Unveiling the Dynamic Interplay of Industrial Carbon Emissions: Insights from Quantile Time–Frequency Analysis
Abstract
1. Introduction
2. Literature Review
3. Statistical Analysis and Methodology
3.1. Data
3.2. Methodology
4. Empirical Results and Discussion
4.1. Time-Domain and -Frequency Average Connectedness
4.1.1. Time-Domain Average Spillover Effects
4.1.2. Time–Frequency Average Spillover Effects
4.2. Dynamic Quantile Connectedness
4.3. Net Quantile Connectedness
4.4. Dynamic Quantile Association
5. Conclusions and Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puntoon, W.; Tarkhamtham, P.; Tansuchat, R. The impacts of economic growth, industrial production, and energy consumption on CO2 emissions: A case study of leading CO2 emitting countries. Energy Rep. 2022, 8, 414–419. [Google Scholar] [CrossRef]
- Abid, M. Does economic, financial and institutional developments matter for environmental quality? A comparative analysis of EU and MEA countries. J. Environ. Manag. 2017, 188, 183–194. [Google Scholar] [CrossRef]
- Al Mamun, M.; Boubaker, S.; Nguyen, D.K. Green finance and decarbonization: Evidence from around the world. Financ. Res. Lett. 2022, 46, 102807. [Google Scholar] [CrossRef]
- Swisher, J.; Masters, G. A mechanism to reconcile equity and efficiency in global climate protection: International carbon emission offsets. Ambio 1992, 21, 154–159. [Google Scholar]
- Yang, Z.; Dong, W.; Xiu, J.; Dai, R.; Chou, J. Structural path analysis of fossil fuel based CO2 emissions: A case study for China. PLoS ONE 2015, 10, e0135727. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yang, X.; Ran, Q.; Wu, H.; Irfan, M.; Ahmad, M. Energy structure, digital economy, and carbon emissions: Evidence from China. Environ. Sci. Pollut. Res. 2021, 28, 64606–64629. [Google Scholar] [CrossRef]
- Wang, S.; Wang, X.; Tang, Y. Drivers of carbon emission transfer in China—An analysis of international trade from 2004 to 2011. Sci. Total Environ. 2020, 709, 135924. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Y. Imbalance of carbon emissions embodied in the US-Japan trade: Temporal change and driving factors. J. Clean. Prod. 2019, 237, 117780. [Google Scholar] [CrossRef]
- Jiang, X.; Chen, Q.; Guan, D.; Zhu, K.; Yang, C. Revisiting the global net carbon dioxide emission transfers by international trade: The impact of trade heterogeneity of China. J. Ind. Ecol. 2016, 20, 506–514. [Google Scholar] [CrossRef]
- Adekoya, O.B.; Asl, M.G.; Oliyide, J.A.; Izadi, P. Multifractality and cross-correlation between the crude oil and the European and non-European stock markets during the Russia-Ukraine war. Resour. Policy 2023, 80, 103134. [Google Scholar] [CrossRef]
- Adeleke, M.A.; Awodumi, O.B.; Adewuyi, A.O. Return and volatility connectedness among commodity markets during major crises periods: Static and dynamic analyses with asymmetries. Resour. Policy 2022, 79, 102963. [Google Scholar] [CrossRef]
- Zhang, Z.; Guan, D.; Wang, R.; Meng, J.; Zheng, H.; Zhu, K.; Du, H. Embodied carbon emissions in the supply chains of multinational enterprises. Nat. Clim. Change 2020, 10, 1096–1101. [Google Scholar] [CrossRef]
- Mehmood, S.; Zaman, K.; Khan, S.; Ali, Z. The role of green industrial transformation in mitigating carbon emissions: Exploring the channels of technological innovation and environmental regulation. Energy Built Environ. 2024, 5, 464–479. [Google Scholar] [CrossRef]
- Lei, J. Efficient strategies on supply chain network optimization for industrial carbon emission reduction. arXiv 2024, arXiv:2404.16863. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, B. Shared responsibility of carbon emission for international trade based on carbon emission embodied between developing and developed countries. Environ. Sci. Pollut. Res. 2023, 30, 19367–19379. [Google Scholar] [CrossRef]
- Pavel, T.; Polina, S. Heterogeneity of the impact of energy production and consumption on national greenhouse gas emissions. J. Clean. Prod. 2024, 434, 139638. [Google Scholar] [CrossRef]
- Kilian, L.; Zhou, X. Oil prices, exchange rates and interest rates. J. Int. Money Financ. 2022, 126, 102679. [Google Scholar] [CrossRef]
- Diebold, F.X.; Yilmaz, K. Better to give than to receive: Predictive directional measurement of volatility spillovers. Int. J. Forecast. 2012, 28, 57–66. [Google Scholar] [CrossRef]
- Hammarén, V.; Holmlund, V. Cross-Sector Risk Spillover Analysis: A Study Using DY & BK Spillover Index. 2024. Available online: https://gupea.ub.gu.se/handle/2077/82328 (accessed on 6 September 2025).
- Baruník, J.; Křehlík, T. Measuring the frequency dynamics of financial connectedness and systemic risk. J. Financ. Econom. 2018, 16, 271–296. [Google Scholar] [CrossRef]
- Meng, B.; Peters, G.P.; Wang, Z.; Li, M. Tracing CO2 emissions in global value chains. Energy Econ. 2018, 73, 24–42. [Google Scholar] [CrossRef]
- Wang, Q.; Zhou, Y. Uncovering embodied CO2 flows via North-North trade–A case study of US-Germany trade. Sci. Total Environ. 2019, 691, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yang, X. Imbalance of carbon embodied in South-South trade: Evidence from China-India trade. Sci. Total Environ. 2020, 707, 134473. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.-J.; Tromp, N. Carbon emissions embodied in China-Brazil trade: Trends and driving factors. J. Clean. Prod. 2021, 293, 126206. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.; Zhang, Z.; Wang, S.; Li, H.; Ahmad, A. CO2 emissions per value added in exports of China: A comparison with USA based on generalized logarithmic mean Divisia index decomposition. J. Clean. Prod. 2017, 144, 287–298. [Google Scholar] [CrossRef]
- Fei, R.; Pan, A.; Wu, X.; Xie, Q. How GVC division affects embodied carbon emissions in China’s exports? Environ. Sci. Pollut. Res. 2020, 27, 36605–36620. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, X.; Li, Y.; Wang, X.; Xu, D.; Zhang, Y. Which industrial path contributed to CO2 transfer and emissions slowing-down of China and the United States most in international trade? J. Clean. Prod. 2023, 413, 137429. [Google Scholar] [CrossRef]
- Gao, P.; Yue, S.; Chen, H. Carbon emission efficiency of China’s industry sectors: From the perspective of embodied carbon emissions. J. Clean. Prod. 2021, 283, 124655. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, R.; Zheng, X.; Zhao, Z. Carbon endowment and trade-embodied carbon emissions in global value chains: Evidence from China. Appl. Energy 2020, 277, 115592. [Google Scholar] [CrossRef]
- Li, Y.-Y.; Li, H. China’s inter-regional embodied carbon emissions: An industrial transfer perspective. Environ. Sci. Pollut. Res. 2022, 29, 4062–4075. [Google Scholar] [CrossRef] [PubMed]
- Jia, N.; Gao, X.; Liu, D.; Shi, J.; Jiang, M. Identification and evolution of critical betweenness sectors and transactions from the view of CO2 reduction in supply chain network. J. Clean. Prod. 2019, 232, 163–173. [Google Scholar] [CrossRef]
- Xing, Z.; Jiao, Z.; Wang, H. Carbon footprint and embodied carbon transfer at city level: A nested MRIO analysis of Central Plain urban agglomeration in China. Sustain. Cities Soc. 2022, 83, 103977. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Cai, H.; Yang, Y.; Wang, B. Regional difference and drivers in China’s carbon emissions embodied in internal trade. Energy Econ. 2019, 83, 217–228. [Google Scholar] [CrossRef]
- Yuan, X.; Sheng, X.; Chen, L.; Tang, Y.; Li, Y.; Jia, Y.; Qu, D.; Wang, Q.; Ma, Q.; Zuo, J. Carbon footprint and embodied carbon transfer at the provincial level of the Yellow River Basin. Sci. Total Environ. 2022, 803, 149993. [Google Scholar] [CrossRef]
- Abuzayed, B.; Al-Fayoumi, N. Risk spillover from crude oil prices to GCC stock market returns: New evidence during the COVID-19 outbreak. N. Am. J. Econ. Financ. 2021, 58, 101476. [Google Scholar] [CrossRef]
- Ren, Y.; Zhao, W.; You, W.; Zhu, H. Multiscale features of extreme risk spillover networks among global stock markets. N. Am. J. Econ. Financ. 2022, 62, 101754. [Google Scholar] [CrossRef]
- Chatziantoniou, I.; Abakah, E.J.A.; Gabauer, D.; Tiwari, A.K. Quantile time–frequency price connectedness between green bond, green equity, sustainable investments and clean energy markets. J. Clean. Prod. 2022, 361, 132088. [Google Scholar] [CrossRef]
- Ando, T.; Greenwood-Nimmo, M.; Shin, Y. Quantile connectedness: Modeling tail behavior in the topology of financial networks. Manag. Sci. 2022, 68, 2401–2431. [Google Scholar] [CrossRef]
- Koop, G.; Pesaran, M.H.; Potter, S.M. Impulse response analysis in nonlinear multivariate models. J. Econom. 1996, 74, 119–147. [Google Scholar] [CrossRef]
- Pesaran, H.H.; Shin, Y. Generalized impulse response analysis in linear multivariate models. Econ. Lett. 1998, 58, 17–29. [Google Scholar] [CrossRef]
- Jiang, W.; Chen, Y. The time-frequency connectedness among carbon, traditional/new energy and material markets of China in pre-and post-COVID-19 outbreak periods. Energy 2022, 246, 123320. [Google Scholar] [CrossRef]
- Rehman, M.A.; Pata, U.K. Quantile spillover connectedness among CO2 emission sources: An empirical analysis in European Union. Gondwana Res. 2025; in press. [Google Scholar]
- Gao, Q.; Zeng, H.; Sun, G.; Li, J. Extreme risk spillover from uncertainty to carbon markets in China and the EU—A time varying copula approach. J. Environ. Manag. 2023, 326, 116634. [Google Scholar] [CrossRef] [PubMed]
- Bilal, M.; Aamir, M.; Abdullah, S.; Khan, F. Impacts of crude oil market on global economy: Evidence from the Ukraine-Russia conflict via fuzzy models. Heliyon 2024, 10, e23874. [Google Scholar] [CrossRef] [PubMed]
Min | Max | Median | Var | Skewness | Kurtosis | J-B | ADF | |
---|---|---|---|---|---|---|---|---|
Brazil | −0.328 | 0.239 | 0.000 | 0.002 | −0.398 | 8.002 | 4685.4 ** | −18.38 *** |
China | −0.166 | 0.201 | 0.000 | 0.000 | 1.123 | 44.397 | 143,050 ** | −11.90 *** |
EU27 | −0.300 | 0.251 | −0.005 | 0.006 | 0.435 | 0.577 | 79.569 ** | −18.44 *** |
India | −0.321 | 0.216 | 0.001 | 0.000 | −2.043 | 57.967 | 244,436 ** | −12.76 *** |
Japan | −0.223 | 0.186 | −0.002 | 0.002 | 0.147 | 0.953 | 72.582 ** | −18.73 *** |
Russian | −0.231 | 0.103 | −0.001 | 0.000 | −2.680 | 39.846 | 117,014 ** | −16.44 *** |
UK | −0.540 | 0.491 | −0.003 | 0.200 | −0.027 | 0.789 | 45.678 ** | −18.98 *** |
US | −0.109 | 0.106 | −0.001 | 0.000 | 0.285 | 1.818 | 263.749 ** | −18.95 *** |
Variable-Affected | |||||
affecting variables |
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
---|---|---|---|---|---|---|---|---|---|
Brazil | 74.64 | 0.34 | 9.24 | 0.68 | 6.33 | 3.82 | 2.70 | 2.24 | 25.36 |
China | 0.40 | 87.97 | 1.90 | 0.54 | 4.11 | 2.42 | 1.15 | 1.52 | 12.03 |
EU27 | 4.84 | 0.68 | 41.18 | 3.90 | 16.96 | 9.21 | 18.71 | 4.53 | 58.82 |
India | 0.58 | 0.47 | 7.68 | 74.63 | 6.20 | 5.96 | 3.45 | 1.03 | 25.37 |
Japan | 3.90 | 2.03 | 20.15 | 2.99 | 47.37 | 12.15 | 7.25 | 4.16 | 52.63 |
Russia | 2.97 | 1.41 | 12.91 | 5.39 | 14.40 | 55.84 | 5.15 | 1.91 | 44.16 |
UK | 1.63 | 0.25 | 22.41 | 1.90 | 7.95 | 5.15 | 57.85 | 2.85 | 42.15 |
US | 1.67 | 1.26 | 9.82 | 1.05 | 8.56 | 2.75 | 4.64 | 70.25 | 29.75 |
TO | 15.99 | 6.43 | 84.11 | 16.45 | 64.52 | 41.46 | 43.05 | 18.25 | TCI |
NET | −9.36 | −5.60 | 25.29 | −8.93 | 11.89 | −2.70 | 0.90 | −11.49 | 36.28 |
Spillovers in the 3.14–0.63 band align with a 1–5 day horizon. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 59.34 | 0.26 | 6.79 | 0.68 | 4.75 | 3.13 | 1.75 | 1.47 | 18.82 |
China | 0.31 | 69.48 | 1.25 | 0.48 | 2.96 | 1.70 | 0.73 | 1.30 | 8.73 |
EU27 | 3.88 | 0.61 | 32.41 | 3.70 | 13.56 | 7.89 | 13.28 | 3.80 | 46.72 |
India | 0.38 | 0.31 | 5.10 | 60.55 | 4.10 | 4.49 | 2.12 | 0.79 | 17.29 |
Japan | 3.14 | 1.66 | 15.43 | 2.82 | 38.20 | 9.90 | 5.12 | 3.52 | 41.60 |
Russia | 2.25 | 1.25 | 9.97 | 5.19 | 11.68 | 45.39 | 3.83 | 1.53 | 35.70 |
UK | 1.45 | 0.24 | 18.55 | 1.75 | 6.53 | 4.40 | 47.53 | 2.51 | 35.44 |
US | 1.53 | 1.13 | 6.52 | 0.82 | 5.66 | 1.97 | 2.87 | 55.81 | 20.49 |
TO | 12.93 | 5.46 | 63.62 | 15.44 | 49.24 | 33.49 | 29.71 | 14.91 | TCI |
NET | −5.89 | −3.27 | 16.90 | −1.85 | 7.64 | −2.21 | −5.73 | −5.58 | 28.10 |
Spillovers in the 0.63–0.10 band align with a 5–30 days horizon. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 12.88 | 0.06 | 2.06 | 0.01 | 1.33 | 0.58 | 0.80 | 0.65 | 5.49 |
China | 0.08 | 15.55 | 0.54 | 0.04 | 0.97 | 0.60 | 0.35 | 0.19 | 2.77 |
EU27 | 0.81 | 0.06 | 7.40 | 0.17 | 2.87 | 1.12 | 4.57 | 0.62 | 10.22 |
India | 0.17 | 0.13 | 2.16 | 11.87 | 1.77 | 1.24 | 1.11 | 0.20 | 6.79 |
Japan | 0.64 | 0.31 | 3.98 | 0.14 | 7.74 | 1.90 | 1.79 | 0.54 | 9.30 |
Russia | 0.61 | 0.14 | 2.48 | 0.18 | 2.31 | 8.82 | 1.11 | 0.32 | 7.15 |
UK | 0.16 | 0.01 | 3.25 | 0.13 | 1.20 | 0.64 | 8.71 | 0.29 | 5.68 |
US | 0.13 | 0.11 | 2.77 | 0.20 | 2.44 | 0.65 | 1.48 | 12.17 | 7.77 |
TO | 2.58 | 0.82 | 17.25 | 0.87 | 12.87 | 6.73 | 11.21 | 2.82 | TCI |
NET | −2.90 | −1.95 | 7.03 | −5.91 | 3.57 | −0.41 | 5.53 | −4.95 | 6.90 |
Spillovers in the 0.10–0.00 band align with horizons from 30 days to infinity. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 2.42 | 0.01 | 0.39 | 0.00 | 0.25 | 0.11 | 0.16 | 0.13 | 1.04 |
China | 0.01 | 2.94 | 0.10 | 0.01 | 0.18 | 0.11 | 0.07 | 0.03 | 0.53 |
EU27 | 0.15 | 0.01 | 1.37 | 0.03 | 0.53 | 0.20 | 0.86 | 0.11 | 1.89 |
India | 0.03 | 0.03 | 0.41 | 2.21 | 0.34 | 0.23 | 0.22 | 0.04 | 1.29 |
Japan | 0.12 | 0.06 | 0.74 | 0.02 | 1.43 | 0.35 | 0.34 | 0.10 | 1.73 |
Russia | 0.11 | 0.02 | 0.46 | 0.02 | 0.42 | 1.64 | 0.21 | 0.06 | 1.31 |
UK | 0.03 | 0.00 | 0.60 | 0.02 | 0.22 | 0.12 | 1.62 | 0.05 | 1.04 |
US | 0.02 | 0.02 | 0.53 | 0.04 | 0.46 | 0.12 | 0.29 | 2.27 | 1.48 |
TO | 0.48 | 0.15 | 3.24 | 0.13 | 2.41 | 1.24 | 2.14 | 0.52 | TCI |
NET | −0.57 | −0.37 | 1.36 | −1.16 | 0.68 | −0.07 | 1.10 | −0.96 | 1.29 |
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
---|---|---|---|---|---|---|---|---|---|
Brazil | 69.11 | 2.22 | 7.78 | 1.87 | 6.74 | 5.57 | 3.12 | 3.60 | 30.89 |
China | 2.27 | 77.22 | 2.75 | 2.47 | 4.74 | 5.00 | 1.15 | 4.41 | 22.78 |
EU27 | 5.27 | 1.24 | 40.14 | 4.67 | 15.55 | 9.76 | 16.85 | 6.53 | 59.86 |
India | 2.39 | 2.22 | 8.74 | 65.17 | 8.29 | 6.67 | 4.11 | 2.43 | 34.83 |
Japan | 4.90 | 2.53 | 18.01 | 4.34 | 44.80 | 11.72 | 6.89 | 6.82 | 55.20 |
Russia | 4.11 | 3.28 | 12.75 | 5.37 | 13.48 | 52.21 | 5.50 | 3.30 | 47.79 |
UK | 2.58 | 0.92 | 20.10 | 2.45 | 7.68 | 5.53 | 56.61 | 4.12 | 43.39 |
US | 3.36 | 3.31 | 12.27 | 2.47 | 11.05 | 5.67 | 5.61 | 56.25 | 43.75 |
TO | 24.88 | 15.71 | 82.39 | 23.63 | 67.52 | 49.90 | 43.24 | 31.20 | TCI |
NET | −6.01 | −7.07 | 22.53 | −11.20 | 12.33 | 2.12 | −0.14 | −12.55 | 42.31 |
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
---|---|---|---|---|---|---|---|---|---|
Brazil | 20.04 | 9.42 | 12.14 | 11.47 | 13.02 | 10.57 | 11.47 | 11.87 | 79.96 |
China | 11.75 | 21.79 | 10.83 | 10.42 | 12.57 | 10.40 | 10.95 | 11.31 | 78.21 |
EU27 | 11.27 | 7.97 | 17.40 | 11.98 | 14.09 | 11.22 | 14.07 | 11.99 | 82.60 |
India | 11.26 | 8.25 | 12.59 | 20.30 | 13.12 | 10.98 | 11.56 | 11.94 | 79.70 |
Japan | 11.44 | 8.78 | 13.94 | 11.59 | 18.07 | 12.16 | 12.05 | 11.96 | 81.93 |
Russia | 10.71 | 8.66 | 12.74 | 11.66 | 13.72 | 20.74 | 11.24 | 10.53 | 79.26 |
UK | 11.44 | 8.54 | 14.05 | 12.10 | 12.93 | 10.63 | 18.50 | 11.81 | 81.50 |
US | 11.70 | 9.01 | 12.86 | 11.83 | 13.38 | 10.64 | 11.58 | 18.99 | 81.01 |
TO | 79.57 | 60.63 | 89.16 | 81.05 | 92.83 | 76.60 | 82.91 | 81.41 | TCI |
NET | −0.39 | −17.59 | 6.56 | 1.34 | 10.90 | −2.66 | 1.42 | 0.41 | 80.52 |
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
---|---|---|---|---|---|---|---|---|---|
Brazil | 19.80 | 7.80 | 12.95 | 11.11 | 12.83 | 11.57 | 11.92 | 12.02 | 80.20 |
China | 9.80 | 25.44 | 11.07 | 8.95 | 11.93 | 10.89 | 10.45 | 11.46 | 74.56 |
EU27 | 11.32 | 7.39 | 17.83 | 11.89 | 13.96 | 12.27 | 13.46 | 11.89 | 82.17 |
India | 10.84 | 6.83 | 13.22 | 20.93 | 12.60 | 12.13 | 11.96 | 11.50 | 79.07 |
Japan | 11.34 | 7.96 | 14.04 | 11.79 | 17.80 | 12.95 | 12.15 | 11.98 | 82.20 |
Russia | 11.10 | 8.25 | 13.22 | 11.82 | 13.76 | 19.34 | 11.58 | 10.93 | 80.66 |
UK | 10.72 | 7.58 | 15.01 | 11.24 | 12.89 | 11.40 | 19.43 | 11.73 | 80.57 |
US | 11.46 | 8.49 | 13.46 | 11.25 | 13.47 | 11.73 | 11.85 | 18.30 | 81.70 |
TO | 76.59 | 54.29 | 92.96 | 78.05 | 91.45 | 82.93 | 83.36 | 81.51 | TCI |
NET | −3.61 | −20.27 | 10.78 | −1.03 | 9.25 | 2.28 | 2.80 | −0.19 | 80.14 |
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 20.04 | 9.42 | 12.14 | 11.47 | 13.02 | 10.57 | 11.47 | 11.87 | 79,96 |
China | 11.75 | 21.78 | 10.83 | 10.42 | 12.57 | 10.40 | 10.95 | 11.31 | 78.22 |
EU27 | 11.27 | 7.97 | 17.40 | 11.98 | 14.09 | 11.22 | 14.07 | 11.99 | 82.60 |
India | 11.26 | 8.25 | 12.59 | 20.30 | 13.12 | 10.98 | 11.56 | 11.94 | 79.70 |
Japan | 11.44 | 8.78 | 13.94 | 11.59 | 18.07 | 12.16 | 12.05 | 11.96 | 81.93 |
Russia | 10.71 | 8.66 | 12.74 | 11.66 | 13.72 | 20.74 | 11.23 | 10.53 | 79.26 |
UK | 11.44 | 8.54 | 14.05 | 12.10 | 12.93 | 10.63 | 18.50 | 11.81 | 81.50 |
US | 11.70 | 9.01 | 12.86 | 11.83 | 13.38 | 10.65 | 11.58 | 18.99 | 81.01 |
TO | 79.57 | 60.63 | 89.16 | 81.05 | 92.83 | 76.60 | 82.92 | 81.41 | TCI |
NET | −0.39 | −17.59 | 6.56 | 1.35 | 10.90 | −2.66 | 1.42 | 0.41 | 80.52 |
1–5. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 14.90 | 6.89 | 8.60 | 8.09 | 9.42 | 7.56 | 8.29 | 8.64 | 57.50 |
China | 7.61 | 15.03 | 6.92 | 6.63 | 8.24 | 6.61 | 7.16 | 7.72 | 50.90 |
EU27 | 7.32 | 5.18 | 11.19 | 7.48 | 9.17 | 7.11 | 8.89 | 7.74 | 52.88 |
India | 6.92 | 5.41 | 7.31 | 13.02 | 8.03 | 6.53 | 7.21 | 7.61 | 49.03 |
Japan | 7.74 | 5.95 | 9.06 | 7.69 | 12.45 | 7.76 | 7.87 | 8.03 | 54.11 |
Russia | 7.25 | 6.02 | 8.45 | 7.80 | 9.29 | 13.95 | 7.57 | 7.17 | 53.55 |
UK | 8.51 | 6.40 | 10.37 | 8.76 | 9.57 | 7.71 | 14.10 | 8.93 | 60.26 |
US | 8.31 | 6.69 | 8.70 | 8.00 | 9.37 | 6.99 | 8.14 | 13.80 | 56.22 |
TO | 53.68 | 42.55 | 59.41 | 54.45 | 63.10 | 50.28 | 55.12 | 55.85 | TCI |
NET | −3.82 | −8.35 | 6.53 | 5.43 | 8.99 | −3.27 | −5.14 | −0.37 | 54.31 |
5–30. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 3.82 | 1.91 | 2.68 | 2.29 | 2.65 | 2.22 | 2.44 | 2.46 | 16.65 |
China | 3.06 | 5.32 | 3.02 | 2.76 | 3.28 | 2.83 | 2.95 | 2.80 | 20.69 |
EU27 | 2.99 | 2.21 | 5.02 | 3.38 | 3.87 | 3.23 | 4.20 | 3.40 | 23.28 |
India | 3.28 | 2.21 | 3.92 | 2.98 | 4.47 | 3.43 | 3.36 | 3.16 | 23.36 |
Japan | 2.85 | 2.21 | 3.92 | 2.83 | 3.13 | 2.80 | 2.75 | 4.20 | 21.90 |
Russia | 2.50 | 1.99 | 3.35 | 2.76 | 3.32 | 5.07 | 2.85 | 2.62 | 19.39 |
UK | 2.16 | 1.68 | 2.94 | 2.43 | 2.59 | 2.26 | 3.60 | 2.31 | 16.38 |
US | 2.54 | 1.81 | 3.29 | 2.83 | 3.13 | 2.80 | 2.75 | 4.20 | 19.15 |
TO | 19.27 | 13.98 | 23.25 | 19.44 | 22.70 | 20.18 | 21.90 | 20.08 | TCI |
NET | 2.63 | −6.70 | −0.04 | −3.92 | 0.79 | 0.79 | 5.53 | 0.93 | 20.10 |
30-inf. | |||||||||
Brazil | China | EU27 | India | Japan | Russia | UK | US | FROM | |
Brazil | 1.32 | 0.62 | 0.87 | 1.08 | 0.95 | 0.78 | 0.75 | 0.77 | 5.82 |
China | 1.08 | 1.43 | 0.89 | 1.03 | 1.05 | 0.96 | 0.84 | 0.78 | 6.63 |
EU27 | 0.96 | 0.58 | 1.20 | 1.13 | 1.05 | 0.88 | 0.99 | 0.85 | 6.43 |
India | 1.16 | 0.66 | 1.23 | 1.83 | 1.23 | 1.06 | 0.98 | 0.99 | 7.31 |
Japan | 0.85 | 0.62 | 0.96 | 0.92 | 1.14 | 0.97 | 0.83 | 0.77 | 5.92 |
Russia | 0.95 | 0.66 | 0.95 | 1.09 | 1.11 | 1.71 | 0.82 | 0.74 | 6.32 |
UK | 0.77 | 0.46 | 0.73 | 0.91 | 0.76 | 0.65 | 0.81 | 0.57 | 4.86 |
US | 0.85 | 0.50 | 0.86 | 1.00 | 0.88 | 0.85 | 0.69 | 0.99 | 5.63 |
TO | 6.62 | 4.09 | 6.50 | 6.16 | 7.03 | 6.14 | 5.89 | 5.49 | TCI |
NET | 0.80 | −2.53 | 0.06 | −0.16 | 1.11 | −0.18 | 1.03 | −0.15 | 6.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, W.; Guo, X.; Li, X.; Wang, X.; Liu, D. Unveiling the Dynamic Interplay of Industrial Carbon Emissions: Insights from Quantile Time–Frequency Analysis. Sustainability 2025, 17, 8626. https://doi.org/10.3390/su17198626
Jiang W, Guo X, Li X, Wang X, Liu D. Unveiling the Dynamic Interplay of Industrial Carbon Emissions: Insights from Quantile Time–Frequency Analysis. Sustainability. 2025; 17(19):8626. https://doi.org/10.3390/su17198626
Chicago/Turabian StyleJiang, Wei, Xiaoliang Guo, Xin Li, Xuantao Wang, and Dianguang Liu. 2025. "Unveiling the Dynamic Interplay of Industrial Carbon Emissions: Insights from Quantile Time–Frequency Analysis" Sustainability 17, no. 19: 8626. https://doi.org/10.3390/su17198626
APA StyleJiang, W., Guo, X., Li, X., Wang, X., & Liu, D. (2025). Unveiling the Dynamic Interplay of Industrial Carbon Emissions: Insights from Quantile Time–Frequency Analysis. Sustainability, 17(19), 8626. https://doi.org/10.3390/su17198626