Yang, J.; Liu, X.; Lai, J. Exploring the relationship between thermal environmental factors and land surface temperature of a “Furnace City” based on Local Climate Zones. Build. Environ. 2023, 243, 110732. [Google Scholar] [CrossRef]
- Sun, F.; Mejia, A.; Che, Y. Disentangling the contributions of climate and basin characteristics to water yield across spatial and temporal scales in the Yangtze River Basin: A combined hydrological model and boosted regression approach. Water Resour. Manag. 2019, 33, 3449–3468. [Google Scholar] [CrossRef]
- Agatonovic-Kustrin, S.; Beresford, R. Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J. Pharm. Biomed. Anal. 2000, 22, 717–727. [Google Scholar] [CrossRef]
- Géron, A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow; O′Reilly Media, Inc.: Sebastopol, CA, USA, 2022. [Google Scholar]
- Logan, T.M.; Zaitchik, B.; Guikema, S.; Niyogi, D.; Bowers, S.J.; Smith, V.K.; Stuart, G. Night and day: The influence and relative importance of urban characteristics on remotely sensed land surface temperature. Remote Sens. Environ. 2020, 247, 111861. [Google Scholar] [CrossRef]
- Tian, L. Spatio-temporal Characteristics and Impact Mechanisms of the Thermal Environment in the Central Urban Area of Chongqing. Ph.D. Thesis, Chongqing University, Chongqing, China, 2022. [Google Scholar] [CrossRef]
- Ke, X.; Men, H.; Zhou, T.; Wang, Y.; Liu, J.; Li, Z.; Wang, W. Variance of the impact of urban green space on the urban heat island effect among different urban functional zones: A case study in Wuhan. Urban For. Urban Green. 2021, 62, 127159. [Google Scholar] [CrossRef]
- Sun, S.; Li, J.; Wang, Y.X.; Zhang, Y.; Zhao, K.; Liu, Y. Impact of land use change on surface thermal environment in Beijing-Tianjin-Hebei Urban Agglomeration. J. Xi′an Univ. Technol. 2022, 38, 1–12. (In Chinese) [Google Scholar]
- Jiang, M.P. Analysis of land use/cover change in Tongren City from 2000 to 2020 based on ArcGIS. Mod. Agric. Sci. Technol. 2025, 167, 157–161. (In Chinese) [Google Scholar]
- Zhao, X.F. Regionally integrated poverty alleviation experience replicable for common prosperity: A case study of relocation-based poverty alleviation in Tongren City, Guizhou Province. Adm. Trib. 2023, 30, 115–123. (In Chinese) [Google Scholar]
- General Office of the Ministry of Ecology and Environment; General Office of the Ministry of Finance; General Office of the Ministry of Natural Resources; General Office of the Ministry of Housing and Urban-Rural Development; General Office of the Ministry of Transport; General Office of the Ministry of Water Resources; General Office of the Ministry of Agriculture and Rural Affairs; General Office of the Ministry of Emergency Management; China Meteorological Administration; National Disease Control and Prevention Administration. Notice on Issuing the List of Pilot Cities for Deepening Climate-Adaptive City Construction. Available online: https://www.gov.cn/zhengce/zhengceku/202405/content_6951079.html (accessed on 16 July 2025). (In Chinese)
- Ma, Q.J.; Huang, H. Development Characteristics and Formation Conditions of Geological Disasters in Tongren City, Guizhou Province. Guizhou Geol. 2009, 26, 154–159. [Google Scholar]
- Mao, H.X.; Yan, L.H.; Zhou, C.Z.; Wang, F. Summer Drought Index Adaptability Study in Tongren City. Anhui Agric. Sci. 2013, 41, 10752–10754. [Google Scholar]
- Tongren Municipal Bureau of Statistics. Tongren City 2023 Statistical Communiqué on National Economic and Social Development. Available online: http://www.trs.gov.cn/ (accessed on 16 July 2025). (In Chinese)
- Wang, J.Y.; Wang, Y.J.; Yang, Y.Z.; Wang, Y. Research on Geological Disaster Prevention and Control Strategies in Guizhou Karst Areas: A Case Study of Tongren City. J. Tongren Univ. 2017, 19, 87–89. [Google Scholar]
- Pi, X.W.; Wu, M.; Xu, D.H.; Wang, Y. Analysis of the Relationship between Tourism Meteorological Comfort and Passenger Flow in Bijiang District, Tongren City. Middle Low Latit. Mt. Meteorol. 2020, 44, 76–79. [Google Scholar]
- Deng, S.; Luo, X.; Ran, X.G.; Wang, Y. Spatiotemporal Variation Characteristics of Urban Temperature in Tongren over the Past 40 Years. Guizhou Sci. 2020, 38, 74–76. [Google Scholar]
- Zhong, Y.P.; Chen, J.; Yang, Q.; Zhang, L.; Wang, F. Climate Change Characteristics of Summer Drought and Disaster Risk Zoning in Tongren City over the Past 50 Years. In Proceedings of the 31st Annual Meeting of the Chinese Meteorological Society, Session S5: Drought Disaster Risk Assessment and Control, Tongren, China, 3 November 2014; pp. 363–372. [Google Scholar]
- Yang, J.; Huang, X. China′s 30 m Annual Land Cover Datasets and Dynamics from 1985 to 2023. Earth Syst. Sci. Data 2024, 13, 3907–3925. [Google Scholar] [CrossRef]
- Guo, G.H.; Chen, Y.B.; Wei, J.B.; Wang, X.Y.; Li, X.Z. Impact of Spatial Scale Variation on Urban Heat Island Spatial Pattern Analysis. Acta Ecol. Sin. 2012, 32, 3764–3772. [Google Scholar]
- Houet, T.; Pigeon, G. Mapping Urban Climate Zones and Quantifying Climate Behaviors: An Application on Toulouse Urban Area, France. Environ. Pollut. 2011, 159, 2180–2192. [Google Scholar] [CrossRef]
- Zheng, Z.; Luo, F.; Li, N.; Wang, C.; Chen, Y.; Liu, X.; Zhang, H. Impact of Local Climate Zones on the Urban Heat and Dry Islands in Beijing: Spatial Heterogeneity and Relative Contributions. J. Meteorol. Res. 2024, 38, 126–137. [Google Scholar] [CrossRef]
- Davenport, A.G.; Grimmond, C.S.B.; Oke, T.R.; Wieringa, J.; Rijkoort, P.J. Estimating the Roughness of Cities and Sheltered Country. In Proceedings of the 12th Conference on Applied Climatology, Asheville, NC, USA, 8–11 May 2000; American Meteorological Society: Boston, MA, USA, 2000; pp. 96–99. [Google Scholar]
- Miao, C.; Yu, S.; Hu, Y.; Zhang, P.; He, X.; Wang, S.; Liu, B.; Li, Q. Review of Methods Used to Estimate the Sky View Factor in Urban Street Canyons. Build. Environ. 2020, 168, 106497. [Google Scholar] [CrossRef]
- Yang, J.; Yang, Y.; Sun, D.; Xiao, X.; Chen, L.; Li, Y.; Zhang, H. Influence of Urban Morphological Characteristics on Thermal Environment. Sustain. Cities Soc. 2021, 72, 103045. [Google Scholar] [CrossRef]
- Li, H.; Li, Y.; Wang, T.; Zhang, L.; Liu, W.; Chen, Z. Quantifying 3D Building Form Effects on Urban Land Surface Temperature and Modeling Seasonal Correlation Patterns. Build. Environ. 2021, 204, 108132. [Google Scholar] [CrossRef]
- Lan, Y.; Zhan, Q. How Do Urban Buildings Impact Summer Air Temperature? The Effects of Building Configurations in Space and Time. Build. Environ. 2017, 125, 88–98. [Google Scholar] [CrossRef]
- Li, X.; Yeh, A.G.O. Neural-Network-Based Cellular Automata for Simulating Multiple Land Use Changes Using GIS. Int. J. Geogr. Inf. Sci. 2002, 16, 323–343. [Google Scholar] [CrossRef]
- United States Geological Survey (USGS). Landsat 8–9 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) Collection 2 Level 2 Data Format Control Book, Version 5.0; USGS: Reston, VA, USA, 2020. [Google Scholar]
- United States Geological Survey (USGS). How Do I Use a Scale Factor with Landsat Level-2 Science Products? USGS: Reston, VA, USA, 2020. [Google Scholar]
- Tang, B.H.; Zhan, C.; Li, Z.L.; Liu, M.; Jiang, X.; Wang, D. Estimation of Land Surface Temperature from MODIS Data for the Atmosphere with Air Temperature Inversion Profile. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 10, 2976–2983. [Google Scholar] [CrossRef]
- Rongali, G.; Keshari, A.K.; Gosain, A.K.; Tiwari, M.K.; Arora, M. A Mono-Window Algorithm for Land Surface Temperature Estimation from Landsat 8 Thermal Infrared Sensor Data: A Case Study of the Beas River Basin, India. Pertanika J. Sci. Technol. 2018, 26, 829–840. [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A State-of-the-Art Global Reanalysis Dataset for Land Applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Hong, T.; Yim, S.H.L.; Heo, Y. Interpreting Complex Relationships Between Urban and Meteorological Factors and Street-Level Urban Heat Islands: Application of Random Forest and SHAP Method. Sustain. Cities Soc. 2025, 126, 106353. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, H.; Wu, J.; Wang, L.; Zhang, K.; Li, M. Impact of Urban Spatial Dynamics and Blue-Green Infrastructure on Urban Heat Islands: A Case Study of Guangzhou Using Local Climate Zones and Predictive Modeling. Sustain. Cities Soc. 2024, 115, 105819. [Google Scholar] [CrossRef]
- Liu, H.S.; Li, S.T.; Wan, H.K.; Zhang, Y.; Chen, L.; Wang, J. Spatiotemporal Differentiation Characteristics of Urban Heat Islands in Wuhan City Based on Local Climate Zones. J. Huazhong Agric. Univ. 2023, 42, 98–106. [Google Scholar]
- Han, F. Research on Urban Thermal Environment in Beijing Based on Local Climate Zones. Ph.D. Thesis, China University of Geosciences, Beijing, China, 2023. [Google Scholar]
- Yang, X.; Yao, L.; Jin, T.; He, Y.; Wang, R. Temporal and Spatial Variations of Local Temperatures in the Summer of Nanjing. J. Civ. Environ. Eng. 2019, 41, 160–167. [Google Scholar]
- Zhou, M.; Wang, R.; Guo, Y. How Urban Spatial Characteristics Impact Surface Urban Heat Island in Subtropical High-Density Cities Using LCZs Classification: A Case Study of Macau, China. Sustain. Cities Soc. 2024, 112, 105587. [Google Scholar] [CrossRef]
- Ribeiro, M.C.A.; Pinton, L.G.; Cardoso, R.S.; Souza, M.A. Spatial and Temporal Dynamics of the Urban Heat Island Effect in a Small Brazilian City. Geogr. Res. 2023, 61, 377–389. [Google Scholar] [CrossRef]
- Lin, M.; Liu, Y.; Xu, W.; Zhang, Q.; Chen, H. The Effects of Natural and Social Factors on Surface Temperature in a Typical Cold-Region City of the Northern Temperate Zone: A Case Study of Changchun, China. Sustainability 2025, 17, 6840. [Google Scholar] [CrossRef]
Data Type | Image ID | Date | Season | Resolution /m | Land Cloud Cover | Source |
---|---|---|---|---|---|---|
Landsat 8–9 OLI/TIRS C2L2/Landsat 7 ETM+ C2L1 | LC08_L2SP_125041_20160416_20200907_02_T1 | 16 April 2016 | Spring | Multispectral band 30, thermal infrared band 30 | 21.66 | USGS (https://earthexplorer.usgs.gov/; accessed on 1 August 2025) |
LC08_L2SP_125041_20200427_20200822_02_T1 | 27 April 2020 | Multispectral band 30, thermal infrared band 30 | 0.02 | |||
LE07_L1TP_125041_20230430_20230526_02_T1 | 30 April 2023 | Panchromatic band 15, multispectral band 30, thermal infrared band 30 | 0.00 | |||
LC08_L2SP_126041_20160829_20200906_02_T1 | 29 August 2016 | Summer | Multispectral band 30, thermal infrared band 30 | 0.08 | ||
LC08_L2SP_126041_20200824_20200905_02_T1 | 24 August 2020 | Multispectral band 30, thermal infrared band 30 | 67.57 | |||
LC08_L2SP_125041_20230607_20230614_02_T1 | 7 June 2023 | Multispectral band 30, thermal infrared band 30 | 11.80 | |||
LE07_L1TP_126041_20160922_20200902_02_T1 | 22 September 2016 | Autumn | Panchromatic band 15, multispectral band 30, thermal infrared band 30 | 57.00 | ||
LC08_L2SP_126041_20201112_20210317_02_T1 | 12 November 2020 | Multispectral band 30, thermal infrared band 30 | 0.01 | |||
LC09_L2SP_125041_20231021_20231024_02_T1 | 21 October 2023 | Multispectral band 30, thermal infrared band 30 | 0.88 | |||
LE07_L1TP_126041_20170213_20200901_02_T1 | 13 February 2017 | Winter | Panchromatic band 15, multispectral band 30, thermal infrared band 30 | 26.00 | ||
LC08_L2SP_126041_20210115_20210308_02_T1 | 15 January 2021 | Multispectral band 30, thermal infrared band 30 | 0.38 | |||
LC08_L2SP_126041_20231223_20240103_02_T1 | 23 December 2023 | Multispectral band 30, thermal infrared band 30 | 4.34 | |||
Building vector data | _ | 2016 | _ | _ | _ | Amap (https://lbs.amap.com/; accessed on 2 August 2025) |
_ | 2020 | _ | _ | _ | ||
_ | 2023 | _ | _ | _ | ||
Land cover data | _ | 2016 | _ | 30 | _ | Wuhan university, China (https://zenodo.org/records/12779975; accessed on 3 August 2025) |
_ | 2020 | _ | 30 | _ | ||
_ | 2023 | _ | 30 | _ |
Parameter | Description | Formula | |
---|---|---|---|
Land cover | PSF [16] | The proportion of the permeable surface area of the grid. | where PSA is the pervious surface area, and is the grid area of grid number i. |
ISF [16] | The proportion of the impermeable surface area of the grid. | where ISA is impervious surface area, and is the grid area of grid number i. | |
[38] | Describe the roughness length of the terrain surface (building geometry and land cover). | The roughness length is classified according to the classification system proposed by Davenport et al. | |
Architectural form | SVF [39,40] | A part of the hemisphere covered by the sky. | where is the azimuth angle, and is the maximum tilt angle along the pixel direction of the obstruction. |
The weighted average height of the grid building. | where i is the building number, n is the total number of buildings in the grid, H is the building height, and is the weight value of the total building area of building number i in the grid area. | ||
HSD [16] | The degree of variation in the building height of the grid. | where i is the building number, n is the total number of buildings in the grid, H is the building height and is the average building height. | |
BSF [41] | The ratio of the building’s floor area to the total area of the grid. | where i is the building number, is the footprint area of the i building, j is the grid number, and is the grid area of grid number j. | |
FAR [42] | The ratio of the building’s floor area to the total area of the grid. | where i is the building number, is the footprint area of the i building, F is the number of floors of building number i, j is the grid number, and is the grid area of grid number j. |
Land Cover | 2016 | 2020 | 2023 | ||||
---|---|---|---|---|---|---|---|
PSF | Farmland | 184.48 | 53.51% | 171.41 | 49.72% | 167.06 | 48.46% |
Forest | 129.13 | 37.46% | 132.58 | 38.46% | 137.05 | 39.75% | |
Shrub | 0.60 | 0.17% | 0.17 | 0.05% | 0.09 | 0.03% | |
Grassland | 5.60 | 1.62% | 7.29 | 2.11% | 4.74 | 1.37% | |
Water area | 3.38 | 0.98% | 3.34 | 0.97% | 3.09 | 0.90% | |
Bare land | 0.01 | 0.00% | 0.04 | 0.01% | 0.05 | 0.01% | |
Overall | 323.20 | 93.75% | 314.79 | 91.31% | 312.08 | 90.52% | |
ISF | 21.55 | 6.25% | 29.96 | 8.69% | 32.67 | 9.48% |
LCZ-1 | LCZ-2 | LCZ-3 | LCZ-4 | LCZ-5 | LCZ-6 | LCZ-7 | LCZ-8 | LCZ-9 | LCZ-10 | LCZ-AB | LCZ-CD | LCZ-E | LCZ-F | LCZ-G | Overall Change | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Building Type | Land Cover Type | ||||||||||||||||
2016–2020 | 200 | −9.09 | 64.21 | 8.33 | 35.48 | −2.92 | 150 | −14.29 | 150 | 83.33 | 17.40 | −13.13 | 350 | 400 | 100 | 37.76 | 62.24 |
2020–2023 | 900 | 175 | 8.97 | 130.77 | 33.33 | −20.27 | 80 | −61.11 | −20 | 3.03 | 122.11 | −47.58 | −66.67 | 180 | 450 | 40.77 | 59.23 |
2016–2023 | 2900 | 150 | 78.95 | 150 | 80.65 | −22.59 | 350 | −66.67 | 100 | 88.89 | 160.77 | −54.47 | 50 | 1300 | 1000 | 39.98 | 60.02 |
LST Partition | Scope (°C) | 2016 | 2020 | 2023 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | Summer | Autumn | Winter | Spring | |||
Heat island | Extremely high temperature | ≥45 | 0.014 | 0.033 | 0.002 | 0.000 | 0.016 | 0.463 | 0.000 | 0.000 | 0.000 | 0.239 | 0.000 | 0.000 | ≥45 |
High temperature | 36–44 | 0.081 | 3.547 | 0.034 | 0.000 | 1.542 | 13.568 | 0.002 | 0.000 | 0.000 | 11.020 | 0.039 | 0.000 | 36–44 | |
Relative high temperature | 28–35 | 19.342 | 26.282 | 12.882 | 0.011 | 27.292 | 15.975 | 0.077 | 0.001 | 0.026 | 18.691 | 4.678 | 0.000 | 28–35 | |
In total | 19.437 | 29.863 | 12.918 | 0.011 | 28.851 | 30.006 | 0.078 | 0.001 | 0.026 | 29.949 | 4.717 | 0.000 | 19.437 | ||
Medium-temperature zone | 19–27 | 10.692 | 0.267 | 17.398 | 1.190 | 1.279 | 0.124 | 24.463 | 0.816 | 16.728 | 0.181 | 25.392 | 0.017 | 10.692 | |
Cold Island | Relative low temperature | 11–18 | 0.001 | 0.000 | 0.014 | 28.640 | 0.000 | 0.000 | 5.588 | 27.170 | 13.568 | 0.000 | 0.021 | 2.261 | 0.001 |
Low temperature | 1–10 | 0.000 | 0.000 | 0.000 | 0.488 | 0.000 | 0.000 | 0.001 | 2.143 | 0.006 | 0.000 | 0.000 | 27.849 | 0.000 | |
Extremely low temperature | ≤0 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.000 | 0.003 | 0.000 | |
In total | 0.001 | 0.000 | 0.014 | 29.128 | 0.000 | 0.000 | 5.589 | 29.313 | 13.576 | 0.000 | 0.021 | 30.113 | 0.001 |
Season | Year | LCZ Types | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | AB | CD | E | F | G | ||
Spring | 2016 | 5.72 | 3.65 | 2.16 | 1.62 | 1.76 | 0.02 | 0.28 | 2.99 | −1.14 | 3.99 | −0.87 | 0.00 | 3.15 | −0.03 | 0.16 |
2020 | 3.19 | 2.73 | 2.56 | 0.04 | 1.74 | 0.31 | 0.49 | 1.37 | 2.92 | 3.44 | −1.92 | 0.00 | 2.87 | 3.89 | 0.18 | |
2023 | 0.88 | 0.55 | 0.51 | −0.22 | 0.33 | 0.01 | −0.29 | 1.05 | −1.31 | 0.91 | −1.41 | 0.00 | 0.00 | 2.12 | −1.48 | |
In total | −4.84 | −3.10 | −1.65 | −1.85 | −1.43 | −0.01 | −0.58 | −1.95 | −0.17 | −3.08 | −0.54 | −0.01 | −3.16 | 2.15 | −1.64 | |
Summer | 2016 | 6.40 | 4.90 | 3.64 | 3.55 | 2.99 | −0.13 | 0.22 | 4.78 | 2.29 | 5.82 | −1.41 | 0.00 | 6.38 | 0.82 | 0.21 |
2020 | 7.30 | 6.12 | 3.90 | 3.50 | 2.35 | −0.57 | 0.78 | 3.69 | 4.39 | 6.05 | −1.66 | 0.00 | 4.57 | 3.38 | 0.22 | |
2023 | 4.38 | 5.52 | 2.73 | 2.86 | 1.99 | −0.53 | −2.53 | 4.55 | −0.37 | 4.88 | −2.50 | 0.00 | 1.99 | 2.74 | −5.40 | |
In total | −2.02 | 0.62 | −0.91 | −0.69 | −1.00 | −0.39 | −2.73 | −0.23 | −2.66 | −0.94 | −1.08 | 0.00 | −4.39 | 1.92 | −5.61 | |
Autumn | 2016 | 1.57 | 1.49 | 2.10 | 1.05 | 1.96 | 0.29 | 0.37 | 2.38 | 1.59 | 3.04 | −1.50 | 0.00 | 2.65 | 0.63 | 0.12 |
2020 | 1.05 | −0.26 | 1.28 | −0.93 | 1.11 | 0.28 | −0.14 | 0.65 | 2.32 | 1.54 | −2.03 | 0.00 | 0.34 | 2.00 | −0.06 | |
2023 | 2.11 | 2.71 | 1.45 | 0.96 | 0.83 | −0.58 | −3.08 | 3.54 | −0.39 | 2.49 | −2.97 | 0.00 | 1.45 | 1.39 | −3.34 | |
In total | 0.54 | 1.22 | −0.65 | −0.09 | −1.14 | −0.87 | −3.45 | 1.16 | −1.98 | −0.55 | −1.46 | 0.00 | −1.21 | 0.76 | −3.46 | |
Winter | 2016 | −0.48 | −1.93 | −0.08 | −1.95 | 0.62 | 0.41 | −1.62 | 1.04 | −1.36 | 1.22 | −1.94 | 0.00 | −1.21 | −1.63 | −0.12 |
2020 | −1.35 | −2.34 | 0.23 | −2.82 | 0.37 | 0.65 | 0.06 | −1.00 | 0.12 | −0.35 | −1.92 | 0.00 | −1.69 | 2.36 | −0.13 | |
2023 | −0.54 | 0.00 | 0.20 | −0.73 | −0.04 | −0.19 | −1.61 | 1.72 | −1.17 | 0.46 | −1.99 | 0.00 | 0.01 | 0.14 | −1.44 | |
In total | −0.09 | 1.93 | 0.28 | 1.21 | −0.65 | −0.60 | 0.00 | 0.67 | 0.18 | −0.77 | −0.05 | 0.00 | 1.22 | 1.77 | −1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, S.; Du, J.; Fan, J. Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China. Sustainability 2025, 17, 8744. https://doi.org/10.3390/su17198744
Lin S, Du J, Fan J. Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China. Sustainability. 2025; 17(19):8744. https://doi.org/10.3390/su17198744
Chicago/Turabian StyleLin, Shaojun, Jia Du, and Jinyu Fan. 2025. "Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China" Sustainability 17, no. 19: 8744. https://doi.org/10.3390/su17198744
APA StyleLin, S., Du, J., & Fan, J. (2025). Spatio-Temporal Evolution of Surface Urban Heat Island Distribution in Mountainous Urban Areas Based on Local Climate Zones: A Case Study of Tongren, China. Sustainability, 17(19), 8744. https://doi.org/10.3390/su17198744