BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer
Abstract
1. Introduction
1.1. Literature Review
1.2. Contribution and Innovation
2. Study Area and Dataset Analysis
2.1. Study Area
2.2. Data Description and Preprocessing
3. Methodology
3.1. The Framework of the Proposed Prediction System
3.2. BiTCN Module
3.3. ISInformer Module
3.3.1. Improved Probabilistic Sparse Attention Mechanism
3.3.2. Encoder
3.3.3. Decoder
3.4. Model Evaluation
3.4.1. Baseline Models
3.4.2. Evaluation Metrics
4. Experimental Design
5. Results and Discussion
5.1. The Impact of Relevant Factors on PM2.5 Concentration Prediction
5.2. Single Step Prediction of PM2.5 in Shanghai
5.3. Multi Step Prediction of PM2.5 in Shanghai
5.4. Ablation Experiments on the Proposed Model
5.5. Computational Efficiency and Stability of the Models
5.5.1. Computational Efficiency of the Models
5.5.2. Stability of the Models
5.6. Application of the Proposed Model to the Entire Study Area
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khurram, H.; Lim, A. Analyzing and forecasting air pollution concentration in the capital and Southern Thailand using a lag-dependent Gaussian process model. Environ. Monit. Assess. 2024, 196, 1106. [Google Scholar] [CrossRef]
- Qi, G.; Che, J.; Wang, Z. Differential effects of urbanization on air pollution: Evidences from six air pollutants in mainland China. Ecol. Indic. 2023, 146, 109924. [Google Scholar] [CrossRef]
- Goossens, J.; Jonckheere, A.C.; Dupont, L.J.; Bullens, D.M. Air pollution and the airways: Lessons from a century of human urbanization. Atmosphere 2021, 12, 898. [Google Scholar] [CrossRef]
- He, C.; Clifton, O.; Felker-Quinn, E.; Fulgham, S.R.; Juncosa Calahorrano, J.F.; Lombardozzi, D.; Purser, G.; Riches, M.; Schwantes, R.; Tang, W.; et al. Interactions between air pollution and terrestrial ecosystems: Perspectives on challenges and future directions. Bull. Am. Meteorol. Soc. 2021, 102, E525–E538. [Google Scholar] [CrossRef]
- Wrotek, A.; Jackowska, T. Molecular Mechanisms of RSV and Air Pollution Interaction: A Scoping Review. Int. J. Mol. Sci. 2022, 23, 12704. [Google Scholar] [CrossRef]
- Zhang, X.J.; Wei, F.Y.; Fu, H.Y.; Guo, H.B. Characterisation of environmentally persistent free radicals and their contributions to oxidative potential and reactive oxygen species in sea spray and size-resolved ambient particles. npj Clim. Atmos. Sci. 2025, 8, 27. [Google Scholar] [CrossRef]
- Li, G.; Sun, S. Changing PM2.5 concentrations in China from 1998 to 2014. Environ. Plan. A Econ. Space 2018, 50, 5–8. [Google Scholar]
- Wang, J.; Xu, W.; Dong, J.; Zhang, Y. Two-stage deep learning hybrid framework based on multi-factor multi-scale and intelligent optimization for air pollutant prediction and early warning. Stoch. Environ. Res. Risk Assess. 2022, 36, 3417–3437. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Yoo, E.H. The importance of spatial resolutions of Community Multiscale Air Quality (CMAQ) models on health impact assessment. Sci. Total Environ. 2018, 627, 1528–1543. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, Z.; Cheng, M.; Wu, X.; Zhan, N.; Xu, J. Long-term ambient SO2 concentration and its exposure risk across China inferred from OMI observations from 2005 to 2018. Atmos. Res. 2021, 247, 105150. [Google Scholar] [CrossRef]
- Xu, M.; Jin, J.B.; Wang, G.Q.; Segers, A.; Deng, T.; Lin, H.X. Machine learning based bias correction for numerical chemical transport models. Atmos. Environ. 2021, 248, 118022. [Google Scholar]
- Houria, B.; Abderrahmane, M.; Kenza, K.; Gábor, G. Short-term predictions of PM10 and NO2 concentrations in urban environments based on ARIMA search grid modeling. CLEAN-Soil Air Water 2024, 52, 2300395. [Google Scholar] [CrossRef]
- Gong, S.; Zhang, L.; Liu, C.; Lu, S.; Pan, W.; Zhang, Y. Multi-scale analysis of the impacts of meteorology and emissions on PM2.5 and O3 trends at various regions in China from 2013 to 2020 2. Key weather elements and emissions. Sci. Total Environ. 2022, 824, 153847. [Google Scholar] [CrossRef]
- Mahesh, T.R.; Balajee, A.; Dorai, D.R.; Sehgal, L.; Khan, S.B.; Kumar, V.V.; Almusharraf, A. RSPDT: Randomized Search Probabilistic Decision Tree Classifier for Pollution Level Prediction in Smart Cities. Hum.-Centric Comput. Inf. Sci. 2025, 15, 35–50. [Google Scholar]
- Singh, S.; Suthar, G. Machine learning and deep learning approaches for PM2.5 prediction: A study on urban air quality in Jaipur, India. Earth Sci. Inform. 2025, 18, 97. [Google Scholar]
- Liu, C.C.; Lin, T.C.; Yuan, K.Y.; Chiueh, P.T. Spatio-temporal prediction and factor identification of urban air quality using support vector machine. Urban Clim. 2022, 41, 101055. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Jelokhani-Niaraki, M.; Choi, S.M. Exploring multi-pollution variability in the urban environment: Geospatial AI-driven modeling of air and noise. Int. J. Digit. Earth 2024, 17, 2378819. [Google Scholar]
- Emeç, M.; Yurtsever, M. A novel ensemble machine learning method for accurate air quality prediction. Int. J. Environ. Sci. Technol. 2025, 22, 459–476. [Google Scholar]
- Pan, K.; Lu, J.; Li, J.; Xu, Z. A Hybrid Autoformer Network for Air Pollution Forecasting Based on External Factor Optimization. Atmosphere 2023, 14, 869. [Google Scholar] [CrossRef]
- Kow, P.Y.; Chang, L.C.; Lin, C.Y.; Chou, C.C.K.; Chang, F.J. Deep neural networks for spatiotemporal PM2.5 forecasts based on atmospheric chemical transport model output and monitoring data. Environ. Pollut. 2022, 306, 119348. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.F.; Alam, M.S.B.; Hassan, M.; Rozbu, M.R.; Ishtiak, T.; Rafa, N.; Mofijur, M.; Ali, A.B.M.S.; Gandomi, A.H. Deep learning modelling techniques: Current progress, applications, advantages, and challenges. Artif. Intell. Rev. 2023, 56, 13521–13617. [Google Scholar] [CrossRef]
- Bekkar, A.; Hssina, B.; Douzi, S.; Douzi, K. Air-pollution prediction in smart city, deep learning approach. J. Big Data 2021, 8, 161. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Lu, Y.; Su, M. Hga-lstm: LSTM architecture and hyperparameter search by hybrid GA for air pollution prediction. Genet. Program. Evolvable Mach. 2024, 25, 20. [Google Scholar] [CrossRef]
- Qing, L. PM2.5 concentration prediction using GRA-GRU network in air monitoring. Sustainability 2023, 15, 1973. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, Y.; Yong, R.; Zou, G.; Yang, R.; Pan, J.; Li, M. A spatial correlation prediction model of urban PM2.5 concentration based on deconvolution and LSTM. Neurocomputing 2023, 544, 126280. [Google Scholar] [CrossRef]
- Mao, W.; Jiao, L.; Wang, W.; Wang, J.; Tong, X.; Zhao, S. A hybrid integrated deep learning model for predicting various air pollutants. GISci. Remote Sens. 2021, 58, 1395–1412. [Google Scholar]
- Ahmed, A.A.M.; Jui, S.J.J.; Sharma, E.; Ahmed, M.H.; Raj, N.; Bose, A. An advanced deep learning predictive model for air quality index forecasting with remote satellite-derived hydro-climatological variables. Sci. Total Environ. 2024, 906, 167234. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.L.; He, H.D.; Song, R.F.; Zhu, X.H.; Peng, Z.R.; Fu, Q.Y.; Pan, J. A hybrid deep learning model for regional O3 and NO2 concentrations prediction based on spatiotemporal dependencies in air quality monitoring network. Environ. Pollut. 2023, 320, 121075. [Google Scholar] [CrossRef]
- Zhang, B.; Zou, G.; Qin, D.; Ni, Q.; Mao, H.; Li, M. RCL-Learning: ResNet and convolutional long short-term memory-based spatiotemporal air pollutant concentration prediction model. Expert Syst. Appl. 2022, 207, 118017. [Google Scholar] [CrossRef]
- Jiang, Y.; Gao, T.; Dai, Y.; Si, R.; Hao, J.; Zhang, J.; Gao, D.W. Very short-term residential load forecasting based on deep-autoformer. Appl. Energy 2022, 328, 120120. [Google Scholar] [CrossRef]
- Zou, Y.; Chen, Y.; Xu, Y.; Zhang, H.; Zhang, S. Short-term freeway traffic speed multistep prediction using an iTransformer model. Phys. A 2024, 655, 130185. [Google Scholar] [CrossRef]
- Liu, X.; Tao, Y.; Cai, Z.; Bao, P.; Ma, H.; Li, K.; Li, M.; Zhu, Y.; Lu, Z.J.; Wren, J. Pathformer: A biological pathway informed transformer for disease diagnosis and prognosis using multi-omics data. Bioinformatics 2024, 40, btae316. [Google Scholar] [CrossRef]
- Wang, Y.Z.; He, H.D.; Huang, H.C.; Yang, J.M.; Peng, Z.R. High-resolution spatiotemporal prediction of PM2.5 concentration based on mobile monitoring and deep learning. Environ. Pollut. 2025, 364, 125342. [Google Scholar] [CrossRef]
- Mu, L.; Bi, S.; Ding, X.; Xu, Y. Transformer-based ozone multivariate prediction considering interpretable and priori knowledge: A case study of Beijing, China. J. Environ. Manag. 2024, 366, 121883. [Google Scholar] [CrossRef] [PubMed]
- Gu, K.; Liu, Y.C.; Liu, H.Y.; Liu, B.; Qiao, J.F.; Lin, W.S.; Zhang, W.J. Air Pollution Monitoring by Integrating Local and Global Information in Self-Adaptive Multiscale Transform Domain. IEEE Trans. Multimed. 2025, 27, 3716–3728. [Google Scholar] [CrossRef]
- Yan, Y.; Li, Y.; Sun, M.; Wu, Z. Primary pollutants and air quality analysis for urban air in China: Evidence from Shanghai. Sustainability 2019, 11, 2319. [Google Scholar] [CrossRef]
- Guo, F.F.; Xie, S.D. Formation Mechanisms of Secondary Sulfate and Nitrate in PM2.5. Prog. Chem. 2023, 35, 1313–1326. [Google Scholar]
- Chang-Hoi, H.; Park, I.; Oh, H.R.; Gim, H.J.; Hur, S.K.; Kim, J.; Choi, D.R. Development of a PM2.5 prediction model using a recurrent neural network algorithm for the Seoul metropolitan area, Republic of Korea. Atmos. Environ. 2021, 245, 118021. [Google Scholar] [CrossRef]
- Zhu, Y.Y.; Gao, Y.X.; Liu, B.; Wang, X.Y.; Zhu, L.L.; Xu, R.; Wang, W.; Ding, J.N.; Li, J.J.; Duan, X. Concentration characteristics and assessment of model-predicted results of PM2.5 in the Beijing-Tianjin-Hebei region in autumn and winter. Huan Jing Ke Xue 2019, 40, 5191–5201. [Google Scholar]
- Li, D.; Wang, J.; Tian, D.; Chen, C.; Xiao, X.; Wang, L.; Wen, Z.; Yang, M.; Zou, G. Residual neural network with spatiotemporal attention integrated with temporal self-attention based on long short-term memory network for air pollutant concentration prediction. Atmos. Environ. 2024, 329, 120531. [Google Scholar] [CrossRef]
- Yan, R.; Liao, J.; Yang, J.; Sun, W.; Nong, M.; Li, F. Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering. Expert Syst. Appl. 2021, 169, 114513. [Google Scholar] [CrossRef]
- Li, J.; Wen, M.; Zhou, Z.; Wen, B.; Yu, Z.; Liang, H.; Zhang, X.; Qin, Y.; Xu, C.; Huang, H. Multi-objective optimization method for power supply and demand balance in new power systems. Int. J. Electr. Power Energy Syst. 2024, 161, 110204. [Google Scholar] [CrossRef]
- Yuan, X.; Shen, X.; Mehta, S.; Li, T.; Ge, S.; Zha, Z. Structure injected weight normalization for training deep networks. Multimed. Syst. 2022, 28, 433–444. [Google Scholar] [CrossRef]
- Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.; Zhang, W. Informer: Beyond efficient transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif. Intell. 2021, 35, 11106–11115. [Google Scholar] [CrossRef]
- Sayeed, A.; Choi, Y.; Eslami, E.; Lops, Y.; Roy, A.; Jung, J. Using a deep convolutional neural network to predict 2017 ozone concentrations, 24 hours in advance. Neural Netw. 2020, 121, 396–408. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Hassan, S.G.; Xu, L. Pollution index of waterfowl farm assessment and prediction based on temporal convoluted network. PLoS ONE 2021, 16, e0254179. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, S.; Xia, B. Deep learning coupled model based on TCN-LSTM for particulate matter concentration prediction. Atmos. Pollut. Res. 2023, 14, 101703. [Google Scholar] [CrossRef]
- Yu, M.; Masrur, A.; Blaszczak-Boxe, C. Predicting hourly PM2.5 concentrations in wildfire-prone areas using a SpatioTemporal Transformer model. Sci. Total Environ. 2023, 860, 160446. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Liu, J.; Zhao, Y. Prediction of multi-site PM2.5 concentrations in Beijing using CNN-Bi LSTM with CBAM. Atmosphere 2022, 13, 1719. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, L.; Wang, J.; Niu, X. Hybrid system based on a multi-objective optimization and kernel approximation for multi-scale wind speed forecasting. Appl. Energy 2020, 277, 115561. [Google Scholar] [CrossRef]
- Wen, C.; Liu, S.; Yao, X.; Peng, L.; Li, X.; Hu, Y.; Chi, T. A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 2019, 654, 1091–1099. [Google Scholar] [CrossRef]
- Liang, S.; Hua, Z.; Li, J. Enhanced feature interaction network for remote sensing change detection. IEEE Geosci. Remote Sens. Lett. 2023, 20, 4900–4915. [Google Scholar] [CrossRef]
- Sun, W.; Li, Z. Hourly PM2.5 concentration forecasting based on mode decomposition-recombination technique and ensemble learning approach in severe haze episodes of China. J. Clean. Prod. 2020, 263, 121442. [Google Scholar] [CrossRef]
- Nori-Sarma, A.; Thimmulappa, R.K.; Venkataramana, G.V.; Fauzie, A.K.; Dey, S.K.; Venkareddy, L.K.; Berman, J.D.; Lane, K.J.; Fong, K.C.; Warren, J.L.; et al. Low-cost NO2 monitoring and predictions of urban exposure using universal kriging and land-use regression modelling in Mysore, India. Atmos. Environ. 2020, 226, 117395. [Google Scholar] [CrossRef]
- Zhang, K.; Yang, X.; Cao, H.; Thé, J.; Tan, Z.; Yu, H. Multi-step forecast of PM2.5 and PM10 concentrations using convolutional neural network integrated with spatial-temporal attention and residual learning. Environ. Int. 2023, 171, 107691. [Google Scholar] [CrossRef]
Parameter | Value |
---|---|
Sampling factor | 5 |
BiTCN layers | 3 |
Dimension of hidden layers in BiTCN | 64 |
Encoder layers | 3 |
Decoder layers | 2 |
Dimension of hidden layers in ISInformer | 256 |
Dimension of feedforward neural network | 256 |
Dropout | 0.1 |
Batch size | 256 |
Epochs | 100 |
Optimizer | Adam |
Learning rate | 0.001 |
Loss function | 0.5 × MSE + 0.5 × MAE |
Model | RMSE | MAE | IA | R2 |
---|---|---|---|---|
CNN | 6.116 | 4.271 | 0.914 | 0.749 |
LSTM | 5.532 | 3.977 | 0.940 | 0.807 |
TCN | 5.477 | 4.017 | 0.946 | 0.811 |
TCN-LSTM | 4.596 | 3.346 | 0.961 | 0.867 |
Transformer | 4.313 | 3.189 | 0.967 | 0.883 |
CBAM-CNN-BiLSTM | 4.220 | 2.970 | 0.969 | 0.888 |
ST-Transformer | 3.000 | 2.259 | 0.986 | 0.943 |
BiTCN-ISInformer | 2.010 | 1.436 | 0.993 | 0.973 |
Prediction Horizon | TCN-LSTM | CBAM-CNN-BiLSTM | ST-Transformer | BiTCN-ISInformer | ||||
---|---|---|---|---|---|---|---|---|
RMSE | MAE | RMSE | MAE | RMSE | MAE | RMSE | MAE | |
Historical window = 4 h Prediction step = 2 h | 5.411 | 3.988 | 4.989 | 3.530 | 4.276 | 3.302 | 2.974 | 2.041 |
Historical window = 6 h Prediction step = 3 h | 6.153 | 4.468 | 5.733 | 4.054 | 4.238 | 2.876 | 4.025 | 3.004 |
Historical window = 8 h Prediction step = 4 h | 6.132 | 4.309 | 6.583 | 4.635 | 5.218 | 3.669 | 4.809 | 3.245 |
Historical window = 10 h Prediction step = 6 h | 6.892 | 4.876 | 7.480 | 5.153 | 6.208 | 4.231 | 6.093 | 4.139 |
Historical window = 16 h Prediction step = 12 h | 8.724 | 5.860 | 9.039 | 6.254 | 8.908 | 6.165 | 8.371 | 6.116 |
Historical window = 28 h Prediction step = 24 h | 10.261 | 7.147 | 10.213 | 7.199 | 10.119 | 6.996 | 10.029 | 6.865 |
Model | Historical Window = 6 h, Prediction Step = 3 h | Historical Window = 16 h, Prediction Step = 12 h | ||
---|---|---|---|---|
RMSE | MAE | RMSE | MAE | |
BiTCN | 4.501 | 3.140 | 9.753 | 6.576 |
ISInformer | 4.384 | 3.082 | 8.707 | 6.521 |
BiTCN-Informer | 4.451 | 3.091 | 8.947 | 6.365 |
BiTCN-ISInformer | 4.025 | 3.004 | 8.371 | 6.116 |
Model | Average Computation Time |
---|---|
TCN-LSTM | 196.705 |
CBAM-CNN-BiLSTM | 192.650 |
ST-Transformer | 187.245 |
BiTCN-Informer | 190.220 |
BiTCN-ISInformer | 188.060 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, X.; Liu, G.; Wang, J.; Lai, Y. BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer. Sustainability 2025, 17, 8631. https://doi.org/10.3390/su17198631
Mao X, Liu G, Wang J, Lai Y. BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer. Sustainability. 2025; 17(19):8631. https://doi.org/10.3390/su17198631
Chicago/Turabian StyleMao, Xinyi, Gen Liu, Jian Wang, and Yongbo Lai. 2025. "BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer" Sustainability 17, no. 19: 8631. https://doi.org/10.3390/su17198631
APA StyleMao, X., Liu, G., Wang, J., & Lai, Y. (2025). BiTCN-ISInformer: A Parallel Model for Regional Air Pollutant Concentration Prediction Using Bidirectional Temporal Convolutional Network and Enhanced Informer. Sustainability, 17(19), 8631. https://doi.org/10.3390/su17198631