AI-Driven Conservation of the Endangered Twisted Yew (Taxus contorta Griff.) in the Western Himalaya
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Collection Procedures
2.2. Environmental Variables Selection and Data Acquisition
2.3. Derivation of Spatial Data Using ChatGPT
2.4. Statistical Analysis Framework
2.5. Spatial Analysis Approach
2.6. Field Validation of AI-Derived Outputs
2.7. Altitudinal Range Determination
2.8. Propagation Methods
3. Results
3.1. Distribution of Natural Populations of T. contorta
3.2. Validation of Environmental and Ecological Variables for Natural and AI-Derived T. contorta Populations
3.2.1. Descriptive Profiles of Environmental Factors
3.2.2. Correlation Patterns Among Variables
3.3. Hierarchical Clustering of Populations Based on Environmental Variables
3.4. Principal Component Analysis (PCA) of Population–Environment Relationships
3.4.1. Cluster Characteristics of Environmental Variables Derived from PCA
3.4.2. PCA Biplot of Environmental Variables with Population Localities and PCs Variable Loadings
3.5. AI Model Predictions: Accuracy and Validation
3.6. AI Generated Suitable Locations for T. contorta Propagation in Swat
3.6.1. AI-Generated Validation of Natural T. contorta Populations
3.6.2. AI-Predicted Points at Lalko and Gabbin Jabba
3.6.3. AI-Generated Points Distribution on the North and South Aspects of the Swat River
4. Discussion
4.1. Effectiveness of AI in Identifying Suitable Habitats
4.2. Challenges in Species-Specific Knowledge Accuracy and Model Limitations
4.3. Integrating AI- and Ground-Based Approaches for Future Conservation of T. contorta
4.4. Comparative Evaluation of Environmental Datasets and Modeling Approaches for Identifying Propagation Sites of T. contorta
4.4.1. Environmental Data Platforms
4.4.2. Modeling Approaches
4.5. Considerations, Advantages, and Disadvantages of Using ChatGPT
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabinowitz, D. Seven forms of rarity. In Biological Aspects of Rare Plant Conservation; John Wiley & Sons: Hoboken, NY, USA, 1981. [Google Scholar]
- Thomas, P. A review of the distribution and conservation status of Taxus in the Himalayas, China and Southeast Asia. In III Jornadas Internacionales Sobre el Tejo (Taxus baccata L.); Association Amigos del Tejo y las Tejedas: Madrid, Spain, 2011; pp. 7–274. [Google Scholar] [CrossRef]
- Shah, A.; Li, D.Z.; Möller, M.; Gao, L.M.; Hollingsworth, M.L.; Gibby, M. Delimitation of Taxus fuana Nan Li & RR Mill (Taxaceae) based on morphological and molecular data. Taxon 2008, 57, 211–222. [Google Scholar] [CrossRef]
- List, I.R. The IUCN Red List of Threatened Species. Available online: https://www.iucnredlist.org/ (accessed on 18 August 2025).
- Möller, M.; Liu, J.; Li, Y.; Li, J.-H.; Ye, L.-J.; Mill, R.; Thomas, P.; Li, D.-Z.; Gao, L.-M. Repeated intercontinental migrations and recurring hybridizations characterise the evolutionary history of yew (Taxus L.). Mol. Phylogenet. Evol. 2020, 153, 106952. [Google Scholar] [CrossRef] [PubMed]
- Ali, H.A.; Ahmad, H.; Marwat, K.B.; Yousaf, M.; Gul, B.; Khan, I. Trade potential and conservation issues of medicinal plants in District Swat, Pakistan. Pak. J. Bot. 2012, 44, 1905–1912. [Google Scholar]
- Iqbal, J.; Meilan, R.; Khan, B. Assessment of risk, extinction, and threats to Himalayan yew in Pakistan. Saudi J. Biol. Sci. 2020, 27, 762–767. [Google Scholar] [CrossRef] [PubMed]
- Gillani, S.W.; Ahmad, M.; Zafar, M.; Haq, S.M.; Waheed, M.; Manzoor, M.; Shaheen, H.; Sultana, S.; Rehman, F.U.; Makhkamov, T. An insight into indigenous ethnobotanical knowledge of medicinal and aromatic plants from Kashmir Himalayan region. Ethnobot. Res. Appl. 2024, 28, 1–21. [Google Scholar] [CrossRef]
- Kumar, B.; Singh, K.; Sharma, J.; Gairola, S. A comprehensive review of fuelwood resources and their use pattern in rural villages of Western Himalaya, India. Plant Arch. 2020, 20, 1949–1958. [Google Scholar]
- Dhyani, S. Are Himalayan ecosystems facing hidden collapse? Assessing the drivers and impacts of change to aid conservation, restoration and conflict resolution challenges. Biodivers. Conserv. 2023, 32, 3731–3764. [Google Scholar] [CrossRef]
- Shaheen, H.; Attique, A.; Riaz, M.T.; Manzoor, M.; Khan, R.W.A.; Riaz, M.T. From biodiversity hotspot to conservation hotspot: Assessing distribution, population structure, associated flora and habitat geography of threatened Himalayan Yew in temperate forest ecosystems of Kashmir. Biodivers. Conserv. 2024, 33, 553–577. [Google Scholar] [CrossRef]
- Bangelesa, F.; Abel, D.; Pollinger, F.; Rai, P.; Ziegler, K.; Ebengo, D.; Tshimanga, R.M.; Ali, M.M.; Knight, J.; Paeth, H. Projected changes in rainfall amount and distribution in the Democratic Republic of Congo–Evidence from an ensemble of high-resolution climate simulations. Weather Clim. Extrem. 2023, 42, 100620. [Google Scholar] [CrossRef]
- Tiwari, O.P.; Sharma, C.M. Anthropogenic disturbance impact on forest composition and dominance-diversity: A case of an ecosensitive region of Garhwal Himalaya, India. Acta Ecol. Sin. 2023, 43, 662–673. [Google Scholar] [CrossRef]
- Poudel, R.C.; Möller, M.; Gao, L.-M.; Ahrends, A.; Baral, S.R.; Liu, J.; Thomas, P.; Li, D.-Z. Using morphological, molecular and climatic data to delimitate yews along the Hindu Kush-Himalaya and adjacent regions. PLoS ONE 2012, 7, e46873. [Google Scholar] [CrossRef]
- Bhardwaj, V. Taxus wallichiana Zucc. (Himalayan yew): A medicinal plant exhibiting antibacterial properties. In Advances in Microbiology, Infectious Diseases and Public Health; Springer International Publishing: Cham, Switzerland, 2023; Volume 17, pp. 145–153. [Google Scholar] [CrossRef]
- Gajurel, J.P.; Werth, S.; Shrestha, K.K.; Scheidegger, C. Species distribution modeling of Taxus wallichiana (Himalayan yew) in Nepal Himalaya. Asian J. Conserv. Biol. 2014, 3, 127–134. [Google Scholar]
- Pandey, A.; Chandra Sekar, K.; Joshi, B.; Rawal, R.S. Threat assessment of high-value medicinal plants of cold desert areas in Johar valley, Kailash Sacred Landscape, India. Plant Biosyst. Int. J. Deal. All Asp. Plant Biol. 2019, 153, 39–47. [Google Scholar] [CrossRef]
- Paul, A.; Bharali, S.; Khan, M.L.; Tripathi, O.P. Anthropogenic disturbances led to risk of extinction of Taxus wallichiana Zuccarini, an endangered medicinal tree in Arunachal Himalaya. Nat. Areas J. 2013, 33, 447–454. [Google Scholar] [CrossRef]
- Bennett, E.M.; Peterson, G.D.; Gordon, L.J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 2009, 12, 1394–1404. [Google Scholar] [CrossRef] [PubMed]
- Mehta, P.; Sekar, K.C.; Bhatt, D.; Tewari, A.; Bisht, K.; Upadhyay, S.; Negi, V.S.; Soragi, B. Conservation and prioritization of threatened plants in Indian Himalayan Region. Biodivers. Conserv. 2020, 29, 1723–1745. [Google Scholar] [CrossRef]
- Ahmad, S.S.; Abbasi, Q.; Jabeen, R.; Shah, M.T. Decline of conifer forest cover in Pakistan: A GIS approach. Pak. J. Bot. 2012, 44, 511–514. [Google Scholar]
- Abdaki, M.; Al-Ozeer, A.Z.; Alobaydy, O.; Al-Tayawi, A.N. Predicting rainfall in Nineveh Governorate in northern Iraq using machine learning time-series forecasting algorithm. Arab. J. Geosci. 2023, 16, 655. [Google Scholar] [CrossRef]
- Abduljaleel, Y.; Chikabvumbwa, S.R.; Haq, F.U. Evaluation and prediction of future droughts with multi-model ensembling of four models under CMIP6 scenarios over Iraq. Theor. Appl. Climatol. 2024, 155, 131–142. [Google Scholar] [CrossRef]
- Abed, S.A.; Halder, B.; Yaseen, Z.M. Investigation of the decadal unplanned urban expansion influenced surface urban heat island study in the Mosul metropolis. Urban Clim. 2024, 54, 101845. [Google Scholar] [CrossRef]
- Aboelkhair, H.; Morsy, M.; El Afandi, G. Assessment of agroclimatology NASA POWER reanalysis datasets for temperature types and relative humidity at 2 m against ground observations over Egypt. Adv. Space Res. 2019, 64, 129–142. [Google Scholar] [CrossRef]
- Agyekum, J.; Annor, T.; Quansah, E.; Lamptey, B.; Okafor, G. Extreme precipitation indices over the Volta Basin: CMIP6 model evaluation. Sci. Afr. 2022, 16, e01181. [Google Scholar] [CrossRef]
- Agathokleous, E.; Saitanis, C.J.; Fang, C.; Yu, Z. Use of ChatGPT: What does it mean for biology and environmental science? Sci. Total Environ. 2023, 888, 164154. [Google Scholar] [CrossRef]
- Biswas, S.S. Potential use of ChatGPT in global warming. Ann. Biomed. Eng. 2023, 51, 1126–1127. [Google Scholar] [CrossRef] [PubMed]
- Powers, R.P.; Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Chang. 2019, 9, 323–329. [Google Scholar] [CrossRef]
- Rahman, M.M.; Watanobe, Y. ChatGPT for education and research: Opportunities, threats, and strategies. Appl. Sci. 2023, 13, 5783. [Google Scholar] [CrossRef]
- Ali, S.; Ali, H.; Baharanchi, O.G.; Sher, H.; Yousefpour, R. Investigating endemic species conservation hotspots based on species distribution models in Swat Region, Hindu Kush Pakistan. Land 2024, 13, 737. [Google Scholar] [CrossRef]
- Poudel, R.C.; Möller, M.; Li, D.Z.; Shah, A.; Gao, L.M. Genetic diversity, demographical history and conservation aspects of the endangered yew tree Taxus contorta (s yn. Taxus fuana) in Pakistan. Tree Genet. Genomes 2014, 10, 653–665. [Google Scholar] [CrossRef]
- Frosolini, A.; Gennaro, P.; Cascino, F.; Gabriele, G. In reference to “Role of Chat GPT in public health”, to highlight the AI’s incorrect reference generation. Ann. Biomed. Eng. 2023, 51, 2120–2122. [Google Scholar] [CrossRef]
- Mehnen, L.; Gruarin, S.; Vasileva, M.; Knapp, B. ChatGPT as a medical doctor? A diagnostic accuracy study on common and rare diseases. medRxiv 2023. [Google Scholar] [CrossRef]
- Morera, A. Foundation models in shaping the future of ecology. Ecol. Inform. 2024, 80, 102545. [Google Scholar] [CrossRef]
- Rathore, P.; Roy, A.; Karnatak, H. Modelling the vulnerability of Taxus wallichiana to climate change scenarios in South East Asia. Ecol. Indic. 2019, 102, 199–207. [Google Scholar] [CrossRef]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef]
- Fatani, B. ChatGPT for future medical and dental research. Cureus 2023, 15, e37285. [Google Scholar] [CrossRef] [PubMed]
- Bird, J.P.; Martin, R.; Akçakaya, H.R.; Gilroy, J.; Burfield, I.J.; Garnett, S.T.; Symes, A.; Taylor, J.; Şekercioğlu, Ç.H.; Butchart, S.H.M. Generation lengths of the world’s birds and their implications for extinction risk. Conserv. Biol. 2020, 34, 1252–1261. [Google Scholar] [CrossRef] [PubMed]
- Cazalis, V.; Santini, L.; Lucas, P.M.; González-Suárez, M.; Hoffmann, M.; Benítez-López, A.; Pacifici, M.; Schipper, A.M.; Böhm, M.; Zizka, A.; et al. Prioritizing the reassessment of data-deficient species on the IUCN Red List. Conserv. Biol. 2023, 37, e14139. [Google Scholar] [CrossRef] [PubMed]
- Boakes, E.H.; McGowan, P.J.; Fuller, R.A.; Chang-qing, D.; Clark, N.E.; O’Connor, K.; Mace, G.M. Distorted views of biodiversity: Spatial and temporal bias in species occurrence data. PLoS Biol. 2010, 8, e1000385. [Google Scholar] [CrossRef]
- Lubiana, T.; Lopes, R.; Medeiros, P.; Silva, J.C.; Goncalves, A.N.A.; Maracaja-Coutinho, V.; Nakaya, H.I. Ten quick tips for harnessing the power of ChatGPT in computational biology. PLoS Comput. Biol. 2023, 19, e1011319. [Google Scholar] [CrossRef]
- Liang, J.; Wang, Z.; Ma, Z.; Li, J.; Zhang, Z.; Wu, X.; Wang, B. Online training of large language models: Learn while chatting. arXiv 2024, arXiv:2403.04790. [Google Scholar] [CrossRef]
- Dhanvijay, A.K.D.; Pinjar, M.J.; Dhokane, N.; Sorte, S.R.; Kumari, A.; Mondal, H. Performance of large language models (ChatGPT, Bing Search, and Google Bard) in solving case vignettes in physiology. Cureus 2023, 15, e42972. [Google Scholar] [CrossRef]
- Nazir, A.; Wang, Z. A comprehensive survey of ChatGPT: Advancements, applications, prospects, and challenges. Metaradiology 2023, 1, 100022. [Google Scholar] [CrossRef]
- Ray, P.P. ChatGPT: A comprehensive review on background, applications, key challenges, bias, ethics, limitations and future scope. Internet Things Cyber-Phys. Syst. 2023, 3, 121–154. [Google Scholar] [CrossRef]
- Plevris, V.; Papazafeiropoulos, G.; Jiménez Rios, A. Chatbots put to the test in math and logic problems: A comparison and assessment of ChatGPT-3.5, ChatGPT-4, and Google Bard. Ai 2023, 4, 949–969. [Google Scholar] [CrossRef]
- Elkhatat, A.M. Evaluating the authenticity of ChatGPT responses: A study on text-matching capabilities. Int. J. Educ. Integr. 2023, 19, 1–23. [Google Scholar] [CrossRef]
- Wang, H.; Li, J.; Wu, H.; Hovy, E.; Sun, Y. Pre-trained language models and their applications. Engineering 2023, 25, 51–65. [Google Scholar] [CrossRef]
- Rodas-Trejo, J.; Ocampo-González, P. Assessment of ChatGPT’s potential as an innovative tool in searching for information on wild mammals. Ecol. Inform. 2024, 83, 102810. [Google Scholar] [CrossRef]
- Zhai, X. ChatGPT for next generation science learning. XRDS Crossroads ACM Mag. Stud. 2023, 29, 42–46. [Google Scholar] [CrossRef]
- Leorna, S.; Brinkman, T. Human vs. machine: Detecting wildlife in camera trap images. Ecol. Inform. 2022, 72, 101876. [Google Scholar] [CrossRef]
- Reyhani Haghighi, S.; Pasandideh Saqalaksari, M.; Johnson, S.N. Artificial intelligence in ecology: A commentary on a chatbot’s perspective. Bull. Ecol. Soc. Am. 2023, 104, e2097. [Google Scholar] [CrossRef]
- Donaldson, M.R.; Burnett, N.J.; Braun, D.C.; Suski, C.D.; Hinch, S.G.; Cooke, S.J.; Kerr, J.T. Taxonomic bias and international biodiversity conservation research. Facets 2016, 1, 105–113. [Google Scholar] [CrossRef]
- Byeon, J.H.; Kwon, Y.J. The Effect of Outdoor Inquiry Program for Learning Biology Using Digital Twin Technology. J. Balt. Sci. Educ. 2023, 22, 781–798. [Google Scholar] [CrossRef]
- Jia, X.; Feng, S.; Zhang, H.; Liu, X. Plastome phylogenomics provide insight into the evolution of Taxus. Forests 2022, 13, 1590. [Google Scholar] [CrossRef]
- Li, P.; Zhu, W.; Xie, Z.; Qiao, K. Integration of multiple climate models to predict range shifts and identify management priorities of the endangered Taxus wallichiana in the Himalaya-Hengduan Mountain region. J. For. Res. 2020, 31, 2255–2272. [Google Scholar] [CrossRef]
- Hu, Z.; Liu, S.; Zhong, G.; Lin, H.; Zhou, Z. Modified Mann-Kendall trend test for hydrological time series under the scaling hypothesis and its application. Hydrol. Sci. J. 2020, 65, 2419–2438. [Google Scholar] [CrossRef]
- Duarte, Y.C.; Sentelhas, P.C. NASA/POWER and DailyGridded weather datasets—How good they are for estimating maize yields in Brazil? Int. J. Biometeorol. 2020, 64, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Shcheglovitova, M.; Anderson, R.P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Model. 2013, 269, 9–17. [Google Scholar] [CrossRef]
- Syfert, M.M.; Smith, M.J.; Coomes, D.A. The effects of sampling bias and model complexity on the predictive performance of MaxEnt species distribution models. PLoS ONE 2013, 8, e55158. [Google Scholar] [CrossRef]
- Augustin, N.H.; Mugglestone, M.A.; Buckland, S.T. An autologistic model for the spatial distribution of wildlife. J. Appl. Ecol. 1996, 33, 339–347. [Google Scholar] [CrossRef]
- Brunsdon, C.; Fotheringham, S.; Charlton, M. Geographically weighted regression. J. R. Stat. Soc. Ser. D (Stat.) 1998, 47, 431–443. [Google Scholar] [CrossRef]
- Betts, M.G.; Ganio, L.M.; Huso, M.M.; Som, N.A.; Huettmann, F.; Bowman, J.; Wintle, B.A. Comment on “Methods to account for spatial autocorrelation in the analysis of species distributional data: A review”. Ecography 2009, 32, 374–378. [Google Scholar] [CrossRef]
- Magare, D.A.; Patil, M.B. Ethnobotany in the digital age: Opportunities and challenges of traditional knowledge digitization. World J. Biol. Pharm. Health Sci. 2025, 21, 235–242. [Google Scholar] [CrossRef]
- Domazetoski, V. Enhancing Ecological Knowledge Discovery Using Large Language Models. Master’s Thesis, Georg-August Universität Göttingen, Göttingen, Germany, 2024; pp. 1–71. [Google Scholar]
- Lee, N.; Ping, W.; Xu, P.; Patwary, M.; Fung, P.N.; Shoeybi, M.; Catanzaro, B. Factuality enhanced language models for open-ended text generation. Adv. Neural Inf. Process. Syst. 2022, 35, 34586–34599. [Google Scholar] [CrossRef]
- Zhang, Y.; Warstadt, A.; Li, H.S.; Bowman, S.R. When do you need billions of words of pretraining data? arXiv 2020, arXiv:2011.04946. [Google Scholar] [CrossRef]
- Zuccon, G.; Koopman, B. Dr ChatGPT, tell me what I want to hear: How prompt knowledge impacts health answer correctness. arXiv 2023, arXiv:2302.13793. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Zhou, P.; Lv, R.; Zhou, K.; Zhang, Y. Is chatgpt a good recommender? a preliminary study. arXiv 2023, arXiv:2304.10149. [Google Scholar] [CrossRef]
- Zhang, H.; Wu, C.; Xie, J.; Lyu, Y.; Cai, J.; Carroll, J.M. Redefining qualitative analysis in the AI era: Utilizing ChatGPT for efficient thematic analysis. arXiv 2023, arXiv:2309.10771. [Google Scholar] [CrossRef]
- Carlini, N.; Tramer, F.; Wallace, E.; Jagielski, M.; Herbert-Voss, A.; Lee, K.; Roberts, A.; Song, D. Extracting training data from large language models. In Proceedings of the 30th USENIX Security Symposium (USENIX Security 21), Vancouver, BC, Canada, 11–13 August 2021; pp. 2633–2650. [Google Scholar] [CrossRef]
- Nasr, M.; Shokri, R.; Houmansadr, A. Comprehensive privacy analysis of deep learning: Passive and active white-box inference attacks against centralized and federated learning. In 2019 IEEE Symposium on Security and Privacy (SP); IEEE: Piscataway, NJ, USA, 2019; pp. 739–753. [Google Scholar] [CrossRef]
- Terwiesch, C. Would Chat GPT3 Get a Wharton MBA? A Prediction Based on Its Performance in the Operations Management Course; Mack Institute for Innovation Management at the Wharton School, University of Pennsylvania: Philadelphia, PA, USA, 2023. [Google Scholar]
Category | Parameter Name | Abbreviation | Unit |
---|---|---|---|
Solar Radiation | All Sky Surface Photosynthetically Active Radiation Total | ALLSKY_SFC_PAR_TOT | W/m2 |
Temperature | Temperature at 2 Meters Maximum | T2M_MAX | °C |
Temperature at 2 Meters Minimum | T2M_MIN | °C | |
Humidity/Precipitation | Specific Humidity at 2 Meters | QV2M | g/kg |
Relative Humidity at 2 Meters | RH2M | % | |
Precipitation Corrected Sum | PRECTOTCORR_SUM | mm | |
Wind/Pressure | Surface Pressure | PS | kPa |
Soil Properties | Surface Soil Wetness | GWETTOP | 1 |
Profile Soil Moisture | GWETPROF | 1 | |
Root Zone Soil Wetness | GWETROOT | 1 |
Points | Statistic | V1 | V2 | V3 | V4 | V5 | V6 | V7 | V8 | V9 | V10 |
---|---|---|---|---|---|---|---|---|---|---|---|
AI | Min | 66 | 4 | 59 | 0.65 | 24 | −29 | 0.63 | 0.65 | 2655 | 75 |
Max | 90 | 9 | 69 | 0.74 | 39 | −4 | 0.72 | 0.78 | 5300 | 95 | |
Mean | 83 | 8 | 63 | 0.69 | 35 | −9 | 0.67 | 0.71 | 4572 | 85 | |
CR | Min | 66 | 4 | 59 | 0.65 | 24 | −29 | 0.63 | 0.65 | 2655 | 85 |
Max | 89 | 10 | 69 | 0.75 | 40 | −4 | 0.73 | 0.76 | 6020 | 95 | |
Mean | 78 | 7 | 65 | 0.69 | 32 | −15 | 0.67 | 0.68 | 4151 | 89 |
Cluster | Number of Members | Most Representative Variable | Cluster Proportion of Variation Explained | Total Proportion of Variation Explained | Variable | RSquare with Own Cluster | RSquare with Next Closest | 1-RSquare Ratio |
---|---|---|---|---|---|---|---|---|
1 | 8 | PS | 0.817 | 0.654 | PS | 0.95 | 0.093 | 0.055 |
PRECTOTCORR_SUM | 0.889 | 0.173 | 0.134 | |||||
QV2M | 0.863 | 0.068 | 0.147 | |||||
T2M_MAX | 0.859 | 0.049 | 0.149 | |||||
T2M_MIN | 0.848 | 0.149 | 0.178 | |||||
RH2M | 0.778 | 0.061 | 0.237 | |||||
GWETROOT | 0.744 | 0.161 | 0.305 | |||||
GWETPROF | 0.606 | 0.357 | 0.612 | |||||
2 | ALLSKY_SFC_PAR_TOT | 0.567 | 0.113 | ALLSKY_SFC_PAR_TOT | 0.567 | 0.021 | 0.442 | |
GWETTOP | 0.567 | 0.19 | 0.535 |
S. No | Aspect/Criteria | NASA POWER + AI Points | WorldClim/CHELSA + MaxEnt + Logistic Regression |
---|---|---|---|
1 | Temporal variation | High, real-time dynamics | Low, based on long-term historical averages (BIOCLIM~1970–2000) |
2 | Seasonal variation | High, month-wise trends inform propagation suitability | Moderate, seasonal inference based on derived BIO layers |
3 | Climatic extremes | High, captures real-time extremes for stress tolerant species | Low, smoothed averages, cannot reflect recent shifts |
4 | Ecological indices | Moderate, AI logic-based inference from raw data | High, uses precomputed 19 BIO variables directly in models |
5 | Spatial resolution | Moderate, point-based GPS suggestion from AI; NASA~0.5° | High, ~1 km2 resolution in spatial raster output |
6 | Long term suitability | Moderate, focused on current/future trends | High, good for historical niche modeling |
7 | Humidity and radiation | High, NASA includes RH, SH, and solar radiation; AI evaluates importance | Low, BIOCLIM does not include radiation or real-time humidity |
8 | Soil and pressure | High, includes soil moisture, surface pressure, and water stress | Not available, not considered in MaxEnt or BIO layers |
9 | Data requirement | Low, no species presence/absence required; AI infers zones based on logic | High, needs presence (MaxEnt), or both presence/absence (LogReg) + environmental layers |
10 | Prediction speed | Very fast, real-time generation of points | Moderate, requires preprocessing and modeling |
11 | Accuracy | Varies, depends on expert logic and climate realism | High, statistically robust if trained with quality data |
12 | Field validation | Essential, predictions must be checked on ground | Recommended, especially in extrapolated zones |
13 | Scalability | High, easily extendable to new regions with little prior data | Limited, needs presence data; scale increases complexity |
14 | Suitability in data poor regions | Very High, works even with no prior species data | Low, fails without reliable species presence points |
15 | Expert knowledge integration | High, AI integrates ecological logic, habitat stress, and climate sensitivity | Low to medium, mostly automated, with limited human guided logic |
16 | Output type | Point based GPS coordinates for propagation | Continuous habitat suitability maps or logistic probability outputs |
17 | Bias and limitations | May reflect AI/human rule bias; depends on quality of integrated logic | Risk of overfitting, collinearity, or spatial bias if not properly controlled |
18 | Use for T. contorta | Ideal, identifies viable propagation points in Swat; adapts to ecological niche logic | Good, works where enough presence data exist and environment is modeled accurately |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Din, S.; Ali, H.; Panagopoulos, T.; Alam, J.; Malik, S.; Sher, H. AI-Driven Conservation of the Endangered Twisted Yew (Taxus contorta Griff.) in the Western Himalaya. Sustainability 2025, 17, 8541. https://doi.org/10.3390/su17198541
Din S, Ali H, Panagopoulos T, Alam J, Malik S, Sher H. AI-Driven Conservation of the Endangered Twisted Yew (Taxus contorta Griff.) in the Western Himalaya. Sustainability. 2025; 17(19):8541. https://doi.org/10.3390/su17198541
Chicago/Turabian StyleDin, Salahud, Haidar Ali, Thomas Panagopoulos, Jan Alam, Saira Malik, and Hassan Sher. 2025. "AI-Driven Conservation of the Endangered Twisted Yew (Taxus contorta Griff.) in the Western Himalaya" Sustainability 17, no. 19: 8541. https://doi.org/10.3390/su17198541
APA StyleDin, S., Ali, H., Panagopoulos, T., Alam, J., Malik, S., & Sher, H. (2025). AI-Driven Conservation of the Endangered Twisted Yew (Taxus contorta Griff.) in the Western Himalaya. Sustainability, 17(19), 8541. https://doi.org/10.3390/su17198541