Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials—Expansive Cement
2.2. Aluminosilicate Precursors
2.3. Mix Design and Methodology
3. Results and Discussions
3.1. Isothermal Calorimetry
3.2. Tensile Flexural and Compressive Strength
3.3. Autogenous Shrinkage
3.4. Drying Shrinkage
3.5. FTIR Analysis
3.6. XRD Analysis
3.7. Potential Applications of the Alkali-Activated Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Provis, J.L.; Bernal, S.A. Geopolymers and Related Alkali-Activated Materials. Annu. Rev. Mater. Res. 2014, 44, 299–327. [Google Scholar] [CrossRef]
- Habert, G.; Ouellet-Plamondon, C. Recent Update on the Environmental Impact of Geopolymers. RILEM Tech. Lett. 2016, 1, 17–23. [Google Scholar] [CrossRef]
- Provis, J.L. Geopolymers and other alkali activated materials: Why, how, and what? Mater. Struct. 2014, 47, 11–25. [Google Scholar] [CrossRef]
- Castel, A.; Foster, S.J. Bond strength between blended slag and Class F fly ash geopolymer concrete with steel reinforcement. Cem. Concr. Res. 2015, 72, 48–53. [Google Scholar] [CrossRef]
- Pasupathy, K.; Berndt, M.; Sanjayan, J.; Rajeev, P.; Cheema, D.S. Durability of low-calcium fly ash based geopolymer concrete culvert in a saline environment. Cem. Concr. Res. 2017, 100, 297–310. [Google Scholar] [CrossRef]
- Ma, H.; Zhu, H.; Chen, H.; Ni, Y.; Xu, X.; Huo, Q. Shrinkage-reducing measures and mechanisms analysis for alkali-activated coal gangue-slag mortar at room temperature. Constr. Build. Mater. 2020, 252, 119001. [Google Scholar] [CrossRef]
- Mastali, A.; Kinnunen, P.; Dalvand, A.; Mohammadi Firouz, R.; Illikainen, M. Drying shrinkage in alkali-activated binders—A critical review. Constr. Build. Mater. 2018, 190, 533–550. [Google Scholar] [CrossRef]
- Ye, H.; Cartwright, C.; Rajabipour, F.; Radlinska, A. Effect of drying rate on shrinkage of alkali-activated slag cements. In Proceedings of the 4th International Conference on the Durability of Concrete Structures, ICDCS 2014, West Lafayette, IN, USA, 24–26 July 2014; pp. 254–261. [Google Scholar]
- Hasnaoui, A.; Ghorbel, E.; Wardeh, G. Effect of Curing Conditions on the Performance of Geopolymer Concrete Based on Granulated Blast Furnace Slag and Metakaolin. J. Mater. Civ. Eng. 2021, 33, 04020501. [Google Scholar] [CrossRef]
- Moraes, M.C.; Tambara Júnior, L.U.D.; Cheriaf, M.; Rocha, J.C.; Luz, C.A. Mechanisms of Chemical and Autogenous Shrinkage in Alkali-Activated Hybrid Systems. J. Mater. Civ. Eng. 2023, 35, 04023157. [Google Scholar] [CrossRef]
- Fang, G.; Bahrami, H.; Zhang, M. Mechanisms of autogenous shrinkage of alkali-activated fly ash-slag pastes cured at ambient temperature within 24 h. Constr. Build. Mater. 2018, 171, 377–387. [Google Scholar] [CrossRef]
- Collins, F.; Sanjayan, J.G. Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cem. Concr. Res. 2000, 30, 1401–1406. [Google Scholar] [CrossRef]
- Hu, X.; Shi, C.; Zhang, Z.; Hu, Z. Autogenous and drying shrinkage of alkali activated slag mortars. J. Am. Ceram. Soc. 2019, 102, 4963–4975. [Google Scholar] [CrossRef]
- Vafaei, M.; Allahverdi, A. Influence of calcium aluminate cement on geopolymerization of natural pozzolan. Constr. Build. Mater. 2016, 114, 290–296. [Google Scholar] [CrossRef]
- Cao, Y.-F.; Tao, Z.; Pan, Z.; Wuhrer, R. Effect of calcium aluminate cement on geopolymer concrete cured at ambient temperature. Constr. Build. Mater. 2018, 191, 242–252. [Google Scholar] [CrossRef]
- Provis, J.L.; Van Deventer, J.S.J. Alkali Activated Materials, 1st ed.; Springer: Dordrecht, The Netherlands, 2014; p. 388. [Google Scholar] [CrossRef]
- Wang, M.; Liu, X. Applications of red mud as an environmental remediation material: A review. J. Hazard. Mater. 2020, 408, 124420. [Google Scholar] [CrossRef]
- Wang, H.; Wu, H.; Xing, Z.; Wang, R.; Dai, S. The Effect of Various Si/Al, Na/Al Molar Ratios and Free Water on Micromorphology and Macro-Strength of Metakaolin-Based Geopolymer. Materials 2021, 14, 3845. [Google Scholar] [CrossRef]
- Kang, S.P.; Kwon, S.J. Effects of red mud and Alkali-Activated Slag Cement on efflorescence in cement mortar. Constr. Build. Mater. 2017, 133, 459–467. [Google Scholar] [CrossRef]
- Khairul, M.A.A.; Zanganeh, J.; MOGHTADERI, B. The composition, recycling and utilisation of Bayer red mud. Resour. Conserv. Recycl. 2019, 141, 483–498. [Google Scholar] [CrossRef]
- Liu, R.X.; Poon, C.S. Effects of red mud on properties of self-compacting mortar. J. Clean. Prod. 2016, 135, 1170–1178. [Google Scholar] [CrossRef]
- Le Ping, K.K.; Cheah, C.B.; Liew, J.J.; Siddique, R.; Tangchirapat, W.; Johari, M.A.B.M. Coal bottom ash as constituent binder and aggregate replacement in cementitious and geopolymer composites: A review. J. Build. Eng. 2022, 52, 104369. [Google Scholar] [CrossRef]
- Tambara Júnior, L.U.D.; Rocha, J.C.; Cheriaf, M.; Padilla-Encinas, P.; Fernández-Jiménez, A.; Palomo, A. Effect of alkaline salts on calcium sulfoaluminate cement hydration. Molecules 2021, 26, 1938. [Google Scholar] [CrossRef]
- Saikia, B.K.; Saikia, J.; Rabha, S.; Silva, L.F.O.; Finkelman, R. Ambient nano particles/nanominerals and hazardous elements from coal combustion activity: Implications on energy challenges and health hazards. Geosci. Front. 2018, 9, 863–875. [Google Scholar] [CrossRef]
- Abdulmatin, A.; Tangchirapat, W.; Jaturapitakkul, C. An investigation of bottom ash as a pozzolanic material. Constr. Build. Mater. 2018, 186, 155–162. [Google Scholar] [CrossRef]
- Xi, T.; Ozbakkaloglun, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Nieves, L.J.J.; Elyseu, F.; Goulart, S.; Pereira, M.S.; Valvassori, E.Z.; Bernardin, A.M. Use of fly and bottom ashes from a thermoelectrical plant in the synthesis of geopolymers: Evaluation of reaction efficiency. Energy Geosci. 2021, 2, 167–173. [Google Scholar] [CrossRef]
- Ivanovíc, M.; Kljajević, L.; Gulicovski, J.; Petkovic, M.; Jankovic-Castvan, I.; Bučevac, D.; Bučevac, S. The Effect of the Concentration of Alkaline Activator and Aging Time on the Structure of Metakaolin Based Geopolymer. Sci. Sinter. 2020, 52, 219–229. [Google Scholar] [CrossRef]
- Tambara Júnior, L.U.D.; Cheriaf, M.; Rocha, J.C. Development of alkaline-activated self-leveling hybrid mortar ash-based composites. Materials 2018, 11, 1829. [Google Scholar] [CrossRef]
- Cheriaf, M.; Rocha, J.C.; Pera, J. Pozzolanic properties of pulverized coal combustion bottom ash. Cem. Concr. Res. Inglaterra 1999, 29, 1387–1391. [Google Scholar] [CrossRef]
- Manfroi, E.P.; Cheriaf, M.; Rocha, J.C. Microstructure, mineralogy and environmental evaluation of cementitious composites produced with red mud waste. Constr. Build. Mater. 2014, 67, 29–36. [Google Scholar] [CrossRef]
- Kaya, K.; Soyer-Uzun, S. Evolution of structural characteristics and compressive strength in red mud–metakaolin based geopolymer systems. Ceram. Int. 2016, 42, 7406–7413. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Li, Z.; Liu, C.; Gao, Y. Feasibility study of red mud for geopolymer preparation: Efect of particle size fraction. J. Mater. Cycles Waste Manag. 2020, 22, 1328–1338. [Google Scholar] [CrossRef]
- ASTM C778-21; Standard Specification for Standard Sand. ASTM International: West Conshohocken, PA, USA, 2021.
- NBR 13279; Argamassa Para Assentamento e Revestimento de Paredes e Tetos—Determinação da Resistência à Tração na Flexão e à Compressão. Associação Brasileira De Normas Técnicas (ABNT): Rio de Janeiro, Brazil, 2005.
- Ling, Y.; Wang, K.; Wang, X.; Hua, S. Effects of mix design parameters on heat of geopolymerization, set time, and compressive strength of high calcium fly ash geopolymer. Constr. Build. Mater. 2019, 228, 116763. [Google Scholar] [CrossRef]
- Zhang, Z.; Provis, J.L.; Wang, H.; Bullen, F.; Reid, A. Thermochimica Acta Quantitative kinetic and structural analysis of geopolymers. Part 2. Thermodynamics of sodium silicate activation of metakaolin. Thermochim. Acta 2013, 565, 163–171. [Google Scholar] [CrossRef]
- Mehdipour, I.; Khayat, K.H. Effect of shrinkage reducing admixture on early expansion and strength evolution of calcium sulfoaluminate blended cement. Cem. Concr. Compos. 2018, 92, 82–91. [Google Scholar] [CrossRef]
- Gao, X.; Liu, C.; Shui, Z.; Yu, R. Effects of Expansive Additives on the Shrinkage Behavior of Coal Gangue Based Alkali Activated Materials. Crystals 2021, 11, 816. [Google Scholar] [CrossRef]
- Alonso, S.; Palomo, A. Alkaline activation of metakaolin and calcium hydroxide mixtures: Influence of temperature, activator concentration and solids ratio. Mater. Lett. 2001, 47, 55–62. [Google Scholar] [CrossRef]
- Abdel-Gawwad, H.A.; Mohammed, M.S.; Alomayri, T. Single and dual effectsof magnésia and alumina nano-particles on strength and drying shrinkage of álcali activated slag. Constr. Build. Mater. 2001, 47, 55–62. [Google Scholar] [CrossRef]
- Sun, Z.; Vollpracht, A. Isothermal calorimetry and in-situ XRD study of the NaOH activated fly ash, metakaolin and slag. Cem. Concr. Res. 2018, 103, 110–122. [Google Scholar] [CrossRef]
- Riahi, S.; Nemati, A.; Khodabandeh, A.R.; Baghshahi, S. The effect of mixing molar ratios and sand particles on microstructure and mechanical properties of metakaolin-based geopolymers. Mater. Chem. Phys. 2020, 240, 122223. [Google Scholar] [CrossRef]
- Liu, J.; Doh, J.H.; Dinh, H.L.; Ong, D.E.L.; Zi, G.; You, I. Effect of Si/Al molar ratio on the strength behavior of geopolymer derived from various industrial waste: A current state of the art review. Constr. Build. Mater. 2022, 329, 127134. [Google Scholar] [CrossRef]
- Lahoti, M.; Narang, P.; Tan, K.H.; Yang, E.H. Mix design factors and strength prediction of metakaolin-based geopolymer. Ceram. Int. 2017, 43, 11433–11441. [Google Scholar] [CrossRef]
- Al-Shathr, B.S.; Al-Attar, T.S. Effect of curing system on metakaolin based geopolymer concrete. J. Univ. Babylon 2016, 24, 569–576. [Google Scholar]
- García-Maté, M.; De La Torre, A.G.; León-Reina, L.; Losilla, E.R.; Aranda, M.A.G.; Santa Cruz, I. Effect of calcium sulfate source on the hydration of calcium sulfoaluminate eco-cement. Cem. Concr. Compos. 2015, 55, 53–61. [Google Scholar] [CrossRef]
- Sun, H.; Lin, T.; Zhuo, K.; Qian, J.; Chen, X.; Zhang, J.; Sun, Y. Sulfate optimization in ettringite rich cements by SO3/Al2O3 molar ratio: A comparative study of calcium sulfoaluminate and aluminate cements. Case Stud. Constr. Mater. 2024, 21, e03701. [Google Scholar] [CrossRef]
- Boonserm, K.; Sata, V.; Pimraksa, K.; Chindaprasirt, P. Improved geopolymerization of bottom ash by incorporating fly ash and using waste gypsum as additive. Cem. Concr. Compos. 2012, 34, 819–824. [Google Scholar] [CrossRef]
- Hoang, M.D.; Do, Q.M.; Le, V.Q. Effect of curing regime on properties of red mud based alkali activated materials. Constr. Build. Mater. 2020, 259, 119779. [Google Scholar] [CrossRef]
- Singh, S.; Aswath, M.U.; Ranganath, R.V. Effect of mechanical activation of red mud on the strength of geopolymer binder. Constr. Build. Mater. 2018, 177, 91–101. [Google Scholar] [CrossRef]
- HE, P.; ZHANG, B.; Lu, J.-X.; Poon, C.S. A ternary optimization of alkali-activated cement mortars incorporatingglass powder, slag and calcium aluminate cement. Constr. Build. Mater. 2020, 240, 117983. [Google Scholar] [CrossRef]
- Lemougna, P.N.; Wang, K.T.; Tang, Q.; Cui, X.M. Synthesis and characterization of low temperature (<800 °C) ceramics from red mud geopolymer precursor. Constr. Build. Mater. 2017, 131, 564–573. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, S.; He, Z. Mechanical and Fracture Properties of Fly Ash Geopolymer Concrete Addictive with Calcium Aluminate Cement. Materials 2019, 12, 2982. [Google Scholar] [CrossRef]
- Hanjitsuwan, S.; Injorhor, B.; Phoo-Ngernkham, T.; Damrongwiriyanupap, N.; Li, L.Y.; Sukontasukkaul, P.; Chindaprasirt, P. Drying shrinkage, strength and microstructure of alkali-activated high-calcium fly ash using FGD-gypsum and dolomite as expansive aditive. Cem. Concr. Compos. 2020, 114, 103760. [Google Scholar] [CrossRef]
- Palma e Silva, A.A.; Capuzzo, V.M.S.; Silva, E.F.; Pereira, A.M.B.; Agostinho, L.B. Effects of superabsorbent polymers on autogenous shrinkage and microstructure in metakaolin-based cementitious materials. Case Stud. Constr. 2025, 22, e04740. [Google Scholar] [CrossRef]
- Zhang, W.; Duan, X.; Su, F.; Zhu, J.; Hama, Y. Drying shrinkage inhibition effect and mechanism of polyol shrinkagex reducing admixture on the metakaolin-based geopolymer. J. Mater. Res. Technol. 2024, 28, 2021–2032. [Google Scholar] [CrossRef]
- Choi, S.; Ryu, G.S.; Koh, K.T.; Na, G.H.; Kim, H.Y. Experimental Study on the Shrinkage Behavior and Mechanical Properties of AAM Mortar Mixed with CSA Expansive Additive. Materials 2019, 12, 3312. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cheng, Y.; Huseien, G.F.; Shah, K.W. Shrinkage mechanisms and shrinkage-mitigating strategies of alkali-activated slag composites: A critical review. Constr. Build. Mater. 2021, 318, 125993. [Google Scholar] [CrossRef]
- Yuan, X.-H.; Chen, W.; Lu, Z.-A.; Chen, H. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr. Build. Mater. 2014, 66, 422–428. [Google Scholar] [CrossRef]
- Ye, H.; Cartwright, C.; Rajabipour, F.; Radlinska, A. Understanding the drying shrinkage performance of alkali-activated slag mortars. Cem. Concr. Compos. 2017, 76, 13–24. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, B.; Yuan, Q.; Huang, D.; Peng, H. Characterization and fractal analysis of drying shrinkage of metakaolin-based geopolymers under gradually-decreasing humidity. Constr. Build. Mater. 2024, 414, 134856. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. Shrinkage mitigation strategies in alkali-activated slag. Cem. Concr. Res. 2017, 101, 131–143. [Google Scholar] [CrossRef]
- Ye, H.; Radlińska, A. A Review and Comparative Study of Existing Shrinkage Prediction Models for Portland and Non-Portland Cementitious Materials. Adv. Mater. Sci. Eng. 2016, 2016, 10–14. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, H.; Zhang, Z. Influence of fly ash on the pore structure and shrinkage characteristics of metakaolin-based geopolymer pastes and mortars. Constr. Build. Mater. 2017, 153, 284–293. [Google Scholar] [CrossRef]
- Jia, Z.; Yang, Y.; Yang, L.; Zhang, Y.; Sun, Z. Hydration products, internal relative humidity and drying shrinkage of alkali activated slag mortar with expansion agents. Constr. Build. Mater. 2018, 158, 198–207. [Google Scholar] [CrossRef]
- Ma, S.; Cao, Z.; Wei, C.; Shao, Y.; Wu, P.; Zhang, Z.; Liu, X. Red mud-modified magnesium potassium phosphate cement used as rapid repair materials: Durability, bonding property, volume stability and environment performance optimization. Constr. Build. Mater. 2024, 415, 135144. [Google Scholar] [CrossRef]
- Ma, S.; Zhang, Z.; Liu, X.; Li, Y.; Zeng, Q.; Zhang, W. Reuse of red mud in magnesium potassium phosphate cement: Reaction mechanism and performance optimization. J. Build. Eng. 2022, 61, 105290. [Google Scholar] [CrossRef]
- Li, J.; Li, Q.; Chen, P.; Yao, K.; Wang, P.; Ming, Y.; Yi, J.; Zhi, L. The Effect of Bayer Red Mud Blending on the Mechanical Properties of Alkali-Activated Slag-Red Mud and the Mechanism. Appl. Sci. 2023, 13, 452. [Google Scholar] [CrossRef]
- Bezerra, B.P.; Luz, A.P. Geopolymers: A viable binder option for ultra-low-cement and cement-free refractory castables? J. Eur. Ceram. Soc. 2024, 44, 5241–5251. [Google Scholar] [CrossRef]
- Ganga, V.; Selvan, S.S. Influence of expansive cement on rheological, strength performance and morphological characteristics of self-compacting concrete. Constr. Build. Mater. 2023, 368, 130407. [Google Scholar] [CrossRef]
- Reig, L.; Coriano, L.; Borrachero, M.V.; Monzó, J.; Payá, J. Influence of calcium aluminate cement (CAC) on alkaline activation of red clay brick waste (RCBW). Cem. Concr. Compos. 2016, 65, 177–185. [Google Scholar] [CrossRef]
- Fernández-Carrasco, L.; Torréns-Martín, D.; Martínez-Ramírez, S. Carbonation of ternary building cementing materials. Cem. Concr. Compos. 2012, 34, 1180–1186. [Google Scholar] [CrossRef]
- Mendes, B.; Andrade, I.K.; Carvalho, J.M.; Pedroti, L.; Oliveira Júnior, A. Assessment of mechanical and microstructural properties of geopolymers produced from metakaolin, silica fume, and red mud. Int. J. Appl. Ceram. Technol. 2020, 18, 262–274. [Google Scholar] [CrossRef]
- Wang, P.; Li, N.; Xu, L. Hydration evolution and compressive strength of calcium sulphoaluminate cement constantly cured over the temperature range of 0 to 80 °C. Cem. Concr. Res. 2017, 100, 203–2013. [Google Scholar] [CrossRef]
- Arbel-Haddad, M.; Harnik, Y.; Schlosser, Y.; Goldbourt, A. Cesium immobilization in metakaolin-based geopolymers elucidated by 133Cs solid state NMR spectroscopy. J. Nucl. Mater. 2022, 562, 153570. [Google Scholar] [CrossRef]
- Okoronkwo, M.U.; Mondal, S.K.; Wang, B.; Ma, H.; Kumar, A. Formation and stability of gismondine-type zeolite in cementitious systems. J. Am. Ceram. Soc. 2020, 104, 1513–1525. [Google Scholar] [CrossRef]
- Cui, S.; Fan, K.; Yao, Y. Preparation and characterization of quaternary clinker-free cementitious materials containing phosphorus slag, calcium carbide slag, desulfurization gypsum, and metakaolin. Constr. Build. Mater. 2024, 411, 134602. [Google Scholar] [CrossRef]
- Frasson, B.J.; Rocha, J.C. Reaction mechanism and mechanical properties of geopolymer based on kaolinitic coal tailings. Appl. Clay Sci. 2023, 233, 106826. [Google Scholar] [CrossRef]
- Coppola, L.; Coffetti, D.; Crotti, E.; Candamano, S.; Crea, F.; Gazzaniga, G.; Pastore, T. The combined use of admixtures for shrinkage reduction in one-part alkali activated slag-based mortars and pastes. Constr. Build. Mater. 2020, 248, 118682. [Google Scholar] [CrossRef]
- Cao, Y.; Mei, Y.; Yao, H.; Hu, B. Mechanical and microstructural characterization of one-part binder incorporated with alkali-thermal activated red mud. Case Stud. Constr. Mater. 2024, 21, e03634. [Google Scholar] [CrossRef]
- Cheng, Y.; Honggiang, M.; Hongyu, C.; Jiaxin, W.; Jing, S.; Zonghui, L.; Mingkai, Y. Preparation and characterization of coal gangue geopolymers. Constr. Build. Mater. 2018, 187, 318–326. [Google Scholar] [CrossRef]
- Bernal, A.A.; Provis, J.L.; Myers, R.J.; San Nicolas, R.; Van Deventer, J.S.J. Role of carbonates in the chemical evolution of sodium carbonate activated slag binders. Mater. Struct. 2014, 48, 517–529. [Google Scholar] [CrossRef]
- Nasvi, M.C.M.; Rathnaweera, T.D.; Padmanabhan, E. Geopolymer as well cement and its mechanical integrity under deep down-hole stress conditions: Application for carbon capture and storage wells. Geomech. Geophys. Geo-Energy Geo-Resour. 2016, 2, 245–256. [Google Scholar] [CrossRef]
- Singh, S.; Aswath, M.U.; Ranganath, R.V. Performance assessment of bricks and prisms: Red mud based geopolymer composite. J. Build. Eng. 2020, 32, 101462. [Google Scholar] [CrossRef]
- Moura, T.M.S.; Rocha, J.C. Valorization of Red Mud and Bottom Ash as Precursors for the Synthesis of Alkaline Activation in Metakaolin-Based Binder. J. Mater. Civ. Eng. 2025, 37, 04025240. [Google Scholar] [CrossRef]
- Ayeni, O.; Onwualu, A.P.; Boakye, E. Characterization and mechanical performance of metakaolin-based geopolymer for sustainable building applications. Constr. Build. Mater. 2021, 272, 121938. [Google Scholar] [CrossRef]
Raw Material | SiO2 | Al2O3 | CaO | Fe2O3 | K2O | TiO2 | SO3 | ZrO2 | Others | LOI |
---|---|---|---|---|---|---|---|---|---|---|
CAC | 4.62 | 56.39 | 32.31 | 0.67 | 0.21 | 0.99 | - | 0.32 | 0.35 | 4.15 |
FGD (Hemi) | 6.31 | - | 35.19 | 0.62 | 0.35 | 0.08 | 46.97 | - | 0.07 | 10.4 |
MK | 55.15 | 36.57 | 0.22 | 1.84 | 1.57 | 1.45 | - | 0.09 | 0.14 | 2.96 |
BA | 56.51 | 24.23 | 1.40 | 5.93 | 3.16 | 1.47 | 0.37 | 0.13 | 0.26 | 6.5 |
RM | 24.44 | 18.96 | 1.53 | 41.61 | 0.11 | 1.47 | 0.54 | 0.89 | 0.49 | 6.14 |
Mix | by Weight (g) (per 100 g of Precursor) | ||||||
---|---|---|---|---|---|---|---|
MK | BA | RM | CAC | FGD | * Sand | ** L/S Ratio | |
MK | 100 | - | - | - | - | 2.0 | 0.65 |
MK_10Exp | 100 | - | - | 7 | 3 | ||
MK_20Exp | 100 | - | - | 14 | 6 | ||
50MK50BA | 50 | 50 | - | - | - | ||
50MK50BA_10Exp | 50 | 50 | - | 7 | 3 | ||
50MK50BA_20Exp | 50 | 50 | - | 14 | 6 | ||
30MK70BA | 30 | 70 | - | - | - | ||
30MK70BA_10Exp | 30 | 70 | - | 7 | 3 | ||
30MK70BA_20Exp | 30 | 70 | - | 14 | 6 | ||
50MK50RM | 50 | - | 50 | - | - | ||
50MK50RM_10Exp | 50 | - | 50 | 7 | 3 | ||
50MK50RM_20Exp | 50 | - | 50 | 14 | 6 | ||
30MK70RM | 30 | - | 70 | - | - | ||
30MK70RM_10Exp | 30 | - | 70 | 7 | 3 | ||
30MK70RM_20Exp | 30 | - | 70 | 14 | 6 |
Mixes | Si/Al | Na/Al | H2O/Na | SiO2/Na2O |
---|---|---|---|---|
MK | 2.563 | 0.625 | 11.474 | 0.95 |
MK_10Exp | 2.335 | 0.565 | ||
MK_20Exp | 2.147 | 0.514 | ||
50MK50BA | 2.595 | 0.752 | ||
50MK50BA_10Exp | 2.788 | 0.666 | ||
50MK50BA_20Exp | 2.523 | 0.597 | ||
30MK70BA | 4.214 | 0.819 | ||
30MK70BA_10Exp | 3.719 | 0.717 | ||
30MK70BA_20Exp | 3.334 | 0.638 | ||
50MK50LRM | 2.436 | 0.824 | ||
50MK50RM_10Exp | 2.160 | 0.721 | ||
50MK50RM_20Exp | 1.945 | 0.641 | ||
30MK70RM | 1.590 | 0.944 | ||
30MK70RM_10Exp | 1.375 | 0.811 | ||
30MK70RM_20Exp | 1.835 | 0.712 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marques da Silva Moura, T.; Cavalcante Rocha, J. Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products. Sustainability 2025, 17, 8617. https://doi.org/10.3390/su17198617
Marques da Silva Moura T, Cavalcante Rocha J. Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products. Sustainability. 2025; 17(19):8617. https://doi.org/10.3390/su17198617
Chicago/Turabian StyleMarques da Silva Moura, Thais, and Janaíde Cavalcante Rocha. 2025. "Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products" Sustainability 17, no. 19: 8617. https://doi.org/10.3390/su17198617
APA StyleMarques da Silva Moura, T., & Cavalcante Rocha, J. (2025). Sustainable Expansive Agent from FGD Gypsum and CAC Used to Mitigate Shrinkage in Alkali-Activated Mortars and Promoter the Valorization of Industrial By-Products. Sustainability, 17(19), 8617. https://doi.org/10.3390/su17198617