Preparation of High-Performance KOH-Activated Biochar from Agricultural Waste (Sapindus mukorossi) and Its Application in Organic Dye Removal
Abstract
1. Introduction
2. Materials and Methods
2.1. Reagents and Biochar Biomass
2.2. Synthesis of Adsorbents
2.3. Adsorption Experiment
2.4. Characterisations
2.5. Adsorption Isotherms and Kinetics
2.6. Data Analysis
3. Results and Discussion
3.1. Characterisation of Adsorbents
3.1.1. Elemental Analysis and Surface Morphology
3.1.2. Textural Analysis
3.1.3. FTIR Analysis
3.2. Batch Experiments
3.2.1. Impact of KOH Activation Ratio
3.2.2. Impact of Absorbent Dose
3.2.3. Impact of Dye Concentration
3.2.4. Impact of pH Value
3.3. Adsorption Kinetics
3.4. Adsorption Isotherm
3.5. Adsorption Thermodynamics Study
3.6. Comparison of Different Adsorbents
3.7. Adsorption Mechanism
3.8. Application and Prospect
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmadian, M.; Jaymand, M. Interpenetrating Polymer Network Hydrogels for Removal of Synthetic Dyes: A Comprehensive Review. Coord. Chem. Rev. 2023, 486, 215152. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Zhao, X.; Cao, J. High-Efficient Removal and Adsorption Mechanism of Organic Dyes in Wastewater by KOH-Activated Biochar Phenol-Formaldehyde Resin Modified Wood. Sep. Purif. Technol. 2024, 330, 125542. [Google Scholar] [CrossRef]
- Praveen, S.; Jegan, J.; Bhagavathi Pushpa, T.; Gokulan, R.; Bulgariu, L. Biochar for Removal of Dyes in Contaminated Water: An Overview. Biochar 2022, 4, 10. [Google Scholar] [CrossRef]
- Al-Tohamy, R.; Ali, S.S.; Li, F.; Okasha, K.M.; Mahmoud, Y.A.-G.; Elsamahy, T.; Jiao, H.; Fu, Y.; Sun, J. A Critical Review on the Treatment of Dye-Containing Wastewater: Ecotoxicological and Health Concerns of Textile Dyes and Possible Remediation Approaches for Environmental Safety. Ecotoxicol. Environ. Saf. 2022, 231, 113160. [Google Scholar] [CrossRef]
- Olusegun, S.J.; Mohallem, N.D.S. Comparative Adsorption Mechanism of Doxycycline and Congo Red Using Synthesized Kaolinite Supported CoFe2O4 Nanoparticles. Environ. Pollut. 2020, 260, 114019. [Google Scholar] [CrossRef]
- Cheng, N.; Wang, B.; Wu, P.; Lee, X.; Xing, Y.; Chen, M.; Gao, B. Adsorption of Emerging Contaminants from Water and Wastewater by Modified Biochar: A Review. Environ. Pollut. 2021, 273, 116448. [Google Scholar] [CrossRef] [PubMed]
- Choudhary, M.; Kumar, R.; Neogi, S. Activated Biochar Derived from Opuntia Ficus-Indica for the Efficient Adsorption of Malachite Green Dye, Cu+2 and Ni+2 from Water. J. Hazard. Mater. 2020, 392, 122441. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, S. Preparation, Modification and Environmental Application of Biochar: A Review. J. Clean. Prod. 2019, 227, 1002–1022. [Google Scholar] [CrossRef]
- Dzoujo, H.T.; Shikuku, V.O.; Tome, S.; Simo, A.C.N.; Ng’eno, E.C.; Getenga, Z.M.; Etoh, M.A.; Joh Dina, D.D. Recent Advances in Metal Oxide-Biochar Composites for Water and Soil Remediation: A Review. Hybrid Adv. 2024, 7, 100292. [Google Scholar] [CrossRef]
- Luo, J.; Li, X.; Ge, C.; Müller, K.; Yu, H.; Huang, P.; Li, J.; Tsang, D.C.W.; Bolan, N.S.; Rinklebe, J.; et al. Sorption of Norfloxacin, Sulfamerazine and Oxytetracycline by KOH-Modified Biochar under Single and Ternary Systems. Bioresour. Technol. 2018, 263, 385–392. [Google Scholar] [CrossRef]
- Li, J.; Liang, N.; Jin, X.; Zhou, D.; Li, H.; Wu, M.; Pan, B. The Role of Ash Content on Bisphenol A Sorption to Biochars Derived from Different Agricultural Wastes. Chemosphere 2017, 171, 66–73. [Google Scholar] [CrossRef]
- Liu, Q.-H.; Qiu, Y.-H.; Yang, Z.-M. KOH Activation Increased Biochar’s Capacity to Regulate Electron Transfer and Promote Methanogenesis. Energy 2025, 322, 135650. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, D.; Wang, X.; Wu, J.; Song, S. Enhanced Adsorption of Phenol Using EDTA-4Na- and KOH-Modified Almond Shell Biochar. Sustain. Environ. Res. 2025, 35, 4. [Google Scholar] [CrossRef]
- Rabichi, I.; Ezzahi, K.; Yaacoubi, F.E.; Sekkouri, C.; Bouzid, T.; Ennaciri, K.; Ounas, A.; Fels, L.E.; Hafidi, M.; Baçaoui, A.; et al. Synthesis and Application of Biochar and KOH-Activated Carbon from Olive Mill Solid Waste for Polyphenol Removal. J. Mol. Liq. 2025, 421, 126875. [Google Scholar] [CrossRef]
- Herath, A.; Layne, C.A.; Perez, F.; Hassan, E.B.; Pittman, C.U.; Mlsna, T.E. KOH-Activated High Surface Area Douglas Fir Biochar for Adsorbing Aqueous Cr(VI), Pb(II) and Cd(II). Chemosphere 2021, 269, 128409. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.-W.; Chen, J.-C.; Sun, S.-D.; Tang, C.-H.; Yang, X.-Q.; Wen, Q.-B.; Qi, J.-R. Physicochemical and Structural Characterisation of Protein Isolate, Globulin and Albumin from Soapnut Seeds (Sapindus Mukorossi Gaertn.). Food Chem. 2011, 128, 420–426. [Google Scholar] [CrossRef] [PubMed]
- Sang, S.-H.; Akowuah, G.A.; Liew, K.B.; Lee, S.-K.; Keng, J.-W.; Lee, S.-K.; Yon, J.-A.-L.; Tan, C.S.; Chew, Y.-L. Natural Alternatives from Your Garden for Hair Care: Revisiting the Benefits of Tropical Herbs. Heliyon 2023, 9, e21876. [Google Scholar] [CrossRef]
- Santos Filho, J.R.D.; Santos, É.D.S.; Mandim, F.; Molina, A.K.; Barros, L.; Correia Gonçalves, R.A.; Braz De Oliveira, A.J.; Ferreira, I.C.P. Evaluation of Antitumoral and Antioxidant Activities of the Hydroalcoholic Extract and Fractions Obtained from the Fruit Pericarp of Sapindus saponaria L. Nat. Prod. Res. 2024, 38, 1002–1006. [Google Scholar] [CrossRef]
- Chen, Y.-H.; Chiang, T.-H.; Chen, J.-H. Properties of Soapnut (Sapindus mukorossi) Oil Biodiesel and Its Blends with Diesel. Biomass Bioenergy 2013, 52, 15–21. [Google Scholar] [CrossRef]
- Samal, K.; Raj, N.; Mohanty, K. Saponin Extracted Waste Biomass of Sapindus Mukorossi for Adsorption of Methyl Violet Dye in Aqueous System. Surf. Interfaces 2019, 14, 166–174. [Google Scholar] [CrossRef]
- Oussalah, C.; Kaouah, F.; Boumaza, S.; Trari, M. Highly Efficient Removal of the Bisphenol A from Aqueous Solution by Activated Carbon Derived from Cores of Nuts of Sapindus mukorossi. Biomass Convers. Biorefinery 2024, 14, 18869–18885. [Google Scholar] [CrossRef]
- Ayisha Sidiqua, M.; Priya, V.S. Removal of Yellow Dye Using Composite Binded Adsorbent Developed Using Natural Clay and Activated Carbon from Sapindus Seed. Biocatal. Agric. Biotechnol. 2021, 33, 101965. [Google Scholar] [CrossRef]
- Duan, F.; Zhu, Y.; Yu, H.; Wang, A. Porous Adsorbent Prepared from Eco-Friendly Aqueous Foam Templates and Carbonized for Soil Remediation. J. Clean. Prod. 2023, 416, 137757. [Google Scholar] [CrossRef]
- Mi, Y.; Wang, W.; Zhang, S.; Guo, Y.; Zhao, Y.; Sun, G.; Cao, Z. Ultra-High Specific Surface Area Activated Carbon from Taihu Cyanobacteria via KOH Activation for Enhanced Methylene Blue Adsorption. Chin. J. Chem. Eng. 2024, 67, 106–116. [Google Scholar] [CrossRef]
- Dalvand, A.; Nabizadeh, R.; Reza Ganjali, M.; Khoobi, M.; Nazmara, S.; Hossein Mahvi, A. Modeling of Reactive Blue 19 Azo Dye Removal from Colored Textile Wastewater Using L-Arginine-Functionalized Fe3O4 Nanoparticles: Optimization, Reusability, Kinetic and Equilibrium Studies. J. Magn. Magn. Mater. 2016, 404, 179–189. [Google Scholar] [CrossRef]
- Ho, Y. The Kinetics of Sorption of Divalent Metal Ions onto Sphagnum Moss Peat. Water Res. 2000, 34, 735–742. [Google Scholar] [CrossRef]
- Ho, Y.-S. Selection of Optimum Sorption Isotherm. Carbon 2004, 42, 2115–2116. [Google Scholar] [CrossRef]
- Yang, Z.; Xiang, M.; Zhu, W.; Hui, J.; Qin, H. Biomass Heteroatom Carbon/Cerium Dioxide Composite Nanomaterials Electrode for High-Performance Supercapacitors. ACS Sustain. Chem. Eng. 2020, 8, 6675–6681. [Google Scholar] [CrossRef]
- Shamsuddin, M.S.; Yusoff, N.R.N.; Sulaiman, M.A. Synthesis and Characterization of Activated Carbon Produced from Kenaf Core Fiber Using H3PO4 Activation. Procedia Chem. 2016, 19, 558–565. [Google Scholar] [CrossRef]
- Serafin, J.; Dziejarski, B.; Cruz Junior, O.F.; Sreńscek-Nazzal, J. Design of Highly Microporous Activated Carbons Based on Walnut Shell Biomass for H2 and CO2 Storage. Carbon 2023, 201, 633–647. [Google Scholar] [CrossRef]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Chen, Y.; Cai, L.; Wang, Y.; Song, W. An Abundant Porous Biochar Material Derived from Wakame (Undaria pinnatifida) with High Adsorption Performance for Three Organic Dyes. Bioresour. Technol. 2020, 318, 124082. [Google Scholar] [CrossRef]
- Mahmoud, D.K.; Salleh, M.A.M.; Karim, W.A.W.A.; Idris, A.; Abidin, Z.Z. Batch Adsorption of Basic Dye Using Acid Treated Kenaf Fibre Char: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2012, 181–182, 449–457. [Google Scholar] [CrossRef]
- Sahu, S.; Pahi, S.; Tripathy, S.; Singh, S.K.; Behera, A.; Sahu, U.K.; Patel, R.K. Adsorption of Methylene Blue on Chemically Modified Lychee Seed Biochar: Dynamic, Equilibrium, and Thermodynamic Study. J. Mol. Liq. 2020, 315, 113743. [Google Scholar] [CrossRef]
- Spessato, L.; Duarte, V.A.; Viero, P.; Zanella, H.; Fonseca, J.M.; Arroyo, P.A.; Almeida, V.C. Optimization of Sibipiruna Activated Carbon Preparation by Simplex-Centroid Mixture Design for Simultaneous Adsorption of Rhodamine B and Metformin. J. Hazard. Mater. 2021, 411, 125166. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.-J.; Chen, H.; Wang, S.; Wang, Y.; Yang, F.-Q. Preparation of Core-Shell MOF@MOF Nanoparticle as Matrix for the Analysis of Rhubarb Anthraquinones in Plasma by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry. Heliyon 2023, 9, e16245. [Google Scholar] [CrossRef] [PubMed]
- Muniandy, L.; Adam, F.; Mohamed, A.R.; Ng, E.-P. The Synthesis and Characterization of High Purity Mixed Microporous/Mesoporous Activated Carbon from Rice Husk Using Chemical Activation with NaOH and KOH. Microporous Mesoporous Mater. 2014, 197, 316–323. [Google Scholar] [CrossRef]
- Petrović, J.; Koprivica, M.; Ercegović, M.; Simić, M.; Dimitrijević, J.; Bugarčić, M.; Trifunović, S. Synthesis and Application of FeMg-Modified Hydrochar for Efficient Removal of Lead Ions from Aqueous Solution. Processes 2025, 13, 2060. [Google Scholar] [CrossRef]
- Yang, Y.; Cannon, F.S. Biomass Activated Carbon Derived from Pine Sawdust with Steam Bursting Pretreatment; Perfluorooctanoic Acid and Methylene Blue Adsorption. Bioresour. Technol. 2022, 344, 126161. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, W.-H.; Ho, S.-H.; Hoang, A.T.; Zhang, Y. Tetracycline-Adsorbed Biochar for Solid Biofuel Usage to Achieve Waste Utilization for Environmental Sustainability. Environ. Res. 2023, 237, 116959. [Google Scholar] [CrossRef]
- Huang, W.; Chen, J.; Zhang, J. Adsorption Characteristics of Methylene Blue by Biochar Prepared Using Sheep, Rabbit and Pig Manure. Environ. Sci. Pollut. Res. 2018, 25, 29256–29266. [Google Scholar] [CrossRef]
- Nazir, G.; Rehman, A.; Hussain, S.; Afzal, A.M.; Dastgeer, G.; Rehman, M.A.; Akhter, Z.; Al-Muhimeed, T.I.; AlObaid, A.A. Heteroatoms-Doped Hierarchical Porous Carbons: Multifunctional Materials for Effective Methylene Blue Removal and Cryogenic Hydrogen Storage. Colloids Surf. A Physicochem. Eng. Asp. 2021, 630, 127554. [Google Scholar] [CrossRef]
- Tran, H.N.; Tomul, F.; Thi Hoang Ha, N.; Nguyen, D.T.; Lima, E.C.; Le, G.T.; Chang, C.-T.; Masindi, V.; Woo, S.H. Innovative Spherical Biochar for Pharmaceutical Removal from Water: Insight into Adsorption Mechanism. J. Hazard. Mater. 2020, 394, 122255. [Google Scholar] [CrossRef]
- Cui, X.; Ni, Q.; Lin, Q.; Khan, K.Y.; Li, T.; Khan, M.B.; He, Z.; Yang, X. Simultaneous Sorption and Catalytic Oxidation of Trivalent Antimony by Canna Indica Derived Biochars. Environ. Pollut. 2017, 229, 394–402. [Google Scholar] [CrossRef]
- Ahmad, M.A.; Rahman, N.K. Equilibrium, Kinetics and Thermodynamic of Remazol Brilliant Orange 3R Dye Adsorption on Coffee Husk-Based Activated Carbon. Chem. Eng. J. 2011, 170, 154–161. [Google Scholar] [CrossRef]
- Su, X.; Wang, X.; Ge, Z.; Bao, Z.; Lin, L.; Chen, Y.; Dai, W.; Sun, Y.; Yuan, H.; Yang, W.; et al. KOH-Activated Biochar and Chitosan Composites for Efficient Adsorption of Industrial Dye Pollutants. Chem. Eng. J. 2024, 486, 150387. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Y.; McMillan, O.; Jin, F.; Al-Tabbaa, A. Characteristics and Mechanisms of Nickel Adsorption on Biochars Produced from Wheat Straw Pellets and Rice Husk. Environ. Sci. Pollut. Res. 2017, 24, 12809–12819. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; O’Connor, D.; Wang, Y.; Jiang, L.; Xia, T.; Wang, L.; Tsang, D.C.W.; Ok, Y.S.; Hou, D. A Green Biochar/Iron Oxide Composite for Methylene Blue Removal. J. Hazard. Mater. 2020, 384, 121286. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Ji, L.; Guo, J.; Ge, S.; Lu, W.; Cai, L.; Wang, Y.; Song, W.; Zhang, H. Magnetic Activated Biochar Nanocomposites Derived from Wakame and Its Application in Methylene Blue Adsorption. Bioresour. Technol. 2020, 302, 122842. [Google Scholar] [CrossRef]
- Malik, R.; Ramteke, D.S.; Wate, S.R. Adsorption of Malachite Green on Groundnut Shell Waste Based Powdered Activated Carbon. Waste Manag. 2007, 27, 1129–1138. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, Q.; Luo, S.; Ruan, K.; Peng, K. Preparation of Novel Oxidized Mesoporous Carbon with Excellent Adsorption Performance for Removal of Malachite Green and Lead Ion. Appl. Surf. Sci. 2018, 442, 322–331. [Google Scholar] [CrossRef]
- Xiong, S.; Gong, D.; Deng, Y.; Tang, R.; Li, L.; Zhou, Z.; Zheng, J.; Yang, L.; Su, L. Facile One-Pot Magnetic Modification of Enteromorpha Prolifera Derived Biochar: Increased Pore Accessibility and Fe-Loading Enhances the Removal of Butachlor. Bioresour. Technol. 2021, 337, 125407. [Google Scholar] [CrossRef]
- Rahman, A.; Lamb, D.; Rahman, M.M.; Bahar, M.M.; Sanderson, P.; Abbasi, S.; Bari, A.S.M.F.; Naidu, R. Removal of Arsenate from Contaminated Waters by Novel Zirconium and Zirconium-Iron Modified Biochar. J. Hazard. Mater. 2021, 409, 124488. [Google Scholar] [CrossRef]
- Huang, Y.; Lee, X.; Grattieri, M.; Macazo, F.C.; Cai, R.; Minteer, S.D. A Sustainable Adsorbent for Phosphate Removal: Modifying Multi-Walled Carbon Nanotubes with Chitosan. J. Mater. Sci. 2018, 53, 12641–12649. [Google Scholar] [CrossRef]
- Bello, O.S.; Ahmad, M.A.; Ahmad, N. Adsorptive Features of Banana (Musa paradisiaca) Stalk-Based Activated Carbon for Malachite Green Dye Removal. Chem. Ecol. 2012, 28, 153–167. [Google Scholar] [CrossRef]
- Wang, B.; Zhai, Y.; Wang, T.; Li, S.; Peng, C.; Wang, Z.; Li, C.; Xu, B. Fabrication of Bean Dreg-Derived Carbon with High Adsorption for Methylene Blue: Effect of Hydrothermal Pretreatment and Pyrolysis Process. Bioresour. Technol. 2019, 274, 525–532. [Google Scholar] [CrossRef]
- An, T.; Cheng, H.; Qin, Y.; Su, W.; Deng, H.; Wu, J.; Liu, Z.; Guo, X. The Dual Mechanisms of Composite Biochar and Biofilm towards Sustainable Nutrient Release Control of Phosphate Fertilizer: Effect on Phosphorus Utilization and Crop Growth. J. Clean. Prod. 2021, 311, 127329. [Google Scholar] [CrossRef]
- Mechnou, I.; Benabdallah, A.; Chham, A.-I.; Rachdi, Y.; Hlaibi, M.; El Kartouti, A.; Saleh, N. Activated Carbons for Effective Pharmaceutical Adsorption: Impact of Feedstock Origin, Activation Agents, Adsorption Conditions, and Cost Analysis. Results Eng. 2025, 27, 105966. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhang, H.; Cai, L.; Guo, J.; Wang, Y.; Ji, L.; Song, W. Preparation and Characterization of Macroalgae Biochar Nanomaterials with Highly Efficient Adsorption and Photodegradation Ability. Materials 2018, 11, 1709. [Google Scholar] [CrossRef]
- Bakara, I.U.; Nurhafizah, M.D.; Abdullah, N.; Akinnawo, O.O.; Ul-Hamid, A. Investigation of Kinetics and Thermodynamics of Methylene Blue Dye Adsorption Using Activated Carbon Derived from Bamboo Biomass. Inorg. Chem. Commun. 2024, 166, 112609. [Google Scholar] [CrossRef]
- Zheng, Y.; Wang, J.; Li, D.; Liu, C.; Lu, Y.; Lin, X.; Zheng, Z. Insight into the KOH/KMnO4 Activation Mechanism of Oxygen-Enriched Hierarchical Porous Biochar Derived from Biomass Waste by in-Situ Pyrolysis for Methylene Blue Enhanced Adsorption. J. Anal. Appl. Pyrolysis 2021, 158, 105269. [Google Scholar] [CrossRef]
- Bedin, K.C.; Martins, A.C.; Cazetta, A.L.; Pezoti, O.; Almeida, V.C. KOH-Activated Carbon Prepared from Sucrose Spherical Carbon: Adsorption Equilibrium, Kinetic and Thermodynamic Studies for Methylene Blue Removal. Chem. Eng. J. 2016, 286, 476–484. [Google Scholar] [CrossRef]
- Ji, W.; Jin, H.; Wang, H.; Tabassum, S.; Lou, Y.; Fan, X.; Ren, M.; Wang, J. Elucidating the Dominant Role of π–π Interactions in Methylene Blue Removal via Porous Biochar: A Synergistic Approach of Experimental and Theoretical Mechanistic Insights. Colloids Surf. A Physicochem. Eng. Asp. 2025, 715, 136615. [Google Scholar] [CrossRef]
- Jawad, A.H.; Saud Abdulhameed, A.; Wilson, L.D.; Syed-Hassan, S.S.A.; ALOthman, Z.A.; Rizwan Khan, M. High Surface Area and Mesoporous Activated Carbon from KOH-Activated Dragon Fruit Peels for Methylene Blue Dye Adsorption: Optimization and Mechanism Study. Chin. J. Chem. Eng. 2021, 32, 281–290. [Google Scholar] [CrossRef]
- Tran, T.H.; Le, A.H.; Pham, T.H.; Nguyen, D.T.; Chang, S.W.; Chung, W.J.; Nguyen, D.D. Adsorption Isotherms and Kinetic Modeling of Methylene Blue Dye onto a Carbonaceous Hydrochar Adsorbent Derived from Coffee Husk Waste. Sci. Total Environ. 2020, 725, 138325. [Google Scholar] [CrossRef]
- Hossain, A.; Kibria, A.K.M.F.; Tareq, A.R.M.; Mamun, S.M.M.A.; Ullah, A.K.M.A. Removal of Methylene Blue from Water by Low-Cost Activated Carbon Prepared from Tea Waste: A Study of Adsorption Isotherm and Kinetics. Environ. Nanotechnol. Monit. Manag. 2020, 14, 100354. [Google Scholar] [CrossRef]
- Sangon, S.; Attard, T.M.; Mengchang, P.; Ngernyen, Y.; Supanchaiyamat, N. Valorisation of Waste Rice Straw for the Production of Highly Effective Carbon Based Adsorbents for Dyes Removal. J. Clean. Prod. 2018, 172, 1128–1139. [Google Scholar] [CrossRef]
- Cao, Y.; Yang, L.; Liu, F.; Yu, Q. Adsorption Experiments and Mechanisms of Methylene Blue on Activated Carbon from Garden Waste via Deep Eutectic Solvents Coupling KOH Activation. Biomass Bioenergy 2024, 182, 107074. [Google Scholar] [CrossRef]
- Shao, Q.; Li, Y.; Wang, Q.; Niu, T.; Li, S.; Shen, W. Preparation of Copper Doped Walnut Shell-Based Biochar for Efficiently Removal of Organic Dyes from Aqueous Solutions. J. Mol. Liq. 2021, 336, 116314. [Google Scholar] [CrossRef]
- Wu, Y.; Zhong, J.; Liu, B. Effective Removal of Methylene Blue with Zero-Valent Iron/Tea Residual Biochar Composite: Performance and Mechanism. Bioresour. Technol. 2023, 371, 128592. [Google Scholar] [CrossRef] [PubMed]
Sample | N (%) | C (%) | H (%) | H/C |
---|---|---|---|---|
SH | 0.54 | 45.04 | 5.402 | 0.1199 |
SH0 | 0.35 | 73.60 | 3.519 | 0.0478 |
SH2 | 0.13 | 84.73 | 0.632 | 0.0075 |
Sample | BET Surface Area (m2·g−1) | TPV (cm3·g−1) | Mean Pore Diameter (nm) |
---|---|---|---|
SH | 0.50 | 0.000701 | 5.5575 |
SH0 | 2.04 | 0.002387 | 4.6837 |
SH2 | 871.04 | 0.556474 | 2.5555 |
C0 (mg·L−1) | K1d (mg·g−1·min−1/2) | C1 (mg·g−1) | K2d (mg·g−1·min−1/2) | C2 (mg·g−1) | ||
---|---|---|---|---|---|---|
100 | 62.80 | 98.06 | 0.9953 | 13.791 | 316.51 | 0.9261 |
200 | 62.36 | 140.0 | 0.9981 | 16.485 | 363.2 | 0.9765 |
300 | 57.7 | 277.0 | 0.8642 | 21.263 | 355.43 | 0.9295 |
400 | 61.65 | 426.9 | 0.9898 | 5.0917 | 655.59 | 0.8386 |
T (K) | Kc (L·g−1) | (kJ·mol−1) | (kJ·mol−1) | (J·mol−1·K−1) |
---|---|---|---|---|
298 | 10.019 | −5.71 | 16.77 | 75.34 |
308 | 12.029 | −6.34 | ||
318 | 15.349 | −7.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Huang, L.; Sun, G. Preparation of High-Performance KOH-Activated Biochar from Agricultural Waste (Sapindus mukorossi) and Its Application in Organic Dye Removal. Sustainability 2025, 17, 8674. https://doi.org/10.3390/su17198674
Zhao Y, Huang L, Sun G. Preparation of High-Performance KOH-Activated Biochar from Agricultural Waste (Sapindus mukorossi) and Its Application in Organic Dye Removal. Sustainability. 2025; 17(19):8674. https://doi.org/10.3390/su17198674
Chicago/Turabian StyleZhao, Yufeng, Lu Huang, and Guojin Sun. 2025. "Preparation of High-Performance KOH-Activated Biochar from Agricultural Waste (Sapindus mukorossi) and Its Application in Organic Dye Removal" Sustainability 17, no. 19: 8674. https://doi.org/10.3390/su17198674
APA StyleZhao, Y., Huang, L., & Sun, G. (2025). Preparation of High-Performance KOH-Activated Biochar from Agricultural Waste (Sapindus mukorossi) and Its Application in Organic Dye Removal. Sustainability, 17(19), 8674. https://doi.org/10.3390/su17198674